北京大学有机化学14胺
大学化学《有机化学-胺》课件

E1cb
(单分子共 轭碱消除)
H CC
L
B: - HB
CC L
LC=C
碳负离子很不稳定。 按这种机制进行的 情况很少。
-OH
H1
H2
CH3CH2-C3H-C2H-C1 H2 +N(CH3)3
四 级 铵 碱 的 E2 消 除(符合霍夫曼规则,动 力学控制的产物。 )
B:
H1
H2
CH3CH2-C3H-C2H-C1 H2
碱
CH3CH2CH2CH2CH=CH2 Hofmann烯烃
L的变化规律 L
I
吸 电 子 能 力 增 强
离 去 能 力 减 弱
Br Cl F
Hofmann烯烃的含量
CH3O-/CH3OH
t-BuO-/t-BuOH
19.3
69.0
27.6
80.0
33.3
87.6
69.9
97.4
+NMe3
96.2
98
L吸电子能力增强,试剂的碱性增强,试剂的体积 增大时, Hofmann烯烃的含量也增大。
铵 (+)酸(-)胺 盐 (-) 酸(-)胺
HCl HCl
有机酸(+) 有机酸(-)
非对映体利用溶解度 等物理性质上的差别 予以分离。
17.4.3 四级铵盐及其相转移催化作用
1 四级铵盐
(1)四级铵盐的制备:由三级胺和卤代烃反应制备。
C6H5CH2Cl + (C2H5)3N
C6H5CH2N+(C2H5)3Cl四级铵盐
10.5 % ~7 %
霍夫曼产物
eg 5.
H3C
+ N(CH3)3
有机化学中的胺与胺类化合物

有机化学中的胺与胺类化合物胺是有机化学中常见的一类化合物,它是氨基(NH2)的衍生物。
胺具有重要的生物和化学性质,在药物、染料、聚合物等领域有广泛的应用。
本文将介绍胺的结构、性质及在有机化学中的应用。
一、胺的结构胺是由氨基(NH2)取代一或多个氢原子而形成的化合物。
根据取代的氢原子个数和位置,胺可分为三类:一级胺、二级胺和三级胺。
一级胺是指一个氨基取代一个氢原子,例如甲胺(CH3NH2)。
二级胺是指两个氨基分别取代两个氢原子,例如二甲胺(CH3NHCH3)。
三级胺是指三个氨基分别取代三个氢原子,例如三甲胺(CH3N(CH3)2)。
胺具有碱性,通常能与酸反应生成盐。
例如,一级胺甲胺与盐酸反应可以生成甲胺盐酸盐(CH3NH3Cl)。
二、胺的性质1. 碱性:胺具有明显的碱性,可以与酸反应生成盐。
2. 挥发性:一些低级胺具有明显的挥发性,例如甲胺和异丙胺。
3. 溶解性:胺在水中可部分溶解,但随着碳链长度的增加,溶解性逐渐降低。
4. 氢键作用:胺分子中的氨基与其他分子或离子可以形成氢键作用,增加胺分子间的相互吸引力。
三、胺的应用1. 药物:许多药物中含有胺基结构,例如抗组胺药物、抗生素等。
胺基结构的引入可以改变药物的活性、溶解性等性质,提高药物的效果。
2. 染料:染料中常常含有胺基结构,这些染料可以与织物中的羟基等官能团发生反应,实现染色效果。
3. 聚合物:胺基结构可以参与聚合反应,例如合成聚胺酯、聚酰胺等聚合物,这些聚合物具有重要的工业应用。
总结:胺在有机化学中起着重要的作用,其结构多样,性质独特。
胺的应用广泛,涉及药物、染料、聚合物等多个领域。
有机化学研究对于深入理解胺的性质和开发新的应用具有重要意义。
有机化学 第十五章_胺

( R)
CH2
C2H5
15.3 胺的制法
15.3.1 氨或胺的烃基化
CH3 I + NH3
H
CH3 N H I
NH3
H
– NH4 I
H CH3 N H
CH3I CH3 NH2
CH3
CH3 CH3I NH
CH3
CH3
CH3I
N CH3
CH3
CH3 N CH3 I CH3
O
CH3 CH C OH Br
N-甲基庚-2-胺
CH3 CH3CH2CH2CH N CH2CH3
CH3
N-乙基-N-甲基戊-2-胺
N-methylheptan-2-amine
N-ethyl-N-methylpentan-2-amine
二元胺的命名
二元胺:母体氢化物名+“二胺”
2 3
4 5
1
NH2 NH2
6
NH
NH
己-1,6-二胺
N C2H5
CH3 H
C2H5 N
CH3 H
C2H5 N
CH3 H
含手性氮的化合物
氮原子是桥原
Tröger碱
