G603 转子绕线机

G603 转子绕线机
G603 转子绕线机

G603 转子绕线机控制系统

设转子绕线机控制系统如图1 (a)所示,图1 (b)为相应的结构图,绕线机用直流电机来缠绕铜线,能快速准确地绕线,并使线圈连贯坚固。采用自动绕线机后,操作人员只需从事插入空的转子,按下启动按钮盒取下绕好线的转子等简单操作。

图1 转子绕线机

控制器设计的具体要求是:

)(s G c 1) 系统对斜坡输入响应的稳态误差小于10%,静态速度误差系数10=v K ;

2) 系统对阶跃输入的超调量在10%左右;

3) 按%2=?要求的系统调节时间为3s 左右。

解:由图1 (b)可见,系统为I 型系统,在单位斜坡输入作用下,稳态误差

v

K 1)(=∞ss e 式中 50)(K lim 0

v S G c s →=

)(S G c 为待设计的控制器(校正网络)。

首先考虑采用简单的增益放大器,1)(K S G c =,则系统的速度误差

1

K 50)(=∞ss e 可见为了提高系统的稳态精度,必须采用高增益,但过高的对系统的稳定性和动态性能都会产生不利的影响。图2给出了不同值下的系统响应,可看出,当时,系统的,1K 1K 5001=K 10=v K %01)(=∞ss e ,刚好满足设计要求,但系统对阶跃输入的%70%=σ,,远大于设计指标值。因此必须采用较为复杂的校正网络。 8s =s t

图2 简单增益器的瞬态响应

由于超前校正网络能改善系统的动态响应性能,因此常时选用如下超前校正网络:

)1()1()()()(11T s aT s K p s z s K s G c ++=++=

,且aT z 1=,T

p 1=,故az p =p z <式中,。 系统校正后的开环传递函数为 ))(10)(5()()(1p s s s s z s K s G ++++=

根据主导极点思想,可将校正后的系统等价为二阶系统。由%σ及要求,可近似求出系统的阻尼比s t ζ及要求的相角裕度γ。由性能指标要求值:、无阻比自然频率n ω

%10%100%21/

==--ζπζσe %)2(34

.4=?==s t n s ζω

59.0=ζ,49.2=n ω,再由公式 解得242412arctan

ζζζγ-+= 求出。

明确上述频域设计要求后,可采用如下步骤在频域内设计超前校正网络: 602.59≈=γ

1) 由)(∞ss e 要求,取500,绘出未校正系统的伯德图(图3),并计算已有相角

裕度。

K 1=2) 确定所需的附加超前相角m ?。

3) 根据最大超前角公式

m 1sin 1

a a ?-=

+ 计算超前网络的分度系数 m m

1sin 1sin a ??+=- 4)计算,在未校正系统的伯德图上确定与幅值增益10lg a 10lg a -对应的最大超前角频率m ω,如图所示。

3

图3 未校正系统伯德图

5)在频率m ω附近绘校正后系统的对数幅频渐近线,该渐近线在m ω处与0dB 线相交,斜率加上;由该渐近线与未校正系统对数幅频交其斜率等于曲线的点,可确定超前校正网络的零点未校正时的20/dB dec z ;由p az =得到超前校正网络的极点p ;

6)绘制校正后系统的伯德图如图,4所示,检验所得系统的相角裕度是否满足设计要求,若不满足,则重复以上设计步骤;

7)加大系统增益,例如取1K 11800K =,以补偿由超前校正网络带来的幅值衰减(1a )。

图4 超前校正后的Bode 图

8)仿真计算系统的阶跃响应,验证最后的设计结果,若不能满足要求,则重复前面的设计步骤。

图5 超前校正系统阶跃响应

本例设计结果为:,3.5z =25p =,11800K =。于是

1800( 3.5)()25

c s G s s +=+ 校正后系统的阶跃响应表明,系统引入超前校正网络后,相角裕度明显增大,动态性能得到很大改善,超调量及调节时间已能满足设计要求,但校正后系统的静态速度误差系数

1800 3.5 5.0410K 51025

v ?==< ??

使得系统斜坡响应的稳态误差高达20%,不符合设计指标要求。

为了减少系统稳态误差,尝试用根轨迹法设计滞后校正网络,其传递函数为

1(),()c K s G s p z ()z s p +=

<+ 设计滞后校正网络的已知条件为:0.59ζ=和 2.49n ω=,由此可确定闭环主导极点的区域;滞后校正网络的设计步骤可归纳如下:

6所示。2) 根据1) 绘制未校正系统的根轨迹,如图

0.59ζ=, 2.49n ω=确定预期主导极点的容许区域,在未校正系统的根轨迹上确定校正后的预期主导极点(如图6所示)。

图6 校正前根轨迹

3) 计算预期主导极点对应的根轨迹增益和未校正系统的速度误差系数。

4) 计算,本例要求。

导极点(图7)。 v K '/v v b K K '=10v K ≥5) 根据求得的b ,配置滞后校正网络的零、极点,使校正后系统的根轨迹经过预期主

图7 校正后的根轨迹

在本例设计过程中,根据选定的预期主导极点,可计算根轨迹增益的取值,得到,为满足的设计要求,计算合适的b 取值,得到1100K =10v K ≥10b =;在配置滞后校正网络的零极点时,取零点,极点0.1=-z 0.01p =-,以免明显改变校正后系统的根轨迹形状,所设计的滞后校正网络为

