数学建模教程及例题分析

合集下载

数学建模-第四篇-典型案例分析课件

数学建模-第四篇-典型案例分析课件

问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响

上海市考研数学建模方法与实例分析

上海市考研数学建模方法与实例分析

上海市考研数学建模方法与实例分析数学建模是实际问题与数学模型的数学分析和求解过程,是数学在现实应用中的重要体现。

而考研数学建模是指针对考研数学中的建模题型,运用数学方法进行问题求解的过程。

本文将以上海市考研数学建模的方法与实例为例进行详细分析。

一、问题描述假设上海市有一支足球队,经过多年的发展,该队在国内具有一定的知名度,现希望通过一些宣传和活动来增加球队的知名度,吸引更多的球迷,促进队伍的发展。

请你设计一套合理的数学建模方案,帮助该队实现目标。

二、问题分析为了实现目标,我们可以考虑以下几个方面的问题:宣传渠道选择、活动策划、效果评估等。

1. 宣传渠道选择首先,我们需要选择合适的宣传渠道,以增加球队的知名度和影响力。

可以考虑利用电视、广播、报纸、网络等媒体进行宣传,也可以寻找合作伙伴进行联合宣传。

同时,还需要考虑宣传渠道的覆盖面和受众群体的特点。

2. 活动策划其次,为了吸引更多的球迷,我们可以组织一些有吸引力和互动性的活动。

例如,可以组织足球比赛、球迷见面会、签名会等活动,以增加球迷的互动和参与感,从而提高球队的影响力和知名度。

3. 效果评估最后,为了评估宣传和活动的效果,我们可以利用数学统计方法进行数据分析。

可以通过对球队知名度、关注度以及球迷参与活动的数量等指标进行统计和比较,评估宣传和活动的效果,并根据评估结果进行相应调整。

三、数学模型的建立针对上述问题,我们可以建立如下的数学模型:1. 宣传渠道选择模型设定宣传渠道的评价指标,例如覆盖面、受众群体特点、宣传费用等,然后利用数学方法对不同宣传渠道进行评估和排序,选择最优宣传渠道。

2. 活动策划模型考虑活动策划的各个因素,如活动类型、活动内容、参与人数等,建立相应的数学模型进行活动方案的设计和优化。

3. 效果评估模型根据宣传和活动的目标,确定相关的评估指标,例如球队知名度增长率、球迷参与度等,然后利用数学统计方法对这些指标进行量化分析,评估宣传和活动的效果。

数学建模的简单实例ppt课件

数学建模的简单实例ppt课件
数学建模的简单实例
§1.1 方桌问题
问题:适当变换方桌的方位,能否将方桌放稳?
分析:问题的目标是“放
A
A
D
稳”。“放稳”可以用各
脚离地面的高度这一数量
B

指标来表达。于是,引入
各脚离地面的高度的数学
记号。
B
C
C
1
依次记 A、B、fc fD
A
D
fA( ) fB ( ) fC ( ) fD ( )
2
注意到,在任何情况下,总有三只脚能同时着地,且这三 只脚中总有两只脚处在对角位置上,于是我们记:
f ( ) fB( ) fD( ) g( ) fA( ) fC ( )
则 有 , f ( ) g( ) 0
仓库;可关闭2号或3号仓库。 公司不主张仓库的个数 超过4个。 由于向客户供货的运费和仓库改建的费用
均由公司负担, 故需建模为公司选择方案。
若有可能, 应将所建模型推广为适应于类似地更一般 情 形 下 的 方 案 选 择。
13
问题分析
公司的目标是费用尽可能小
费用是怎样构成的
工厂到仓库
运输费用
工厂到客户 问题分析

0
cij Ai到B j及Ck的单位运输费;
d jk B j到Ck的单位运输费;
e1 B1扩建的月增费; e5 B5的月增费; e2 , e3 B2 , B3变更时发生的费用;
保留B2 关闭B2
;
xij

Ai
到B
j
及C
的运
k
量;
新建B5 不建B5
;
y jk

B
j
到C
的运

数学建模课堂PPT(部分例题分析)