子的化合物, 翻
N
CH3
转被抑制。
CH3
N
H3C
N
N CH3
季铵化合物含 有四个不同烃基 时,有手性且可 拆分。
CH3
N C2H5 (S)
Ph CH2CH CH2
CH3
N
Ph
H2C CH
的位次放在“胺NH2
CH3 N
CH3
4-苯基丁-2-胺
萘-1-胺
N,N -二甲基苯胺
4-phenylbutan-2-amine naphthalen-1-amine N,N-dimethylaniline
有机化学之胺类化合物

酰胺是具有一定熔点的固体,在强酸或强碱的水溶液中 加热易水解生成酰胺。因此,此反应在有机合成上常用来 保护氨基。(先把芳胺酰化,把氨基保护起来,再进行其 他反应,然后使酰胺水解再变为胺
NH2
NH2
NH2
CH3COCl
NO2
NHCOCH3 HNO3
NHCOCH3
H2O H+
NO2
NH2 NO2
•磺酰化:
NH2
NO2 NH2
NO2
NH2 H2SO4
NH3HSO4 HNO3
NH3HSO4 OH-
NO2
3.磺化
NH2 H2SO4
NH3SO4H
200℃
重排
NH2 NO2
NH3+ SO3-
R NH3Cl + NaOH
RNH2 + Cl + H2O
胺的碱性强弱 A、碱性强度:脂肪胺 > 氨 > 芳香胺
CH3NH2 PKb 3.38
(CH3)2NH 3.27
(CH3)3N 4.21
NH3 4.76
O2N
NH2 CH3
NH2
13.0
8.92
NH2 9.37
B、脂肪胺 •在气态时碱性: (CH3)3N > (CH3)2NH > CH3NH2 > NH3 •在水溶液中碱性: (CH3)2NH > CH3NH2 > (CH3)3N > NH3 原因:
(CH3CH2)2NH CH3CH2I (CH3CH2)2NH+I- NH3 (CH3CH2)3N NH4I
.................................
总之,反应得到的是混合物,一般用于制备的意义不大。在实 际中,可通过控制反应物的量来控制生成物。
有机化学基础知识点胺的命名与结构

有机化学基础知识点胺的命名与结构胺是一类重要的有机化合物,它在许多化学反应和合成中起着重要的作用。
了解胺的命名与结构是学习有机化学的基础,本文将介绍胺的基础知识点,包括胺的命名规则和结构特点。
一、胺的命名规则胺是由氨基(NH2)取代其他原子或基团而成的化合物,它的命名规则如下:1. 一级胺:以尾缀“-amine”表示,氨基作为取代基出现在碳链上。
例如,甲胺(Methylamine),乙胺(Ethylamine)。
2. 二级胺:以尾缀“-dimine”表示,两个氨基取代分别出现在碳链上。
例如,二甲胺(Dimethylamine),二乙胺(Diethylamine)。
3. 三级胺:以尾缀“-trimine”表示,三个氨基取代分别出现在碳链上。
例如,三甲胺(Trimethylamine),三乙胺(Triethylamine)。
如果在胺分子中存在其他取代基,命名时需要根据其位置和种类进行命名。
例如,N-甲基乙胺表示氨基和甲基分别取代在乙烷的氮原子上。
二、胺的结构特点胺分子的结构特点主要体现在键长和键角上。
1. 键长:氨基与碳的σ键键长约为1.47 Å,氮原子与氢原子的σ键键长约为1.01 Å。
与其他键相比,氨基的σ键较短,这是由于孤对电子对的电子云密度较大而引起的。
2. 键角:氨基中的三个键角都小于正常的碳氢键角,主要是由于孤对电子对之间的静电排斥作用,使氨基中的键角变小。
三、胺的性质与应用1. 碱性:胺是一类碱性物质,可以与酸反应生成相应的盐。
例如,乙胺可以与盐酸反应生成乙胺盐酸盐。
2. 氢键:由于胺分子中存在孤对电子对,胺与水、醇和酮等带有氧化学键的化合物可以形成氢键。
这使得胺在溶剂中的溶解度较高。
3. 溶解性:一般来说,长碳链的胺具有较大的疏水性,溶解度较低。
但短碳链胺的溶解度较高。
胺在有机合成中有着广泛的应用,常用于制备药物、染料和高分子聚合物等。
例如,一些抗生素中含有胺基结构,胺基染料广泛应用于织物染色,聚酰胺中的胺基是高分子聚合的重要组成部分。
有机化学基础知识点整理胺与胺类化合物的合成与应用

