增量式编码器与绝对式编码器的区别

合集下载

增量编码器与绝对编码器的关系

增量编码器与绝对编码器的关系

增量编码器与绝对编码器的关系
将机械转动的模拟量(位移)转换成以数字代码形式表示的电信号,这类传感器称为编码器。

编码器以其高精度、高分辨率和高可靠性被广泛用于各种位移的测量。

编码器的种类很多,主要分为脉冲盘式(增量编码器)和码盘式编码器(绝对编码器),其关系如下所示:
脉冲盘式编码器的输出是一系列脉冲,需要一个计数系统对脉冲进行加减(正向或反向旋转时)累计计数,一般还需要一个基准数据即零位基准,才能完成角位移测量。

绝对编码器不需要基准数据及计数系统,它在任意位置都可给出与位置相对应的固定数字码输出,能方便地与数字系统(如微机)连接。

编码器按其结构形式有接触式、光电式、电磁式等,后两种为非接触式编码器。

非接触式编码器具有非接触、体积小和寿命长,且分辨率高的特点。

三种编码器相比较,光电式编码器的性价比最高,它作为精密位移传感器在自动测量和自动控制技术中得到了广泛的应用。

目前我国已有23位光电编码器,为科学研究、军事、航天和工业生产提供了对位移量进行精密检测的手段。

哪位能告诉伺服电机绝对值编码器和增量编码器的区别

哪位能告诉伺服电机绝对值编码器和增量编码器的区别

ቤተ መጻሕፍቲ ባይዱ容介绍
一、指代不同 1、增量式编码器:将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的 个数表示位移的大小。 2、绝对值编码器:在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方 到2的n-1次方的唯一的2进制编码。 二、工作方式不同 1、增量式编码器:以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时, 依靠计数设备的内部记忆来记住位置。
哪位能告诉伺服电机绝对值编码器和 增量编码器的区别。
参考资料:伺服电机编码器
伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从 物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算 一种特殊的伺服编码器,市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有 可靠,价格便宜,抗污染等特点,有赶超光电编码器的趋势。
内容介绍
2、绝对值编码器:由机械位置确定编码,无需记忆,无需找参考点,而且不用一直计数,什么 时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大 大提高了。 三、用处不同 1、增量式编码器:钢铁冶金设备、重型机械设备、精密测量设备、机床、食品机械、电梯等特 种设备。 2、绝对值编码器:纺织机械、灌溉机械、造纸印刷、水利闸门、机器人及机科-绝对值编码器
谢谢观看

编码器的工作原理介绍

编码器的工作原理介绍

访问其它设备的过程,如何回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了
消息域格局和内容的公共格式。
当在一 Modbus 网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识
别按地址发来的消息,决定要产生何种行动。 如果需要回应,控制器将生成反馈信息并用
Modbus 协议发出。在其它网络上,包含了 Modbus 协议的消息转换为在此网络上使用的帧或
起始地址 读取点数 CRC 校验码
站 功 低 高 号能
︵码

址 ︶
编码器答:
01 03 02 XX XX XX XX
数据 CRC 校验码
Ⅱ波特率 : 2400bps 4800bps 9600bps 19200bps 57600bps
※ 出厂默认设置:①无奇偶校验位②波特率 19200bps③地址 0x01
※ 改变参数时,不要定时发送为避免损坏器件内部结构。发送一次返回数据匹
配代表设置成功。
Ⅲ功能码 03:
利用 Modbus 通信协议的 03 功能码,读取编码器数值。 主机的命令格式是从机地址、功能码、起始地址、字节数及 CRC 码。
低 高
站功
号能
︵码 地


编码器答:
01 03 04 00 0X XX XX XX XX
数据 数据 CRC 校验码
² 此类型编码器具有国际流行的同步串行接口,可与德国西门子 PLC 等系统接口通 讯,具有速度快,效率高等优点
3、异步串行(Mudbus)输出
Modbus 是由 Modicon(现为施耐德电气公司的一个品牌)在 1979 年发明的,是全球第 一个真正用于工业现场的总线协议。为更好地普及和推动 Modbus 在基于以太网上的分布式 应用,目前施耐德公司已将 Modbus 协议的所有权移交给 IDA(Interface for Distributed Automation,分布式自动化接口)组织,并成立了 Modbus-IDA 组织,为 Modbus 今后的发展 奠定了基础。在中国,Modbus 已经成为国家标准 GB/T19582-2008。据不完全统计:截止到 2007 年,Modbus 的节点安装数量已经超过了 1000 万个。