100(0.1)()0.01

c s G s s +=+

图8 校正后的系统阶跃响应

6)仿真校正后系统的阶跃响应,如图8所示,检验设计结果,如果需要,重复上述设计步骤。

明,校正后系统在超调量和调节时间方面,基本满足设计要求,静态速度误差系数达1结果

检验表到20K 。若重复以上设计过程,或考虑采用超前-滞后校正网络,还可进一步改进已有结果。表归纳了本例的三种设计结果。

表1 三种设计

v

直线电机定子线圈绕线机

直线电机定子线圈绕线机 设计者:茅倩倩 王毓 杜超 指导老师:唐建敏 (常州工学院机电工程学院,常州213002) 摘要:永磁同步直线电机因其效率高、重量轻、运行和维护费用低廉的好处,得到广泛应用。现有的绕线机不能胜任直线电机定子线圈的绕制任务。开发直线电机定子线圈绕线机,是当务之急。 关键词:直线电机定子线圈绕线机;直线电机;教学科研 1.引言 直线电机就是将我们通常见到的圆柱形电动机的静子和动子都展开,其结构主要有两种,长静子或长动子。直线电机已经应用在我们的生活和生产中,大名鼎鼎的上海磁悬浮列车,其实就是一台直线电机,其动子是静止不动的嵌入很多磁极的长长的轨道,静子就是带有通电线圈的列车车体;许多现代加工中心或机床上也会见到直线电机的身影,其移动平台就是一部直线电机,结构类似于磁悬浮列车,静子通电移动,动子是有永久磁铁排列组合成的轴或平台。在军事上,最近刚刚下水的美军最先进的“福特”级航空母舰装备的电磁弹射器,也是一部直线电机,其结构与磁悬浮列车不同,静子通电不动,动子在电磁力的推动下快速移动。 随着现代电子技术的发展,在许多场合已经发生了直线电机取代步进电机的进程,直线电机在我国的研究和应用也引起了人们的重视。 上届同学设计制造了一台直线电机-电磁弹射器演示实验台,苦于没有合适的绕线机,其直线电机定子线圈,全部是手工制作完成的,线圈品质无法保障,既劳神费力又浪费颇多,为此,我们设计制作了一款直线电机定子线圈绕线机。 2.绕线机知识 我们收集了阅读有关绕线机的资料,了解各种绕线机的原理、结构。 按照绕线方式可分为:平绕机、环形绕线机、飞叉绕线机、三维绕线机。 平绕机 由主轴旋转,配合三维通过空间移动定位,使线材在一工件外层以螺旋线排列的绕线机。通常用于加工大多数变压器、电感和各类线圈。它是目前使用最广泛的绕线机。其结构如图1所示。

CNC自动绕线机控制器说明书

CNC自动绕线机控制器说明书 CNC自动绕线机控制器说明书 说明书 CNC210-S (简要版) 控制面板 Key pads 按键[ 0]~[9] 用来输入数字 [步序设定] :打开程序设置界面 [产量设定] : 设置目标产量 [起始步序] : 设置开始步序 [结束步序] : 设置结束步序 [资料选择] : 打开不同程序界面,以做设置 [排线方向] : 设置排线杆排线方向 [绕线方向] : 设置绕线的正反向 [两端停车] : 排线到端面时暂停,方便检查起绕点和幅宽设置的准确性[自动复位] : 绕完当下的步序后,排线杆自动进入下一程序的起绕点 [自动启动] : 灯亮时说明不需按启动键,程序会自动启动 [━] : 调机时,如要改变原有的参数,必须先按下此键。此时被调的参数会闪烁,按下新设定的数字再按输入键,新的参数就被设置 [清除] : 调机时,将参数清除的按键 [复制] : 调机时,复制上一步的参数 [输入] : 将参数输入并记忆 [转速] : 将显示在转速和产量之间轮换 [归零] : 按住2秒钟,产量数变为0 [自动] : 启动功能在自动和手动间转换 [煞车] : 当绕线轴停止时,刹车器即启动将绕线轴刹住 [跳段] : 跳入下一段绕线程序 [退段] : 退入上一段绕线程序 [复归] : 任何时候,按此键将终止当下的程序并回到待机状态 [停车] : 暂停绕线 [启动] : 启动绕线或在绕线中暂停绕线 数字显示 段落显示: 显示现在绕线的段落号

资料显示: 调机时,用来显示程序的内容.绕线或待机时, 显示已绕圈数或排线杆的位置 产量显示: 显示产量或转速 其他面板上的LED灯,点亮时显示该功能正在起效,否则,熄灭时则该功能不生效。 1. 设置绕线参数 1.1 MEMORY RANGE SELECTION ·设置起始步序: 待机状态下按【起始步序】【0-999】【输入】 譬如,欲设第二段为起始段。按【起始步序】【2】【输入】即可·设置结束步序 待机状态下按【结束步序】【0-999】【输入】 譬如,欲设第四段为结束段。按【结束步序】【4】【输入】即可* 注意:起始步序必须小于结束步序! 1.2 设置起绕点或幅宽时使用的“教导式” 点按【跳段】按键,可使排线杆向外微动,点按【退段】按键,可使排线杆向内微动。按住约2秒可使排线杆快动。目测准确后按【输入】即可1.3 绕线设置 ·依次按【步序设定】【输入】即进入绕线资料设置界面,面板上“起绕点” 的LED亮起。按入数字,即起绕点的位置。也可用上市的{教导式}调整。 调好后按【输入】,自动进入调幅宽的界面。幅宽的LED亮起。 以此类推,直到调完所有参数又回到“起绕点”。 按【步序设定】回到待机状态。 ·【排线方向】【绕线方向】【自动归位】和【自动启动】都必须在绕线资料设置界面设置。他们相应的LED亮起或者熄灭显示相应功能的有与无 1.4 清除所有绕线资料 待机状态下,按【步序设定】【清除】【2】【输入】所有储存的绕线资料将被清除,机器恢复到出厂设定。 * 注意:此功能只有在调乱机,出现反常现象时才考虑用。否则清除了的资料将无法恢复 2. 几种特别的绕线设置 2.1包胶纸:设“幅宽”为0 2.2起绕点为上一段的终点:设本段的起绕点为999.99 2.3单层均绕:譬如要求在100mm幅宽上用0.27的线均匀绕100圈。这时电脑

转子,控制,绕线机

转子绕线机控制系统矫正设计 转子绕线机控制系统 绕线机用直流电机来缠绕铜线,它应该能快速准确地绕线,并使线圈连贯坚固。采用自动绕线机后,操作人员只需从事插入空的转子、按下启动按钮和取下绕线转子等简单操作。 下图为绕线机控制系统

控制器的设计要求 1、系统对斜坡输入响应的稳态误差小于10%,静态速度误差系数Kv=10; 2、系统对阶跃输入的超调量在10%左右; 3、 按?=2%要求的系统调节时间为3s 左右。 设计过程 由控制系统的结构图可知,系统为I 型系它 响应阶跃输入的稳态误差为零,系统对单输 入的稳态误差为: 其中: 其中Gc (s )为待设计的控制器(校正网络)。 由于原系统不能满足其静态速度误差系数Kv=10,故在滞后-超前网络中应加入一个增益放大器。将放大环节和原系统一起分析。150()10%ss v e K K ∞==≤0()lim 50 c v s G s K →=