有机化学基础知识点整理胺与胺类化合物的合成与应用胺与胺类化合物的合成与应用胺是一类含有氨基团(-NH2)的有机化合物,是有机化学中重要的基础知识点之一。
本文将对胺及其类化合物的合成方法和应用进行整理和讨论。
一、胺的合成方法1. 氨和卤代烷反应:氨和卤代烷在碱性条件下发生取代反应,生成相应的一级胺。
例如,氨和溴代甲烷反应,可以合成甲胺。
2. 合成氨法:用氮气和氢气在高温高压条件下催化反应,生成氨气。
该氨气可以作为合成其他胺类化合物的原料。
3. 芳胺的合成:芳胺可以通过苯酚与氨发生烷基化反应,生成芳胺。
例如,苯酚和甲醇在催化剂存在下发生反应,可以合成甲基苯胺。
4. 酰胺与胺的转化:通过胺与酰氯反应生成酰胺,再经还原反应生成相应的胺。
例如,酰氯与胺反应生成酰胺,再通过还原反应生成胺。
5. 胺的环合反应:胺中的氨基与其他官能团反应,形成环状结构。
例如,氨与酮或醛类化合物发生反应,可以合成含有环状结构的胺。
二、胺类化合物的应用1. 药物合成:胺类化合物在药物合成中起到重要作用。
许多药物的活性部分含有胺基团,通过对胺的合成与修饰可以获得具有特定生物活性的药物。
例如,许多抗生素和抗癌药物中含有胺基团。
2. 染料合成:某些胺类化合物具有良好的染料性能,可用于纺织品染色和印刷。
例如,苯胺类染料能够与织物形成稳定的共价结合,使其具有较好的耐久性和色泽。
3. 配位化学:胺类化合物可以与金属离子形成配合物,具有较好的配位性质和催化活性。
例如,一些含有胺基团的有机配体可以与过渡金属形成稳定的配合物,广泛应用于有机合成和催化反应中。
4. 表面活性剂:由于胺类化合物分子具有亲水性和疏水性区域,能够在液体界面上形成胶束结构,因此可用于作为表面活性剂。
例如,十六烷基胺是一种常用的阳离子表面活性剂,广泛应用于洗涤剂和乳化剂等领域。
5. 气体吸附:一些胺类化合物具有对二氧化碳等气体的高吸附能力,可用于气体分离和捕获。
例如,苯胺衍生物可以作为高效的二氧化碳捕获剂,用于煤矿和化工厂等工业排放气体的处理。
有机化学基础知识胺的合成和反应

有机化学基础知识胺的合成和反应有机化学基础知识:胺的合成和反应胺是一类含有氮原子的有机化合物,在许多重要的化学反应和合成中发挥着重要作用。
本文将介绍有机化学中胺的合成方法以及其在反应中的应用。
一、胺的合成方法1. 氨的合成氨是合成胺的基础。
氨可以通过哈伯法或哥白尼法合成。
哈伯法是通过在高温、高压条件下将氮气与氢气催化反应得到氨气。
哥白尼法则是通过电解氨水获得氨气。
2. 胺的取代反应胺可以通过取代反应来合成。
这种方法通常使用卤代烃和胺反应。
例如,使用氨和溴代烷反应可以得到相应的芳香胺。
取代反应的反应条件可以根据实际需要进行调整。
3. 氨基化反应氨基化反应是合成一些特殊结构的胺的重要方法。
它可以通过在适当条件下将亲电体与胺反应来实现。
例如,通过将亲电胺与亲电体反应可以合成季铵盐。
4. 胺的重排反应胺的重排反应可以将一种胺转化为另一种胺。
最常见的重排反应是霍夫曼重排反应和贝克曼重排反应。
霍夫曼重排反应是通过烷基化胺的重排反应来合成较高级的芳香胺。
贝克曼重排反应是通过胺和酯反应来合成醚胺。
二、胺的反应1. 胺的酰化反应胺可以与酰化试剂发生酰化反应。
这种反应可以产生酰胺,是制取多种药物和功能材料的重要方法。
2. 胺的烷基化反应胺可以与烷基卤化物进行反应,形成烷基胺。
这种反应可以通过改变烷基卤化物的结构来合成具有不同性质的烷基胺。
3. 胺的亲电取代反应胺可以通过参与亲电取代反应来合成其他有机化合物。
这种反应通常通过氧化作用或酰化作用来实现。
4. 胺的氧化反应胺可以被氧化剂氧化为相应的氧化胺或氧化物。
氧化胺在药物合成和生物学研究中具有重要作用。
5. 胺的还原反应胺可以通过还原反应来合成具有不同氧化态的胺。
还原反应可以将亚硝基胺还原为胺或将胺还原为亚胺。
总结:胺的合成方法包括氨的合成、胺的取代反应、氨基化反应和胺的重排反应等。
胺在有机化学反应中具有重要作用,包括酰化反应、烷基化反应、亲电取代反应、氧化反应和还原反应等。
14环己基二胺结构式

14环己基二胺结构式14环己基二胺是一种有机化合物,其结构式为C12H25N。