光电编码器基础学习知识原理与维修

光电编码器基础学习知识原理与维修

高精度的光电编码器的结构及原理2009年06月12日星期五8:48本文主要介绍高精度的光电编码器的内部结构、工作原理与位置检测的方法。

一、光电编码器的介绍:光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。

根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,下面我就这两种光电编码器的结构与工作原理做介绍。

(一)、绝对式光电编码器绝对式光电编码器如图所示,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。

编码盘是按照一定的编码形式制成的圆盘。

图1是二进制的编码盘,图中空白部分是透光的,用“0”来表示;涂黑的部分是不透光的,用“1”来表示。

通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。

如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23、22、21和20,4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、 (1111)a) b)按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜、码盘、光敏二极管和驱动电子线路。

当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0”,遮光的码道对应的光敏二极管不导通,输出高电平“1”,这样形成与编码方式一致的高、低电平输出,从而获得扇区的位置脚。

(二)、增量式光电编码器Increamental Optical-electrical Encoder增量式光电编码器是码盘随位置的变化输出一系列的脉冲信号,然后根据位置变化的方向用计数器对脉冲进行加/减计数,以此达到位置检测的目的。

它是由光源、透镜、主光栅码盘、鉴向盘、光敏元件和电子线路组成。

增量式光电编码器的工作原理是是由旋转轴转动带动在径向有均匀窄缝的主光栅码盘旋转,在主光栅码盘的上面有与其平行的鉴向盘,在鉴向盘上有两条彼此错开90o相位的窄缝,并分别有光敏二极管接收主光栅码盘透过来的信号。

旋转编码器工作原理 __编码器

旋转编码器工作原理 __编码器

旋转编码器工作原理 __编码器旋转编码器工作原理编码器是一种用于测量旋转运动或线性运动的装置,它将运动转换为电子信号,以便于控制系统进行准确的位置控制和运动监测。

旋转编码器通常用于机械设备、自动化系统、机器人等领域。

1. 工作原理旋转编码器由一个固定的外壳和一个与之相连的旋转轴组成。

在旋转轴上,有一个圆盘或环形码盘,上面刻有一系列的刻线或码位。

固定的外壳上有一个光电传感器,用于读取码盘上的刻线或码位。

当旋转编码器旋转时,码盘上的刻线或码位会经过光电传感器,光电传感器会感知到刻线或码位的变化。

通过检测刻线或码位的变化,编码器可以确定旋转轴的角度或位置。

2. 类型旋转编码器可以分为两种主要类型:增量式编码器和绝对式编码器。

2.1 增量式编码器增量式编码器通过检测刻线或码位的变化来测量旋转轴的角度或位置。

它们提供了相对位置信息,但不提供绝对位置信息。

增量式编码器通常有两个输出信号:A相和B相。

这两个相位差异的信号可以用来确定旋转轴的方向。

2.2 绝对式编码器绝对式编码器可以直接提供旋转轴的绝对位置信息。

它们通常有多个输出信号,每个信号对应一个特定的位置。

绝对式编码器可以通过读取这些信号来确定旋转轴的精确位置。

3. 应用旋转编码器广泛应用于各种领域,包括但不限于以下几个方面:3.1 机械设备旋转编码器可以用于测量机械设备的旋转角度或位置,例如工业机械、机床、印刷设备等。