此时校正网络的频率特性为 由于要加一个增益放大器此时解得K ≥500, 故此时K 值取500. 二)绘制未校正系统的对数幅频特性,求出待校正系统的截止频率、相角裕度及幅值裕度h (dB )。 (1/)(1/)()(1/)(1/) a b c a b j j G j ja j a ωωωωωωωωω++=++

由图像可知待校正系统的截止频率 相角裕度 幅值裕度 三)在待测系统对数幅频特性上,选择从-20dB/dec 变为- 40dB/dec 的交接频率作为校正网络超前部分的交接频率?b = 5rad/s 根据响应速度要求,选择系统的截止频率 和校正网络衰减因子1/a 。要保证已校正系统的截止频率为所选的 ,下列等式应成立: 式中 可由待 校正系统对数幅频特性的-20dB/dec,延长线 在 处的数值确定。 根据主导极点思想,可将校正后的系统等价为二阶系统 解得 ' 5.72/c rad s ω='11.4 γ=3.52h dB ≈'''''20lg ()20lg 0 c b c a L T ωω-++=1b b T ω='''''()20lg c b c L T ωω+''c ω21%100%e πξξσ--=? 4.43s n t ξω=≤0.59ξ=

绕线机原理

绕线机原理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

原理建模: 根据线绕电阻器的结构特点及生产要求,建立了如下图所示的绕制模型。 如图所示,骨架夹持定位后,送线装置从1#位置向前移动,把伸出的一小段电阻丝送到始焊点位置,然后焊机把电阻丝前段与左侧金属帽焊接在一起,接着骨架旋转一定的角度并同时移动一小段距离(前间距),将电阻丝绕到瓷棒上,然后送线装置摆动一个角度(前摆角)到达2#位置,在这一位置电阻丝与骨架轴线垂直。接着开始绕线,如图b所示,骨架在旋转的同时向左排线移动,而送线装置固定不动,这样就在瓷棒上绕出了螺旋线,当绕制到合适位置时,骨架停止旋转及排线移动。然后,如图C所示,送线装置向右摆动一定角度(后摆角)返回到1#位置,接着骨架旋转一定的角度并移动一段距离(后间距),将电阻丝绕到金属帽上,然后焊机把电阻丝与金属帽焊接在一起。在焊接的同时送线装置向后移动,把电阻丝拉断,接着骨架向右移动到初始位置,更换骨架,进行下一个骨架绕制。 主要技术控制 (1)恒张力的控制: 绕制电阻时,需要对电阻丝施加一定的阻力来产生线张力,以确保电阻丝紧密地绕在瓷棒表面。线材状态、放线卷的松紧程度、放线卷上电阻丝的排列方式、运动系统的速度变化等因素都会引起线张力的变化。张力太大会使电阻丝材料发生塑性变形,甚至导致电阻丝被拉断;张力波动幅度大,线张力不均匀,会使绕成的螺旋线各处内应力变化

大,后工序处理时各处弹性恢复不一致,进而导致电阻阻值变化,甚至断线失效。由于电阻丝直径微小而且对电阻阻值一致性要求较高,因此对电阻丝的张力控制要求非常严格。采用控制绕线与放线的线速度差控制线张力的方法(检测线材的线速度、控制放料卷转速、补偿其线速度的变化),要达到张力的波动幅度小或波动幅度处于受控状态,机械结构与控制系统比较复杂,影响因素众多,技术难度大,因此,线材的张力是影响电阻器质量的重要因素之一。 (2)精密排线和定位检测技术 线绕电阻器的绕线质量实际反映的是绕线节距精度,因此,实现排线系统的精确走位以达到控制节距精度的目的,既是衡量制造的线绕电阻器是否符合设计要求,又是考核绕制系统技术水平高低的重要参数,是系统研究设计的核心。排线与绕线的运行关系形成节距,排线系统运动的位置精度,直接影响绕线节距精度。排线系统要求实现u级位移精度,由于其静态质量、运动系统的动态加速度、传动误差等,会引起运动迟缓或运动突变,破坏运行关系;运动系统由于受动载荷、运行频率、环境温度、干扰源的影响,系统的电气参数偏离控制范围,均引起绕线节距精度的变化。这种变化量对线绕电阻器绕制系统影响很大。因此,准确控制排线的位置精度和稳态控制节距精度,是必须研究与解决的关键技术。另外,由于来料的骨架和金属帽长度不一致,使用标准骨架长度来定位很难达到实际的要求,如何进行准确的定位,也是需要解决的关键技术。 功能分析:

绕线机控制系统改造学习指导书

项目七绕线机控制系统改造学习指导书 一、学习目标 本学习情境是一个完整的小型工程项目,通过本学习情境的学习一方面要求学生掌握绕线机控制系统改造的设计、安装、调试知识和技能;另一方面掌握绕线机改造项目实施的工作流程和要点。在该学习情境中要求每两名学生组成一个团队,通过分工协作共同完成改造任务。 1.熟悉设备改造工程的实施过程 ◆正确分析改造任务 ◆小型设备改造工程的实施流程及组织、协调 ◆改造施工过程管理与控制 2.掌握相关国家标准与规范 ◆盘、柜及二次回路结线施工及验收规范GB50171—92 ◆电气设备安全设计导则GB 4064-83 ◆国家电气设备安全技术规范GB 19517-2004 ◆机械安全机械电气设备:通用技术条件GB 5226.1-2002 ◆用电安全导则GBT 13869-92 ◆电气安全管理规程JBJ6-80 ◆电控设备第二部分装有电子器件的电控设备GB3797-1989 ◆外壳防护等级(IP代码)GB4208-93 ◆工业与民用电力装置的接地设计规范GBJ65-83 ◆电气装置安装工程施工及验收规范GBJ232-82 3.掌握触摸屏的使用方法 ◆触摸屏的特点及性能指标 ◆组态软件的使用 ◆正确与PLC连接并实现数据交换 4.掌握变频器的使用方法 ◆变频器结构、性能特点及应用 ◆线路连接 ◆常用运行参数设置方法 ◆变频器的常规检查与维护 5.掌握旋转编码器、接近开关的使用方法 ◆种类、结构特点及场合 ◆接口类型及连接方法 ◆使用要求及调整 ◆好坏判断 6.能编写、调试较复杂的PLC控制程序 ◆编写中断程序 ◆编写基于触摸屏的人机界面程序 7.学会设备技术文件的编写与整理 ◆编写改造方案 ◆绘制控制系统原理图、布置图、连接图及走线图 ◆编制施工进度表 ◆编写调试方案、调试记录 二、学生需准备的资料 1.西门子、三菱、欧姆龙等主流品牌PLC的选型样本 2.西门子、三菱、欧姆龙等主流品牌PLC的系统手册 3.主流触摸屏生产厂家触摸屏产品的选型样本、使用手册、编程软件。 4.多种品牌的编码器选型样本、使用说明书。 5.相关国家标准: ◆GB/T 5226.1-1996 工业机械电气设备第一部分:通用技术条件 ◆GB50171-92 电气装置安装工程盘、柜及二次回路结线施工验收规范 ◆JBJ6-80 电气安全管理规程 ◆GB3797-89 装有电子器件电控箱技术条件 6.绕线机相关资料 三、预习要求 1.收集主要PLC生产厂商的小型PLC主要参数(I/O点数、输入输出类型、供电电压、可扩展模块类型等),适用环境等。