它由14个碳原子和一个氮原子组成,它的分子量为187.33 g/mol。
14环己基二胺是一种重要的有机合成中间体,在生物化学和材料科学领域有广泛的应用。
它具有多种特性和功能,如高热稳定性、低粘度、高溶解度和低毒性等。
因此,它被广泛应用于高分子材料的合成、涂料的制备和催化剂的研究等领域。
14环己基二胺的合成方法有多种,其中一种常用的方法是通过环己酮的氢化反应生成14环己基二胺。
具体步骤如下:首先将环己酮与氢气在铂催化剂的作用下进行反应,生成14环己基二胺。
这个反应是一个催化剂反应,反应条件一般在高温高压下进行。
14环己基二胺具有良好的热稳定性和低粘度,因此它常被用作高温润滑剂。
在高温环境下,它能够形成一层保护膜,减少摩擦和磨损,提高机械设备的使用寿命。
此外,14环己基二胺还可以作为溶剂用于有机合成反应,它具有良好的溶解性,能够有效地促进反应的进行。
除了在高温润滑剂和有机合成中的应用外,14环己基二胺还可以用于制备高分子材料。
通过与其他化合物的反应,可以得到具有特定功能的高分子材料。
例如,将14环己基二胺与二酸酐反应,可以得到聚酰胺,这种高分子材料具有优异的力学性能和化学稳定性,广泛应用于纺织品和塑料制品的生产。
14环己基二胺还可以用作催化剂的研究。
通过将其与金属离子配位,可以得到具有特定催化活性的配合物。
这些配合物在有机合成反应中起着重要的催化作用,可以提高反应的效率和选择性。
14环己基二胺是一种重要的有机化合物,具有多种应用领域。
它的合成方法多样,可以通过环己酮的氢化反应得到。
在高温润滑剂、高分子材料和催化剂等方面有广泛的应用。
通过进一步的研究和开发,相信14环己基二胺将在更多的领域发挥其重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n -C 8H 7N(C 2H 5)2
5 制备环状胺
Br(CH 2)n Br NH3 n=4-6
(CH 2)n NH
Br(CH 2)n Br
(CH 2)n
N+
Br -
(CH 2)n
NH 3
Br
Br Br Br
Br Br
N
+ 3 HBr
6 介绍一个常用的四级铵盐
(C2H5)3N + C6H5CH 2Cl
RCH 2NH2
1°胺
O
还原剂
RCNHR'
RCH 2NHR'
2°胺
O
还原剂
RCNR' 2
RCH 2NR' 2
3°胺
NOH
Ni / H2
NH 2
肟 CH 3(CH 2)4CCH 3 6-8MPa, 75-80 oC CH 3(CH 2)4CHCH 3 1°胺
CH 3
(S)
O CH 3CO -
O C 6H11
CH 3CO
H OH
H 2O
C 6H 11 HO H
TsCl
CH 3
CH 3
N
O N-
O SN2
NH 2-NH 2
C 6H 11
H
NH 2
CH 3
(R)
四 硝基化合物的还原(制备1o胺)
还原剂
反应式: RNO 2
RNH 2
还原剂的分类:
1 酸性还原剂: 酸+金属 (Fe+HCl, Zn+HCl, Sn+HCl, SnCl 2+HCl)
2,5-双(三氟甲基)苯胺
3. 胺盐和四级铵化合物的命名:
CH 3NH 2 HCl methylamine hydrochloride
甲胺盐酸盐
CH 3CH 2NH2 HOAc ethylamine acetate
乙胺醋酸盐
CH 2CH 3
+
CH 3CH 2-N-CH 2CH 3
Br
-
CH 2CH 3
四 胺的光谱特征
胺的红外和核磁共振谱见第八章。
第二节 胺的制备
一 氨或胺的烷基化 二 盖布瑞尔合成法 三 用醇制备 四 硝基化合物的还原 五 腈、肟、酰胺的还原 六 醛、酮的还原胺化 七 从羧酸及其衍生物制胺
一 氨或胺的烷基化(Hofmann 烷基化)
SN2
H NH 2 + R X
RNH 2 + HX
NH +
3
65 % -70%
+ HBr
3 利用空阻及原料配比的调节 , 来制备2o胺。
C6H5NH2 + C6H5CH 2Cl
OH- C6H5NHCH 2C6H5
4mol
1mol
96%
4 将2o胺制成金属胺化物,使 N的亲核能力 增强,来制备 3o胺。