通过将编码器与控制系统连接,可以实现对机械设备的精确控制和监测。

3.2 自动化系统旋转编码器在自动化系统中起着重要作用。

它们可以用于测量机器人的关节角度,以实现精确的运动控制。

此外,旋转编码器还可以用于测量输送带的速度和位置,以实现自动化物流系统的控制。

3.3 电子设备旋转编码器也被广泛应用于电子设备中,例如电子游戏手柄、音频设备、工业控制面板等。

通过旋转编码器,用户可以进行精确的控制和调整,提供更好的用户体验。

4. 优势和注意事项使用旋转编码器具有以下优势:4.1 高精度旋转编码器可以提供高精度的位置测量,通常可以达到亚微米级别的精度。

编码器的分类、特点及其应用详解

编码器的分类、特点及其应用详解

编码器的分类、特点及其应用详解编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。

编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。

按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。

绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。

显然,吗道必须N条吗道。

目前国内已有16位的绝对编码器产品。

1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量。

数电编码器原理

数电编码器原理

数电编码器原理一、引言编码器是一种将输入信号转换为数字信号的电路。

在数字系统中,编码器用于将模拟量转换为数字信号,或者将一种数字格式转换为另一种数字格式。

在计算机中,编码器通常用于将数据从一个格式转换为另一个格式。

二、数电编码器分类根据其输入输出特点,数电编码器可以分为以下几类:1. 绝对值编码器:输出的代码是与输入的位置有关的绝对值。

2. 增量式编码器:输出的代码与上一个位置之间的差异有关。

3. 优先级编码器:当多个输入同时存在时,只有最高优先级的输入会被输出。

三、绝对值编码器原理绝对值编码器是一种将旋转角度或位移等物理量转换成二进制代码的装置。

它可以将物理量与其所对应的二进制代码一一对应。

常见的绝对值编码器有格雷码和自然二进制编码。

1. 格雷码格雷码也称为反射二进制代码。

它是通过将相邻两个二进制数之间只改变一个位上的状态而得到的。

例如,0和1之间只改变最高位状态,则得到格雷码00和01;1和2之间只改变次高位状态,则得到格雷码11和10。

这种编码方式可以避免在数字信号传输过程中出现错误,因为只有一位状态发生变化,不会产生多个位同时变化的情况。

2. 自然二进制编码自然二进制编码是将物理量直接转换为二进制代码。

例如,一个4位的自然二进制编码器可以将0~15之间的16个数值转换为4位的二进制代码。

当输入的物理量发生变化时,输出的二进制代码也会相应地发生变化。

四、增量式编码器原理增量式编码器是一种将旋转角度或位移等物理量转换成增量值的装置。

它可以将物理量与其所对应的增量值一一对应。

常见的增量式编码器有两相输出和四相输出。

1. 两相输出两相输出是指在旋转时只有A相和B相两个信号线交替产生高电平或低电平信号。

例如,在顺时针旋转时,A相先跟随而B相后跟随;在逆时针旋转时,B相先跟随而A相后跟随。

通过判断A、B两个信号线上升沿或下降沿的先后顺序,就可以确定旋转方向和角度大小。

2. 四相输出四相输出是指在旋转时可以产生四个信号线的输出,分别称为A、B、C、D。

编码器基础知识

编码器基础知识

编码器基础知识编码器根据不同的使用场合可分为absolute type encoder绝对式编码器brush (contact) encoder电刷(接触式)编码器channel encoder信道编码器chronometric encoder记时编码器command encoder命令编码器digital position encoder数字式位置编码器digital shaft encoder数字式轴角编码器digital voltage encoder数字电压编码器diode matrix encoder二极管矩阵编码器error signal encoder误差信号编码器experimental digital television encoder实验数字电视编码器incremental encoder增量式编码器inductive encoder电感式编码器linear angle encoder线性角编码器key encoder键盘编码器matrix encoder矩阵(式)编码器optical position encoder光位置编码器optical rotary encoder光电旋转编码器phase encoder相位编码器photoelectric encoder光电译码器priority encoder优先编码器quantizing encoder量化编码器reading encoder读数译码器shaft-position encoder轴角编码器source encoder信源编码器space encoder间隔译码器, 空间译码器test encoder测试编码器最常用的有两种:绝对值编码器和增量式编码器。

信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增量型编码器与绝对型编码器的区分
编码器如以信号原理来分,有增量型编码器,绝对型编码器。

增量型编码器(旋转型)
工作原理:
由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z 相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

信号输出:
信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

如单相联接,用于单方向计数,单方向测速。

A.B两相联接,用于正反向计数、判断正反向和测速。

A、B、Z三相联接,用于带参考位修正的位置测量。

A、A-,
B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。

对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

增量式编码器的问题:
增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。

增量型编码器的一般应用:
测速,测转动方向,测移动角度、距离(相对)。

绝对型编码器(旋转型)
绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线。

编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。

这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。

绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。

这样,编码器的抗
干扰特性、数据的可靠性大大提高了。

从单圈绝对值编码器到多圈绝对值编码器
旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。

如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。

编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。

相关文档
最新文档