转子绕线机控制系统的滞后校正设计

基于滞后校正的转子绕线机控制系统设计 王政军 武汉轻工大学自动化系湖北武汉 430000 摘要: 在控制技术需求推动下,控制理论本身也取得了显著进步。从线性近似到非线性系统的研究取得了新的成就,借助微分几何的固有非线性框架来研究非线性系统的控制,已成为目前重要研究方向之一。为了实现各种复杂的控制任务首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机整体,这就是自动控制系统 关键词: 自动控制技术、系统分析、MATLAB、校正

1设计目的、要求及原理 1.1设计目的 滞后校正网络具有低通滤波器的特性,因而当它与系统的不可变部分串联相连时,会使系统开环频率特性的中频和高频段增益降低和截止频率Wc减小,从而有可能使系统获得足够大的相位裕度,它不影响频率特性的低频段。由此可见,滞后校正在一定的条件下,也能使系统同时满足动态和静态的要求。本设计通过增加一个滞后校正装置,确定其最适合参数来改变系统性能。 1.2 设计要求 (1)系统对斜坡输入响应的稳态误差小于10%,10 K; v (2)系统对阶跃输入的超调量在10%左右; (3) 按2%准则的调节时间 t不超过3s。 s 1.3设计原理 通过分析系统逐步确定其矫正系统参数,具体步骤如下: 1.根据稳态误差要求求出K值; 2.画出未校正系统的波特图,并求; 3.波特图上绘制出曲线; 4.根据稳态误差要求,求出校正系统的截止频率; 5.根据公式和 ,可求出b和t; 6.验证已校正系统的相位裕度和幅值裕度;

2设计分析与计算 2.1最小K 值的系统频域分析 已知转子绕线机控制系统的开环传递函数是: ) 01)(5()(++= s s s K s G ,静态速度误差系数110-≥s K v , 1 1050/)(0 lim -≥=→= s K s sG s v k 所以最小的K 值为: K=500 故) 01)(5(500 )(++= s s s s G 1求相角裕度: 因为100 25500 015500)(22++= +?+?= ωωωωs s s A 在穿越频率处)(ωA =1, 解得Wc ≈5.96rad/s 穿越频率处的相角为:7.16107.02.090)(11-=---=--c tg tg c c ωωω? 相角裕度为:γ=180+)(c ω?=180-162.73=18.3deg 2求幅值裕度: 先求相角穿越频率:18007.02.090)(11-=---=--g g g tg tg ωωω? 9007.02.011=+--g g tg tg ωω 由三角函数关系得:66.8,107.02.0==?g g g ωωω解得: 5.022525750 )(2 2 =++= g g g g A ωωωω 所以,幅值裕度为:)(02.6)(log 20dB A L g g =-=ω 使用MATLAB 软件可直接得到系统的BODE 图和相角,幅值裕度。程序的代码如下: n=750

自动绕线机常功能和调试方法

自动绕线机常见功能和调试方法 时间:2012-3-10 4:10:39 很多做绕线机工程技术这一块的朋友对绕线机不懂 调试,主要是对产品不熟,或没有经过培训吧,当然如果你知道的话,那就简了。 自动绕线机常见功能和调试方法: 绕线机不单有精密的机械部件,还配置有强大的电气控制系统,它集合了电气控制、传感技术、机械传动、气动装置等部件,其调试方法相比其他电气加工设备要复杂和精细的多,笔者从事自动绕线设备加工行业多年积累了一点绕线设备的调试方法,本文就该类设备的调试作一个简单介绍,希望对广大的绕线设备用户能有所帮助。 以下调试方法可应用于常见的带骨架线圈的缠绕加工工艺,主要讲解起绕位置、漆包线规格、绕线宽度三个重要的绕线参数。 一、起绕位置如何设定 什么是起绕位置?简单的说就是在骨架上开始绕线的起点,这个位置与线圈的出头及线圈类型有紧密的联

系,通常可以通过设备控制系统自带的测量功能来测的相关起绕位置的具体数值;操作人员也可以采用人工方式测量,以固定点作为参考点使用尺具实际测量,设定该点时注意线圈的缠绕方向。 二、漆包线规格的设定 我们常见的漆包线有不同的线径,漆包线规格设定是否正确直接会影响到排线的效果,使用不同材质的漆包线需要加不同的线径修正值,铜线不易被拉细,其修正值加0.02左右,铝线在经过绕线设备的张力及过线装置后容易被拉伸,其修正值幅度较大0.02-0.2之间都是允许的。 三、绕线宽度的设定 绕线宽度的理解就是从开始绕线的位置到绕线结束位置之间的距离,通常该值直接反映骨架需要绕线的长度,设定时需要考虑所使用骨架的微小变形量会绕线宽度的影响,应采用综合测量的方法取最小值作为绕线宽度。 随着科技的高速发展,现代自动绕线机由于集成了电气控制、机械传动、光电检测等诸多技术,所以其设置调试的难度也大大增加了,许多客户在购买

CNC自动绕线机控制器说明书精编版

C N C自动绕线机控制器 说明书 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

CNC自动绕线机控制器说明书 控制器说明书 说明书 CNC210-S (简要版) 控制面板 Key pads 按键[ 0]~[9]用来输入数字 [步序设定] :打开程序设置界面 [产量设定] :设置目标产量 [起始步序] :设置开始步序 [结束步序] :设置结束步序 [资料选择] :打开不同程序界面,以做设置 [排线方向] :设置排线杆排线方向 [绕线方向] :设置绕线的正反向 [两端停车] :排线到端面时暂停,方便检查起绕点和幅宽设置的准确性 [自动复位] :绕完当下的步序后,排线杆自动进入下一程序的起绕点 [自动启动] :灯亮时说明不需按启动键,程序会自动启动 [━] : 调机时,如要改变原有的参数,必须先按下此键。此时被调的参数会闪烁,按下新设定的数字再按输入键,新的参数就被设置 [清除] :调机时,将参数清除的按键 [复制] :调机时,复制上一步的参数