数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。

数学建模案例

数学建模案例

2021/10/10
13
建模示例五:轮廓模型
轮廓模型是以量纲模型为基础,利用量 的比例关系而构造简单数学模型的一种方法。 因为这种比例关系比较粗糙,因而成为轮廓 模型。
(货物的包装成本)在超市中可以看到许 多商品(如面粉、白糖、奶粉等)都以包装 的形式出售,同一种商品的包装也经常有大 小不同的规格,出售的价格也高低不同。下 表是一些例子。
周 期 中 南 北 方 向 亮 红 灯 的 比 率 是 t/T,需 停 车 等 待 的 车 辆
数 是 V t/T.这 些 车 辆 等 待 时 间 最 短 为 0(刚 停 下 ,红 灯 就 转
换 为 绿 灯 ),最 长 为 t(到 达 路 口 时 ,绿 灯 刚 转 换 为 红 灯 ),由 假
设 2"车 流 量 均 匀 "可 知 ,它 们 的 平 均 等 待 时 间 是 t/2.由 此 可
它 也 是 货 物 量 的 减 函 数 .因 而 当 包 装 比 较 大 时 单 位 重 量 货物的成本的减低将越来越慢.
我们来计算总的节省率,即购买单位包装的商品的
花 费 随 着 包 装 的 增 大 而 改 变 的 速 率 r ( ) (q / 3) 1/3 , 它
仍 然 是 的 减 函 数 .这 说 明 总 的 节 省 率 也 是 随 着 所 包 装 的
1588)2 27
27(152 88
882 272
)1588
12
当t
88 30 30 24
48.8889时,ymin
587(秒).
由此可见,我们计算所得的结果和同学们实际观测
到的数据是比较接近的.这也说明此路口红灯与绿灯设
置的时间比较合理.
评 注: 由上述结果可知,两个方向绿灯时间之比恰好等于