(C2H5)2NH RLi (C2H5)2NLi n-C8H7Br
CH 3NH2
NH2
CH 3 N
CH 2CH 3
methylamine
aniline
cyclopropylethylmethylamine
甲胺
苯胺
甲基乙基环丙胺
2. IUPAC 命名法:
选含氮最长的碳链为母体,称某胺。 N上其它烃基为取代基,并用N定其位
CH3NH2
m et h yla m in e
甲胺
CH3
H3C
N
C 2H 5
N-ethyl-N,4-di ethylbenzenamine
N,4-二甲基-N-乙基苯胺
CH3 N(C2H5)2 N,N-diethyl-3-methyl-2-pentanaime
CH 3CH 2CH CHCH 3
N,N-二乙基-3-甲基-2-戊胺
CF3 NH2
CF3 2,5-bis(trifluoromethyl)benzenamine
R2NH RX
NH3
-NH4X-
RI > RBr > RCl > RF 1°RX > 2°RX, 3°RX 以消除为主。
氨或胺的烷基化的具体应用
1 工业制备(结合高效率的分馏塔)
2 利用电子效应和原料配比的调节,可以制备 1°胺
CH 3CHCOOH + NH3 Br
1mol
70mol
CH 3CHCOO -
[ (C2H5)3NCH 2C6H5 ]+Cl -
TEBA (氯化三乙基苄基铵)
二 盖布瑞尔(S.Gabriel )合成法
利用邻苯二甲酰亚胺的烷基化来制备一级胺,称为盖 布瑞尔合成法。(空阻大的 RX不能发生此反应)
O O NH3
O
O
KOH
NH C 2H5OH O
O R-X
N-K +
THF orDMF
Tetraethylammonium bromide
溴化四乙铵
CH 2CH 3
+
CH 3CH 2-N-CLeabharlann 2CH 3OH-
CH 2CH 3
Tetraethylammonium hydrooxide
氢氧化四乙铵
三 胺的物性
低级胺为气体或易挥发性液体; 高级胺为固体; 芳香胺为高沸点的液体或低熔点的固体; 胺具有特殊的气味; 胺能与水形成氢键; 一级胺和二级胺本身分子间也能形成氢键;
O
O NR
O
H + or OH H 2O or ROH
NH 2-NH 2 C 2H5OH
COOH
+ RNH 2
COOH
O
NH NH
+ RNH 2
O
三 用醇来制备(醇的羟基被氨或胺取代)
1
NH 3 + R OH
Al2O3 ? 加压
RNH 2 + R2NH + R 3N + H2O
2
TsCl ROH
ROTs
第十四章 胺
exit
本章提纲
第一节 胺的分类、命名、物性和 光谱特征
第二节 胺的制备 第三节 胺的反应 第四节 重氮甲烷
第一节 胺的分类、命名、物性和光谱特征
一 胺的分类:
胺根据在氮上的取代基的数目,可分为一级 (伯), 二级(仲),三级(叔)胺和四级(季)铵盐
二 胺的命名:
1 普通命名法:可用胺为官能团,如:
RN+H 3X- OH - RNH 2 + H2O + X-
NH 3
RNH 2
+
+ NH
4X-
RX + NH 3
OH - RNH 2 RX OH - R2NH RX
OH -
R3N RX R4+NX-
RX + 2mol NH 3 -NH4 X-
R3N RX
R4N+ X-
RNH 2 RX
NH3 -+NH4X-
2 中性还原剂:催化氢化,常用的催化剂有 Ni, Pt, Pd. 3 碱性还原剂:Na2S, NaHS, (NH 4)2S, NH4HS, LiAlH 4
( NaBH 4 和 B2H6 不能还原硝基)
应用: 制备1o胺
五 腈、酰胺、肟的还原
腈 RC≡N
还原剂
RCH 2NH2
1°胺
O
还原剂
酰胺 RCNH 2
NH3
RNH 2 + TsOH
SN2
TsCl CH 3
SO 2Cl
O
3
CC +N
O
O
O
C -O
N CO
H2O
C
HO
NH2 C
实例
C 6H 11
H
TsCl
OH
CH 3
N
(R)
C 6H 11 H OTs
CH 3
O N-
O SN2
O C 6H11
N
H
O CH 3
NH 2-NH 2
C 6H11 H2N H