[输入] :将参数输入并记忆 [转速] :将显示在转速和产量之间轮换 [归零] :按住2秒钟,产量数变为0 [自动] :启动功能在自动和手动间转换 [煞车] :当绕线轴停止时,刹车器即启动将绕线轴刹住 [跳段] :跳入下一段绕线程序 [退段] :退入上一段绕线程序 [复归] :任何时候,按此键将终止当下的程序并回到待机状态 [停车] :暂停绕线 [启动] :启动绕线或在绕线中暂停绕线 数字显示 段落显示:显示现在绕线的段落号 资料显示:调机时,用来显示程序的内容.绕线或待机时,显示已绕圈数或排线杆的位置 产量显示:显示产量或转速 其他面板上的LED灯,点亮时显示该功能正在起效,否则,熄灭时则该功能不生效。 1.设置绕线参数 MEMORYRANGE SELECTION ·设置起始步序: 待机状态下按【起始步序】【0-999】【输入】 譬如,欲设第二段为起始段。按【起始步序】【2】【输入】即可

转子绕线机控制系统的滞后校正设计

1.设计目的、要求及原理 1.1 设计目的 通过增加一个滞后校正装置,确定其最适合参数来改变系统性能。 1.2 设计要求 要求系统的静态速度误差系数 1 12- ≥s K v,相位裕度 60 ≥ γ。 1.3 设计原理 通过分析系统逐步确定其矫正系统参数,具体步骤如下: 1.根据稳态误差要求求出K值; 2.画出未校正系统的波特图,并求; 3.波特图上绘制出曲线; 4.根据稳态误差要求,求出校正系统的截止频率; 5.根据公式和,可求出b和t; 6.验证已校正系统的相位裕度和幅值裕度;

2.分析与计算 2.1最小K 值的系统频域分析 已知转子绕线机控制系统的开环传递函数是: ) 10)(5()(++= s s s K s G (静态误差系数112-≥s K v ) 所以最小的K 值为: K=600 故: ) 10)(5(600 )(++= s s s s G ① 求相位裕度: 因为 2210025600 |10||5|||600)(ω ωωω++=+?+?= s s s A 在穿越频率处)(ωA =1, 解得 =6.31rad/s 穿越频率处的相角为:82.1731.02.090)(11-=---=--c c c tg tg ωωω? 相角裕度为: 18.682.173180)(180=-=+=c ω?γdeg ② 求幅值裕度: 因为 1801.02.090)(11-=---=--g g g tg tg ωωω? 8.010025600 )(2 2 =++= g g g g A ωωωω 所以,幅值裕度为: )(94.1)(log 20dB A L g g =-=ω 使用MATLAB 软件可直接得到系统的BODE 图和相角,幅值裕度。程序的代码如下: n=600 d=[1,15,50,0] g1=tf(n,d) [mag,phase,w]=bode(g1) margin(g1) 10 1250 /)(lim -→≥==s K s sG K s v

绕线机运动控制器

绕线机标准TB04-2371.jtd-1 绕线机标准套件 绕线机运动控制器 拥有几十种绕线机的控制实例。标准的绕线指令,排列绕线及多方向指数都能立即投入使用。除此之外,还可对应初始角/返回角的角控制,反向绕和同向绕,以及可变横行绕线等特殊控制要求。 ■优点 ◆多种绕线对应主軸旋绕?搅拌绕?喷嘴绕多种方式◆内制化 对应厂家内部研发机◆高精度精度可与高级NC媲美◆独特性 追求己独特的绕线手法(利用Excel)◆保密性 独自技术的保密性好■绕线指令REELX[横行幅]P[间距]RN[绕数]S[主轴速度] RE[终端处理];排列绕线用1行指令即可运行。 通过主抽的加减速控制,实现横行绕线同步。精细线径时可实现10nm单位微调。 (1P=1μm时)间隙:可按0.01脉冲单位设定 终端:可选择自然停止/开始/结束 ■使用EXCEL运行软件(含源程序)绕线设定绕线动作参数,将参数转换成技术语言即可运行。 可简单设定喷嘴绕线及特殊的运行方式。 ■精密NC绕线技术微细插补精密插补轨迹及准确的连续性 多维控制多维横行及喷嘴绕线控制同步性主轴及横行的同步 精细微细准确的返回 ■精度解析同期精度を定量解析?検証する仕組み ■精度分析例(蓝:自然停止粉:开始黄:结束)REELX350P50N30S300E0;纵轴:横行位置横轴:主轴绕数■运行程序(编程语言?G语言)所有的动作可简单指定。 不仅是绕线操作(绕?切?指数? 跳转),还可指定焊着?熔接?搬送? 成型等操作。■运行程序里例◆绕(螺旋)CIRRX0Y0I100J0Z100F1000◆跳转移动?指数PTPX1000Y1000 ■绕线指令的自定义可根据您的需求,根据几件机械?构造?夹具设计最佳绕线模式。 ■绕线运动控制器规格 ◆SLM4000绕线规格单板独立单机工作 4轴脉冲列输入32输出32 RS232/USB◆PLMC40绕线规格PLC动作4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形?IO?模拟等)◆PLMC-MⅡEX绕线规格 MECHATROLINK-Ⅱ标准4/9/16轴最大30轴 可使用通用PLC扩展(梯形?IO?模拟等)◆多軸运动功率放大器绕线规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 ■ 主轴和横行

转子绕线机控制器的设计

课程设计 题 目: 转子绕线机控制器的设计 初始条件:已知转子绕线机控制系统的开环传递函数是 ) 10)(5()(++= s s s K s G 要求系统在单位斜坡输入作用下的稳态误差为e 0.1ss ≤,相角裕度 50≥γ。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)作出满足初始条件的最小K值的未校正系统伯德图,计算系统的幅值裕度和相位裕度。 (2)在系统前向通路中插入一相位滞后校正装置,确定校正网络的传递函数。并用MATLAB 画出已校正系统的伯德图,计算已校正系统的幅值裕量和相位裕量。 (3)画出未校正和已校正系统的根轨迹。 (4)用Matlab画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳态误差。 (5)课程设计说明书中要求写清楚计算分析的过程,列出MATLAB程序和MATLAB输出。说明书的格式按照教务处标准书写。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 摘要 (1) 1.设计目的与要求 (2) 1.1设计的目的 (2) 1.2设计的要求 (2) 2.设计方案与原理 (3) 2.2设计的原理 (3) 3.设计分析与计算 (4) 3.1校正前最小K值的系统频域分析 (4)