第二十讲 数学建模(含解答)-

第二十讲  数学建模(含解答)-

第二十讲 数学建模【趣题引路】某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元.•因为在生产过程中,平均每生产一件产品有0.5m 3污水排出,为了净化环境,工厂设计两种方案对污水进行处理.方案1:工厂污水先净化处理后再排出,每处理1m 3•污水所有原材料费为2元,并且每月排污设备损耗费为30 000元;方案2:•工厂将污水排到污水厂统一处理,每处理1m 3污水需付14元排污费.问题:(1)设工厂每月生产x 件产品,每月利润为y 元,分别求出依方案1和方案2处理污水时y 与x 的函数关系式;(2)•设工厂每月生产量为6 000件产品时,你若作为厂长在不污染环境,又节约资金的前提下,•应选用哪种处理污水的方案?请通过计算加以说明. 解析 (1)设选用方案1,每月利润为y 1元,选用方案2,每月利润为y 2元,则: y 1=(50-25)x-2×0.5x-30 000=24x-30 000, y 2=(50-25)x-14×0.5x=18x. 故y 1=24x-30 000,y 2=18x;(2)当x=6000时,y 1=24×6000-30 000=114 000(元),y 2=18x=18×6000=108 •000(元). ∴y 1>y 2.答:我若作为厂长,应选方案1. 点评本例是生产经营决策问题,其难点在于建立相应的数学模型,构建函数关系式,•然后,通过问题中所给的条件判断,若不能判断,就要进行分类讨论.【知识延伸】例 某工厂有14m 长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,•面积为126m 2的厂房,工程条件为:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a元;③拆去1m 旧墙,用所得材料建造1m 新墙的费用为2a元.经过讨论有两种方案:(Ⅰ)利用旧墙的一段xm(x<14)为矩形厂房一面的边长;(Ⅱ)•矩形厂房利用旧墙的一面边长为x(x ≥14).问:如何利用旧墙,即x 为多少米时,建墙费用最省?(Ⅰ)(Ⅱ)两种方案哪个更好?解析 设利用旧墙的一面矩形边长为xm,则矩形的另一边长为126xm . (Ⅰ)利用旧墙的一段xm(x<14)为矩形一面边长,则修旧墙费用为x ·4a元,•将剩余的旧墙拆得材料建新墙的费用为(14-x)·2a元,其余建新墙的费用为(2x+2126x -14)·a 元.故总费用为y=x ·4a +142x -·a+(2x+252x -14)·a=a(74x+252x-7)=7a(364x x +-1).(0<x<14)∴y ≥364x x -1]=35a.当且仅当364x x=,即x=12m 时,y min =35a(元); (Ⅱ)若利用旧墙的一面矩形边长为x ≥14,则修旧墙的费用为4a ·14=72a 元,建新墙的费用为(2x+252x-14)a 元. 故总费用为y=72a+(2x+252x-14)a=72a+2a(x+126x -7) (x ≥14).设14≤x 1<x 2,则x 1-x 2<0,x 1x 2>196. 则(x 1+1126x )-(x 2+2126x )=(x 1-x 2)(1-12126x x ) ∴函数y=x+126x在区间[14,+∞]上为增函数. 故当x=14时,y min =72a+2a(14+12614-7)=35.5a>35a.综上讨论可知,采用第(Ⅰ)方案,建墙总费用最省,为35a 元.点评解答选择方案应用题同处理其他应用题一样,重点要过好三关(1)事理关:•读懂题意,知道讲的是什么事情,要比较的对象是什么;(2)文理关:•把实际问题文字语言转化为数学的符号语言,然后用数学式子表达数学关系式;(3)数理关:在构建数学模型的过程中,要对数学知识有检索的能力,认定或构建相应的数学模型,•完成由实际问题向数学问题的转化.【好题妙解】佳题新题品味例 在一次人才招聘会上,有A 、B 两家公司分别开出他们的工资标准:A 公司允诺第一年月工资为1500元,以后每月工资比上一年工资增加230元;B 公司允诺第一个月工资为2000元,以后每月工资在上一年月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取,试问 :(1)若该人打算在A 公司或B 公司连续工作n 年,则他第n 年的月工资收入各为多少? (2)如该人打算连续在一家公司工作10年,仅以工资收入来看,•该人去哪家公司较合算?解析 (1)此人在A、B公司第n年的月工资数分别为a n=1 500+230(n-1),b n=2 •000(1+5%)n-1.其中n为正整数;(2)若该人在A公司连续工作10年,则他的工资收入总量为12(a1+a2+…+a10)=•304 200(芜).若该人在B公司连续工作10年,则他的工资收入总量为12(b1+b2+•…b10)=301 869(元).故该人应选择在A公司工作.点评最佳方案的选择问题充分体现了数学在生活中的无穷乐趣,•同时也从数学角度诠释了“知识就是力量”,“知识就是财富”的道理.中考真题欣赏例 (2002年长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:x 3 5 9 11y 18 14 6 2(1)在所给的直角坐标系中:①根据提供的数据描出实数对(x,y)对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润为P元,根据日销售规律:①试求出日销售利润p元与日销售单价x元之间的函数关系式,•并求出日销售单价x为多少元时,才能获得最大日销售利润?试问:日销售利润p是否存在最小值?若有,试求出,若无,试说明理由;②在给定的直角坐标系中,画出日销售利润p元与日销售单价x•元之间的函数图象,观察图象,写出x与p的取值范围.