3.2滞后校正 (4) 3.2.1滞后校正函数的确定 (4) 3.2.2校正后的系统频域分析 (5) 4.系统校正前后的根轨迹 (6) 4.1校正前的根轨迹 (6) 4.2校正后的根轨迹 (7) 5.已校正系统的单位阶跃响应及仿真分析 (7) 6.心得体会.............................................................. 错误!未定义书签。参考文献.................................................................. 错误!未定义书签。本科生课程设计成绩评定表.................................. 错误!未定义书签。

绕线机原理

原理建模: 根据线绕电阻器的结构特点及生产要求,建立了如下图所示的绕制模型。 如图所示,骨架夹持定位后,送线装置从1#位置向前移动,把伸出的一小段电阻丝送到始焊点位置,然后焊机把电阻丝前段与左侧金属帽焊接在一起,接着骨架旋转一定的角度并同时移动一小段距离(前间距),将电阻丝绕到瓷棒上,然后送线装置摆动一个角度(前摆角)到达2#位置,在这一位置电阻丝与骨架轴线垂直。接着开始绕线,如图b所示,骨架在旋转的同时向左排线移动,而送线装置固定不动,这样就在瓷棒上绕出了螺旋线,当绕制到合适位置时,骨架停止旋转及排线移动。然后,如图C所示,送线装置向右摆动一定角度(后摆角)返回到1#位置,接着骨架旋转一定的角度并移动一段距离(后间距),将电阻丝绕到金属帽上,然后焊机把电阻丝与金属帽焊接在一起。在焊接的同时送线装置向后移动,把电阻丝拉断,接着骨架向右移动到初始位置,更换骨架,进行下一个骨架绕制。 主要技术控制 (1)恒张力的控制:

绕制电阻时,需要对电阻丝施加一定的阻力来产生线张力,以确保电阻丝紧密地绕在瓷棒表面。线材状态、放线卷的松紧程度、放线卷上电阻丝的排列方式、运动系统的速度变化等因素都会引起线张力的变化。张力太大会使电阻丝材料发生塑性变形,甚至导致电阻丝被拉断;张力波动幅度大,线张力不均匀,会使绕成的螺旋线各处内应力变化大,后工序处理时各处弹性恢复不一致,进而导致电阻阻值变化,甚至断线失效。由于电阻丝直径微小而且对电阻阻值一致性要求较高,因此对电阻丝的张力控制要求非常严格。采用控制绕线与放线的线速度差控制线张力的方法(检测线材的线速度、控制放料卷转速、补偿其线速度的变化),要达到张力的波动幅度小或波动幅度处于受控状态,机械结构与控制系统比较复杂,影响因素众多,技术难度大,因此,线材的张力是影响电阻器质量的重要因素之一。 (2)精密排线和定位检测技术 线绕电阻器的绕线质量实际反映的是绕线节距精度,因此,实现排线系统的精确走位以达到控制节距精度的目的,既是衡量制造的线绕电阻器是否符合设计要求,又是考核绕制系统技术水平高低的重要参数,是系统研究设计的核心。排线与绕线的运行关系形成节距,排线系统运动的位置精度,直接影响绕线节距精度。排线系统要求实现u级位移精度,由于其静态质量、运动系统的动态加速度、传动误差等,会引起运动迟缓或运动突变,破坏运行关系;运动系统由于受动载荷、运行频率、环境温度、干扰源的影响,系统的电气参数偏离控制范围,均引起绕线节距精度的变化。这种变化量对线绕电阻器绕制系统影响很大。因此,准确控制排线的位置精度和稳态控制节距精度,是必须研究与解决的关键技术。另外,由于来料的骨架和金属帽长度不一致,使用标准骨架长度来定位很难达到实际的要求,如何进行准确的定位,也是需要解决的关键技术。 功能分析: 图3.1为电阻绕线机的功能构成。物料通过工艺系统,完成作业功能,生产出合格的成品。电源电器对外部能量进行处理,完成动力功能。PLC系统把操作者输入的信息进行存储、运算、输出指令,完成控制功能,并能向人机界面输出系统信息。传感器检测工作过程的变化,反馈给PLC系统,完成检测功能。机件联接和支撑各个部件,将各要素组合起来,进行空间配置,形成一个有机的整体。

电机绕线方法

绕线工艺守则定子线圈绕线工艺守则 1. 适用范围 本守则适用于单相、三相异步电动机的定子绕组及转子绕组的线圈的绕制。 2. 材料 2.1 电磁线:漆包铜圆线。 2.2 棉线绳。 3 设备及工具 3.1 附有计数器的绕线机并配置装置线盘用的搁线架和衬有毛毡的夹线板以及拉紧装置等设施。 3.2 绕线模。 3.3 绕线常用一般工具:克丝钳、剪刀、扳手、卡尺 3.4 检查工具和仪器:千分尺、匝数仪。 3.5 工位器具. 4. 工艺准备 4.1 准备线圈绕制所需的技术文件和材料及绕线所需工具 4.2 检查导线线径,并将导线线盘装置在搁线架上(常用漆包铜圆线参数见附表)。 4.3 检查线模尺寸,并将其装置在绕线机的主轴上。 4.4 试车运转:调整绕线机转速,校对计数器并调至零位 4.5 将漆包铜圆线端头缠绕固定在绕线机主轴上,然后拉紧漆包铜圆线到合适紧度(使漆包线拉直,且不致使漆包线拉细和破坏绝缘为宜)。 5. 工艺过程 5.1 将导线的始端按规定留出适当长度,固定在绕线模特制的柱销上。 5.2 开动绕线机,绕制第一只线圈,导线在槽中自左向右排列整齐、紧密,不得有交叉。待计数器到规定的匝数时,停机 5.3留出连接线,按同样的方法绕制其余线圈。 5.4 按规定的长度留出末端引线,并剪断导线。 5.5 拆下绕线模,逐个取出线圈,并在线圈上下两端进行帮扎。 5.6 按5.1~5.5条将整台电机绕组绕制完成,并经过匝数仪检验后帮扎好,整齐的放在存放线圈的工位器具内。