解析 (1)①准确描出四点位置.②猜测它是一次函数y=kx+b.由两点(3,18),(5,14)代入上式求得k=-2,b=24,则有y=-2x+24.(9,6),(11,2)代入同样满足,∴所求函数关系式为y=-2x+24.由实际意义知,所求函数关系式为y=-•2x+24(0≤x<12)和y=0(x≥12).(2)①p=xy-2y,即p=y(x-2)=(24-2x)(x-2)=-2x2+28x-48=-2(x-7)2+50.当x=7时,日销售利润最大值50元.当x>12时,此时无人购买,故此时利润p=0(x≥12).由实际意义知,当销售价x=0即亏完本卖出,此时利润p=-48,即为最小值;②据实际意义有:0≤x<2时,亏本卖出.当x=2或x=12时,利润p=0.当x>12时,即高价卖出,无人购买,p=0.故作出图象,图(20-2)由图象知,x≥0,-48≤p≤50.竞赛样题展示例 (1998年“祖冲之杯”初中数学邀请赛)某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理在市场上做了一番调查后发现,•若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个,•为获得每日最大利润,此商品售价应定为多少元?解析设商品每个售价x元,每日利润为y元,则当x>18时,y=[60-5(x-18)](x-10)=-5(x-20)2+500,即在商品提价时,提到20元时,y max=500元;当x<18时,y=[60+10(18-x)](x-10)=-10(x-17)2+490.即在商品降价时,降到17元时,y max=490元 .综上可得,此商品售价定为20元时,才能获得每日最大利润.点评本题首先应搞清题目的意思,设未知数,转化为函数问题,•因为售价的上升或下降,利润的情况是不一样的,故应分情况讨论.全能训练A级1.某移动通讯公司开设了两种通讯业务,“全球通”:使用者先缴50元月租费,•然后每通话1min,再付话费0.4元;“快捷通”:不缴月租费,每通话1min,付话费0.•6元(本题通话均指市内话话).若一个月内通话xmin,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯费用相同?(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些?2.某旅行社有客房120间,每间房的日租金为50元,每天都客满.旅行社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则客房每天出租后会减少6间,不考虑其他因素,旅社将每间客房将日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?3.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,那么经销这种商品原来的利润率是多少?A级(答案)1.(1)y1=0.4x+50,y2=0.6x;(2)令y1=y2,0.4x+50=0.6x,则x=250;故每一个月内通话250min,通讯费用相同.(3)全球通合算些.2.设每间房的日租金提高x个5元,日租金总收入为y,则y=(50+5x)(120-6x)即y=-30(x-5)2+6 750当x=5时,y max=6 750.∴日租金总收入多6 750-120×50=750(元)3.17%.B级1.某环形道路上顺时针排列着4所中学:A1,A2,A3,A4,它们顺次有彩电15台,8台,5台,12台.为使各校的彩电数相同,允许一些中学向相邻中学调出彩电.问怎样调配才能使调出的彩电台数最小?并求调出彩电的最小总台数.2.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器,彩电、冰箱共360台,且冰箱至少生产60台,•已知生产这些家电产品每问:,•最高产值是多少?B级(答案)1.设A1中学调给A2彩电x1台(若x1<0,则认为是A2,向A1调出│x1│台),A2中学调给A3彩电x2台,A3调给A4x3台,A4调给A1x4台.因为共有40台彩电,平均每校10台,•因此,15-x1+x4=10,8-x2+x1=10,5-x3+x2=10,12-x4+x3=10,得x4=x1-5,x1=x2+2,x2=x3+5,x3=x4-2,x3=(x1-5)-2=x1-7,x2=(x1-7)+5=x1-2.本题即求y=│x1│+│x2│+│x3│+│x4│=│x1│+│x1-2│+│x1-7│+│x1-5│的最小值,其中x1是满足-8≤x1≤15的整数.设x1=x,并考虑定义在-8≤x≤15•上的函数:y=│x│+│x-2│+│x-7│+│x-5│, 当2≤x≤5时,y取最小值10,即当x1=2,3,4,5时,│x1│+│x1-2│+│x1-7│+│x1-5│取到最小值10.从而调出彩电的最小台数为10,调配方案有如下4种:2.设3种家电数量分别为x,y,z台,则各自的工时数、产值数、工时总数、•产值总数如下表所示.家电名称空调彩电冰箱总数台数x y z x+y+z=360(z≥60)工时数12x13y14z12x+13y+14z=120产值(千元) 4x 3y 2z A=4x+3y+2z ∵工时总数=12x+13y+14z=112(6x+4y+3z)=14(x+y+z)+112(3x+y)=14×360+112(3x+y)=90+112(3x+y)总产值数A=4x+3y+2z=2(x+y+z)+(2x+y) =2×360+(2x+y)=720+(2x+y)由300,190(3)120,12720(2)720(3).x yx yA x y x y x+≤⎧⎫⎪⎪⎪⎪++=⎨⎬⎪⎪=++=++-⎪⎪⎩⎭⇒A=1 080-x≤1 050.当总产值A取到最大值1 050时, x=30,y=270,z=60.。

数学建模的实例分析

数学建模的实例分析

数学建模的实例分析数学建模是一种将实际问题转化为数学模型进行求解的方法。

通过对问题的分析、建立适当的模型,运用数学方法进行求解,从而得到对实际问题的理解和解决方案。

本文将通过一个实例来具体分析数学建模在实际问题中的应用。

一、问题描述假设某城市的道路交通堵塞问题日益严重,市政府计划对交通信号灯进行优化。

为了合理地调配交通信号灯的时长,需要考虑到车辆流量、道路长度、红绿灯周期等多个因素。

具体问题如下:如何合理地设置交通信号灯的时长,以最大程度地提高交通效率并减少交通拥堵。

二、问题分析针对上述的问题,我们可以首先将道路网络抽象为一个图论模型。

将路口作为节点,道路作为边,通过各个路口之间的连接关系来描述交通情况。

而交通信号灯的时长则可以视为图论中边的权重,表示车辆通过该边所需要的时间。

基于上述分析,我们将问题进行数学建模:1. 定义变量:- $N$:路口数量- $G = (V, E)$:图,其中 $V$ 表示路口的集合,$E$ 表示道路的集合- $L$:红绿灯周期长度- $T(e)$:边 $e$ 的通过时间2. 建立模型:- 目标函数:最小化车辆的平均通过时间 $C$,即\[C = \frac{1}{N} \sum_{e \in E} \frac{T(e)}{T(L)}\]- 约束条件:- 路口的通过时间必须满足红绿灯周期长度 $L$,即对于任意路口 $i \in V$,有\[\sum_{e \in E(i)} T(e) = L\]其中 $E(i)$ 表示与路口 $i$ 相关联的道路集合。

3. 求解方法:- 利用优化算法,如遗传算法、模拟退火算法等,求解上述问题模型,得到最优的交通信号灯时长。

三、实例分析以某城市的一个交通繁忙的路口为例来具体分析。

1. 数据采集:- 通过交通监控摄像头,采集车辆通过路口的数据,并记录通过时间。

- 统计各个道路的车辆流量、道路长度等信息。

2. 建模过程:- 根据采集到的数据,构建图模型。

2024年高考数学建模案例解析

2024年高考数学建模案例解析

2024年高考数学建模案例解析2024年高考学科综合能力考试数学建模案例解析随着社会的不断发展和教育的改革,数学建模成为高中数学教育的重要组成部分。

尤其在2024年的高考中,数学建模案例成为考试的一部分。

本文将以2024年高考数学建模案例为例,进行详细解析,并探讨数学建模在培养学生综合能力方面的作用。

案例背景及要求:假设2024年某城市掀起了共享单车的热潮,共享单车数量不断增加。

由于路网条件的限制,城市规划局希望求解出一种合理的摆放方案,以保证尽可能多的市民能够方便地使用单车,并且降低管理成本。

要求学生考虑单车摆放位置、数量分布、市民的需求等因素,通过数学建模给出一种最优解,并提出相应的调整策略。

解题思路及方法:1. 研究市民需求:首先,我们需要了解市民对共享单车的需求情况,通过问卷调查、数据分析等手段,了解市民骑车的频率、时间段、出行距离等信息,从而确定出行热点区域和高峰时段。