6. 质量检查 6.1 每批绕制好线圈的首件必须按有关技术文件检查合格后方可投入生产。 6.2 在正常生产中应检查下列项目 6.2.1 用匝数试验仪检查每只线圈的匝数应符合图样要求。 6.2.1 导线的接头数在每只线圈中不得超过一处,每相线圈中不得超过两处,每台电机不得超过四处,接头必须在端部斜边处,其包扎应符合 7.1条的规定。 6.2.3 工位器具内的线圈应排列整齐不得损伤绝缘。 7. 技术安全及注意事项 7.1 绕线中发现导线长度不够或断线现象时,允许焊接,但必须遵守下列规定。 7.1.1 接头位置只允许在线圈的端部斜边。 7.1.2 焊接应保证接触良好,有足够的机械强度,表面光洁。 7.1.3 接头处绝缘套管长度较导线绝缘重叠部分应大于15mm。 7.2 绕线时应仔细观察导线,如有绝缘损伤处,按7.1.1~7.1.3规定执行,但每只线圈不得超过一处,每相线圈不得超过两处。 7.3 绕好的线圈应整齐地放置在清洁的工位器具内,其堆放高度不得超过0.5m,不允许有压弯变形现象。 7.4 每换一盘导线时需检查线规,合格后才可使用。 7.5 绕线机应有可靠的接地保护装置。 7.6 女工操作时,必须带工作帽。

自动转子绕线机常见问题修复

绕线机常见故障分析及解决 1.盐浴不良: a.铜线不良:从线桶中抽出部分铜线(拉伸几下)放入盐水中可判断。 b.张力不良(过大):放入盐水中的转子线包不规则冒泡,数值上升较慢。 (过小):线在绕线过程中容易挂到钢片上且线包太松。 解决:所经过绕线机张力系统穿过的铜线必须通过张力对照表用弹簧称核对后方可绕线。 c.羊毛毡结碳.各过线轮损伤.各过线小轴承损坏:放入盐水中的转子线包不规则冒泡, ,数值上升较快。 解决:更换损坏羊毛毡.过线轮小轴承 d.绕线模具损伤(导线模):放入盐水中的转子线包规则冒泡,冒泡位置在铁芯上部.下部或中部(每一槽在同一位置).数值上升快。 (钩线套):放入盐水中的转子线在颈部冒泡(应可看到损伤部位)。 解决:检查模具.确定位置.打磨抛光。 e.设备调试不良造成绕线过程中分度变化(以至铜线下线刮伤):绕线模具于钩线套中心高没调好,绕线模具平衡没调好。钩线套位置没调好(一边高一边低),平行气缸动作不协调(一边快一边慢),转位轴中轴承不良,夹紧机构中平面轴承不良。 放入盐水中的转子线包规则冒泡(几槽在同一位置,特别最后俩组线圈)。 其它:飞叉轴承坏,飞叉主轴轴承档磨损,飞叉皮带轮轴承档磨损造成模具中心调不好。 解决:检查调试以上问题点,检查更换各轴承。 注:换铜线时要检查线捅周边有无毛边打磨。 f.穿线方法不正确:在电控磁粉张力器的过线轮上或附助过线轮上,铜线绕的圈数过多,磁 粉张力器通常为2-3圈。附助为1圈。(铜线在阻力与拉力作用下会相互挤压, 漆膜会损伤)。铜线穿在过线轮防护杆上,主轴进线口处过线轮位置不对( 线直接与过线轮防护杆磨擦),主轴内尼龙管脱落,主轴至飞叉线没经过线轮。 解决:检查以上问题点,调整。 g.绕线模具不良:绕线模具长期打磨抛光磨损严重,护住钢片很少以至下线时铜线刮到钢片。绕线模具侧护板与中间护板间隙过小(针对0。45以上线)挤伤,中间护板位置没调好,下线刮到钢片,盐浴不良或断线。 解决:检查模具,加工处理,调试仔细。

米特绕线机用张力器说明书

张力器说明书 张力器包括壳体、L形连杆、钓鱼杆、半圆形凸轮、弹簧、摩擦轮、摩擦轮轴,半圆形凸轮活动连接在壳体内的销轴上,钓鱼杆一端与半圆形凸轮相连接,另一端连接一个过线轮,弹簧的一端连接在半圆形凸轮靠近外边缘处,另一端连接在壳体上,摩擦轮轴穿在壳体的侧壁上,处于壳体外一端与摩擦轮连接,处于壳体内的一端与连接于L形连杆的摩擦块相接触,L形连杆与连杆轴活动连接,L形连杆也与半圆形凸轮圆弧形边缘相接触,连杆轴固定在与壳体相贴合的调整机构上,连杆轴通过调整机构带动可沿垂直于摩擦轮轴的轴线方向移动;壳体上还可设置一个气缸,汽缸轴的末端顶住L形连杆;本发明能精细控制漆包线的张紧力,且不容易发生断线。

1、一种绕线机用的张力器,包括壳体、L形连杆、钓鱼杆、半圆形凸轮、弹簧、摩擦轮、摩擦轮轴,其特征在于:半圆形凸轮有一个偏离圆心的通孔,通孔中心至半圆形凸轮圆弧形边缘的距离逆时针旋转时由小到大,半圆形凸轮通过这个通孔活动连接在一个固定于壳体内的销轴上,钓鱼杆的一端与半圆形凸轮靠近通孔处相连接,钓鱼杆的另一端连接一个过线轮,弹簧的一端连接在半圆形凸轮靠近外边缘处,另一端连接在壳体上,所述的摩擦轮轴穿在壳体的侧壁上,一端处于壳体外且与摩擦轮连接,另一端处于壳体内,所述的L形连杆通过两个悬臂连接处的通孔活动连接在连杆轴上,所述的连杆轴固定在与壳体相贴合的调整机构上,所述的连杆轴通过调整机构带动可沿垂直于摩擦轮轴的轴线方向移动,L形连杆靠近摩擦轮轴的悬臂连接一个摩擦块,此摩擦块与摩擦轮轴处于壳体内的一端相接触,L形连杆远离摩擦轮轴的另一悬臂内侧与半圆形凸轮圆弧形边缘相接触。 2、根据权利要求1所述的绕线机用的张力器,其特征在于:所述的调整机构包括贴合于壳体上的底座,底座上有燕尾槽,一个滑块装于底座的燕尾槽上,滑块平行于燕尾槽中心线有一个螺纹通孔,一根头部处于壳体外的调整螺丝先穿过壳体的侧壁然后穿到滑块的螺纹通孔上,连杆轴固定在滑块上可由滑块带动沿垂直于摩擦轮轴的轴线方向移动。 3、根据权利要求1所述的绕线机用的张力器,其特征在于:壳体上还设置一个气缸,汽缸轴的末端顶住L形连杆远离摩擦轮轴的另一悬臂外侧。 4、根据权利要求1所述的绕线机用的张力器,其特征在于:所述的钓鱼杆和摩擦轮之间还设置一个过线轮,此过线轮装于壳体的外壁上。 5、根据权利要求1所述的绕线机用的张力器,其特征在于:所述的摩擦块由连接于L形连杆的垫块和依次连接在垫块上的弹簧片、摩擦片组成。

自动绕线机设计

自动绕线机系统设计 2014年11月28日

目录 一.概述................................................. 二.基本设计............................................. 三.控制功能说明......................................... 四.自动绕线机控制系统设计............................... 五.系统配置............................................. 六.CAD图................................................. 七.梯形图.................................................. 附录..................................................

控制系统说明 一、概述 本控制系统设计用于自动绕线机系统。 自动绕线机系统拟采用电机控制旋转臂缠绕纺线的方式,主要工作流程如下: 纺线由导轮传送至旋转臂前端,进入缠绕前应先将受绕棒转动至与线团夹板垂直并将纺线前端与受绕棒初步缠绕使其在接下来的缠绕过程中纺线不会松动。缠绕系统机械臂每次缠绕一团纺线。分解动作为有(系统初始化后,旋转臂在初始缠绕位置等待,受绕棒转动到缠绕位置后):旋转臂慢速缠绕10圈并停止,闭合剪刀剪断上一次缠绕好的线团,受绕棒转动一定角度,旋转臂快速缠绕纺线,一定时间后停止旋转臂转动(重复若干次转角及绕线过程),线团成型后,旋转臂停止,此时受绕棒与初始位置成90度(正对线团夹板),线团上夹板及剪刀打开,受绕棒向前移动,顶掉前一次绕好的线团,粘纸传送带将一片粘纸传送至线团下夹板处,线团夹板压紧,受绕棒向后移动与线团分离,线团夹板放松,将受绕棒转动至初始缠绕位置等待。其中 1.旋转臂、受绕棒转动控制拟采用伺服电机传动控制(信 号电压为零时无自转现象)。 2.粘纸传送带传动拟采用无刷直流电机传动控制。

CNC200A绕线机说明书

目录 1.前言 (2) 2.主要特征 (2) 3.面板说明 (2) 4.编辑绕线资料 (4) 5.绕线方式选择 (5) 6.执行绕线功能 (7) 7.装机设定 (8) 8.安装与接线 (10) 9.简易保养及故障排除 (12)

1.前言 CNC-200A是本公司新开发的一款绕线机控制器,由于控制机能完整,广为绕线业界所爱用,已成为绕线机的标准配备。 此款新型控制器采用更精密、功能更强大、运算速度更快、抗干扰能力更强的单晶片微处理器,不但保留了与原机型相容之操作方式及所有功能,更提升了控制器之运转效率及稳定性。 2.主要特征 ◆采用单晶片微处理器设计,功能更强,体积更小,抗干扰能力强。 ◆记忆体使用FLASH ROM,容量大,可储存1000步序之绕线资料,每一步序可分别设定9种 绕线资料,5种功能选择,切断电源后绕线资料不会流失。 ◆可针对不同机型及使用场合更改运转及操作模式,使用范围更广泛。 ◆绕线轴提供100段绕线速度选择,每一步序的高速及低速可分别设定。 ◆绕线轴提供100段加速斜率选择,使绕线轴运转更为流畅。 ◆计数分辨率高,可达0.05圈。 ◆排线轴步进马达驱动器以定电流驱动,提供高速度、高扭力、高精度之定位。 ◆排线轴位置可以用教导或按键设定,资料显示窗可以显示排线轴当前位置。 ◆排线轴提供99段定位速度选择。 ◆排线轴位移单位设置范围广,适用各类规格的螺杆。 ◆具有断电记忆功能,绕线过程中突然断电,可记录当前的状态、参数并保存,待上电,启 动继续绕制产品,减少原材料浪费。 ◆一组编辑密码设定,以防止设定资料被任意更改。 ◆兼容性强,可直接替代同类型控制器。 ◆电源可分AC 100~120V及220V~240V等机种供选择。 3.面板说明 3.1.电源: 附有指示灯之电源开关,管制本控制器之AC电源。

转子绕线机控制系统的滞后校正设计

课程设计任务书 学生姓名: 专业班级: 指导教师: 谭 工作单位: 自动化学院 题 目: 转子绕线机控制系统的滞后校正设计。 初始条件:已知转子绕线机控制系统的开环传递函数: ) 10)(5()(++= s s s K s G 要求系统的静态速度误差系数110-=s K v , 60≥γ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、MATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕度和相位裕度。 2、前向通路中插入一相位滞后校正,确定校正网络的传递函数。 3、用MATLAB 画出未校正和已校正系统的根轨迹。 4、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。说明书的格式按照教务处标准书写。 时间安排: 1、课程设计任务书的布置,讲解 (半天) 2、根据任务书的要求进行设计构思。(半天) 3、熟悉MATLAB 中的相关工具(一天) 4、系统设计与仿真分析。(三天) 5、撰写说明书。 (二天) 6、课程设计答辩(半天) 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

引言 (1) 1 设计目的与要求 (2) 1.1设计目的 (2) 1.2设计要求 (2) 1.3 设计原理 (2) 2 设计计算与分析 (4) 2.1 相位裕度与幅值裕度的计算 (4) 所以,幅值裕度为: ) ( 52 .3 ) ( log 20dB A L g g = - =ω (4) 使用MATLAB软件获得系统的伯德图和相位,幅值裕度程序的代码如下: (4) 2.2滞后校正函数的计算 (5) 3 用MATLAB绘制校正前后系统的根轨迹 (8) 3.1校正前系统根轨迹 (8) 3.2 校正后系统根轨迹 (8) 4用MATLAB对校正前后的系统进行仿真分析 (9) 4.1校正前系统 (9) 4.2校正后系统 (11) 5总结 (12)

相关文档
最新文档