2. 路网分析:对城市的路网进行分析,确定主要道路、交通流量等信息,了解交通状况,为后续的摆放方案提供基础数据。

3. 摆放方案优化:针对市民需求和路网状况,我们可以运用图论算法、最优化算法等数学工具,建立一个数学模型,以求解出最优的摆放方案。

可以考虑的因素包括:单车数量、摆放位置、覆盖范围、容量等。

4. 调整策略提出:根据实际情况和模型结果,我们可以提出相应的调整策略。

例如,可以针对交通拥堵区域增加摆放数量,调整单车的分布密度,以满足市民需求,并减少单车的管理成本。

案例解析:在实际解决这个问题的过程中,首先需要对市民需求进行充分了解。

通过问卷调查,我们得知市民在上下班高峰期间对共享单车的需求较大,出行热点集中在市中心和商圈周边。

同时,我们还发现了一些特殊需求,如学生、游客等群体对单车的需求量也较大。

在进行路网分析时,我们发现了一些瓶颈路段和拥堵区域。

这些信息为摆放方案的优化提供了依据。

在建立数学模型时,我们可以使用最小费用流算法来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型初步— 数学模型初步—模型二
模型求解
给出一种简单、 给出一种简单、粗糙的证明方法
将椅子旋转 对角线AC和 互换 互换。 将椅子旋转900,对角线 和BD互换。 旋转 由g(0)=0, f(0) > 0 ,知f(π/2)=0 , g(π/2)>0. , π π 令h(θ)= f(θ)–g(θ), 则h(0)>0和h(π/2)<0. 和 π 由 f, g的连续性知 h为连续函数 据连续函数的基本性 为连续函数, 的连续性知 为连续函数 质, 必存在θ0 , 使h(θ0)=0, 即f(θ0) = g(θ0) . 因为f( 所以f( 因为 θ) • g(θ)=0, 所以 θ0) = g(θ0) = 0.
评注和思考 建模的关键 ~ θ和 f(θ), g(θ)的确定 的确定
考察四脚呈长方形的椅子
数学建模的一般步骤
模型准备 模型检验 模型应用 模 型 准 备 了解实际背景 搜集有关信息 明确建模目的 掌握对象特征 形成一个 比较清晰 问题’ 的‘问题’ 模型假设 模型分析 模型构成 模型求解
数学建模的一般步骤
模 型 假 设 针对问题特点和建模目的 作出合理的、 作出合理的、简化的假设 在合理与简化之间作出折中 用数学的语言、 用数学的语言、符号描述问题 发挥想像力 使用类比法
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤
模型 求解 模型 分析 模型 检验 各种数学方法、 各种数学方法、软件和计算机技术 如结果的误差分析、统计分析、 如结果的误差分析、统计分析、 模型对数据的稳定性分析 与实际现象、数据比较, 与实际现象、数据比较, 检验模型的合理性、 检验模型的合理性、适用性
实践
理论
实践
数学模型初步——线性规划
例1-1.某木匠制作桌子和书架出售,他希望确 定每种家具每周制作多少,即希望制定制作桌 子和书架的周生产计划,使获得利润最大。制 作桌子和书架的单位成本分别是5美元和7美 元。每周收益可以分别用下面的表达式估计: 50 x1 − 0.2 x12 其中 x1 是每周生产桌子数量;
LINGO的界面 LINGO的界面
• LINGO软件的主窗口(用 软件的主窗口( 软件的主窗口 户界面), ),所有其他窗口 户界面),所有其他窗口 都在这个窗口之内。 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model 模型窗口( Window),用于输入 ),用于输入 ), LINGO优化模型(即 优化模型( 优化模型 LINGO程序)。 程序)。 程序
模型应用
数学建模的全过程
现 实 世 界 现实对象的信息 验证 现实对象的解答 解释 表述
(归纳)
数学模型 求解 (演绎) 数学模型的解答
数 学 世 界
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译” 根据建模目的和信息将实际问题“翻译”成数学问 题 选择适当的数学方法求得数学模型的解答 将数学语言表述的解答“翻译” 将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来 • 椅子位置 利用正方形(椅脚连线 的对称性 利用正方形 椅脚连线)的对称性 椅脚连线
B´ B A´
对角线与x轴的夹角 用θ(对角线与 轴的夹角 表示椅子位置 对角线与 轴的夹角)表示椅子位置
• 四只脚着地 椅脚与地面距离为零 A θ C 距离是θ的函数 O x 四个距离 两个距离 C´ D´ ´ (四只脚 四只脚) 四只脚 正方形 D 对称性 正方形ABCD 正方形 A,C 两脚与地面距离之和 ~ f(θ) 绕O点旋转 点旋转 B,D 两脚与地面距离之和 ~ g(θ)
数学模型初步——线性规划
目标函数: f ( x1 , x2 ) = 25 x1 + 30 x2 约束条件: 木板约束:20 x + 30 x ≤ 600 劳动时间约束:5x + 4 x ≤ 40 x 合同约束: 1 ≥ 4, x2 ≥ 2
1 2
1 2
数学模型初步——LINGO的使用 的使用 数学模型初步
数学模型初步——总论
三、适用的范围? 社会、经济、环境、生态、医学等等领域。 要建立一个好的数学模型,不尽需要数学的 知识,还必须了解其他领域内与之相关的内 容。
数学模型初步——模型一
车辆的停止距离 正常的驾驶条件对车与车的跟随距离的要求 是每十英里的速率可以允许一辆车的跟随距 离,但是在不利的天气或道路条件下要有更 长的跟随距离。 如何处理不利的情况? 两秒钟法则—— 不管车速多少,看着你前面的车子刚驶过你 能确定的固定点,然后默数“一千零一,一 千零二”,如果你刚数完就到了那个固定点, 就表示你与前车靠的太近。
• 状态行(最左边显 状态行( 示“Ready”,表示 , 准备就绪” “准备就绪”)
• 当前时间
数学模型初步——一个简单的 数学模型初步 一个简单的LINGO程序 程序 一个简单的
例 直接用LINGO来解如下二次规划问题:
2 Max 98 x1 + 277 x2 − x12 − 0.3 x1 x2 − 2 x2
输出结果: 输出结果: 运行菜单命令“ 运行菜单命令“LINGO|Solve”
最大利润=11077.5 最大利润
最优整数解 X=(35,65) ,
• 运行状态窗口
Variables(变量数量): (变量数量): 变量总数( 变量总数(Total)、 )、 非线性变量数( 非线性变量数(Nonlinear)、 )、 整数变量数( 整数变量数(Integer)。 )。 Constraints(约束数量): (约束数量): 约束总数( 约束总数(Total)、 )、 非线性约束个数(Nonlinear)。 非线性约束个数 。 Nonzeros(非零系数数量): (非零系数数量): 总数( 总数(Total)、 )、 非线性项系数个数(Nonlinear)。 非线性项系数个数 。 Generator Memory Used (K) (内存使用 内存使用 量) • Elapsed Runtime (hh:mm:ss) 求解花费的时间) (求解花费的时间)
s.t.
x1 + x2 ≤ 100 x1 ≤ 2 x2 x1 , x2 ≥ 0 为整数
(1) (2) (3) (4)
输入窗口如下: 输入窗口如下:
程序语句输入的备注: 程序语句输入的备注: •LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 总是根据“ 寻找目标函数, 总是根据 或 寻找目标函数 而除注释语句和TITLE语句外的其他语句都是约束条 而除注释语句和 语句外的其他语句都是约束条 件,因此语句的顺序并不重要 。 •限定变量取整数值的语句为“@GIN(X1)”和 限定变量取整数值的语句为“ 限定变量取整数值的语句为 和 “@GIN(X2)”,不可以写成“@GIN(2)”,否则 ,不可以写成“ , LINGO将把这个模型看成没有整数变量。 将把这个模型看成没有整数变量。 将把这个模型看成没有整数变量 •LINGO中函数一律需要以“@”开头,其中整型变量 中函数一律需要以“ 开头 开头, 中函数一律需要以 函数( 函数(@BIN、@GIN)和上下界限定函数(@FREE、 、 )和上下界限定函数( 、 @SUB、@SLB)与LINDO中的命令类似。而且 变 中的命令类似。 、 ) 中的命令类似 而且0/1变 量函数是@BIN函数。 函数。 量函数是 函数
数学模型初步——模型一
刹车距离=h(重量,速率)(子模型二) 总结建模过程: 1.识别问题; 对现象做一般性观察 2.做出假设; 关于现象的假设、研制检验假设方法、用数据 检验假设 3.求解模型; 4.验证模型;
数学模型初步— 数学模型初步—模型二
1.3.1 椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
• 运行状态窗口
当前模型的类型 :LP,QP,ILP,IQP,PILP, , , , , , PIQP,NLP,INLP,PINLP (以I开头表示 , , , 开头表示 IP,以PI开头表示 开头表示PIP) , 开头表示 ) 当前解的状态 : "Global Optimum", "Local Optimum", "Feasible", "Infeasible“(不可行 不可行), 不可行 "Unbounded“(无界 无界), 无界 "Interrupted“(中断 中断), 中断 "Undetermined“(未确定 未确定) 未确定 当前约束不满足的总量(不是不 当前约束不满足的总量 不是不 满足的约束的个数):实数 实数( 满足的约束的个数 实数(即使 该值=0,当前解也可能不可行, 该值 ,当前解也可能不可行, 因为这个量中没有考虑用上下界 命令形式给出的约束) 命令形式给出的约束)
模型构成
数学模型初步— 数学模型初步—模型二
用数学语言把椅子位置和四只脚着地的关系表示出来 地面为连续曲面 椅子在任意位置 至少三只脚着地 f(θ) , g(θ)是连续函数 是 对任意θ, f(θ), g(θ) 至少一个为0 至少一个为
数学 问题
已知: 已知: f(θ) , g(θ)是连续函数 ; 是 对任意θ, f(θ) • g(θ)=0 ; 且 g(0)=0, f(0) > 0. , 证明: 证明:存在θ0,使f(θ0) = g(θ0) = 0.
65 x2 − 0.3x2 2 , 其中x2是每周生产的书架的数量;
数学模型初步——线性规划
线性规划问题中几个相关概念: f 目标函数:( x1 , x2 ) = 50 x1 − 0.2 x12 + 65 x2 − 0.3x2 2 − 5 x1 − 7 x2 x 决策变量:1和x2 约束条件:无约束
数学模型初步——线性规划
相关文档
最新文档