(整理)602数学分析

(整理)602数学分析
(整理)602数学分析

南京信息工程大学2010年硕士研究生入学考试

《数学分析》考试大纲

科目代码:602

科目名称:数学分析

考试内容:

一、实数集与函数

1 实数集及其性质

2 确界定义与确界原理

3 函数概念 4有某些特性的函数(有界函数、单调函数、奇函数与偶函数、周期函数)

二、数列极限

1 数列极限概念

2 收敛数列的性质(唯一性、有界性、保号性、不等式性、迫敛性、四则运算)

3 数列极限存在的条件:包括单调有界定理与柯西(Cauchy)准则

三、函数极限

1 函数极限概念

2 函数极限的性质(唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算)

3 函数极限存在的条件:包括归结原则(Heine 定理),单调有界定理与柯西准则

4 两个重要极限

5 无穷小量,无穷大量, 非正常极限,阶的比较,曲线的渐近线

四、函数的连续性

1 连续性概念,间断点及其分类

2 连续函数的性质(有界性、保号性、连续函数的四则运算、复合函数的连续性、反函数的连续性;闭区间上连续函数的有界性、取得最大值最小值性、介值性、一致连续性)

3 初等函数的连续性

五、导数与微分

1 导数的概念

2 求导法则

3 微分概念

4 高阶导数与高阶微分 5参量方程所确定的函数的导数

六、微分中值定理及其应用

1 中值定理(罗尔定理、拉格朗日定理、柯西定理)

2 不定式极限

3 泰勒公式(及其皮亚诺余项与拉格朗日余项、一些常用初等函数的泰勒展开式、应用于近似计算)

4 函数的单调性、极值、最大值与最小值

5 函数的凸性与拐点

6 函数图象的讨论

七、实数完备性

1 实数集完备性的基本定理的应用

2 闭区间上连续函数性质的证明

第八章不定积分

1原函数与不定积分概念,基本积分公式 2 换元积分法与分部积分法 3 有理函数和可化为有理函数的积分

九、定积分

1定积分的概念及其几何意义 2 可积条件的应用(包括必要条件,可积准则),三类可积函数 3 定积分的性质(线性运算法则、区间可加性、不等式性质、绝对可积性,积分中值定理) 4 微积分学基本定理,定积分的分部积分法与换元法

十、反常积分

1无穷限反常积分概念、柯西准则,绝对收敛与条件收敛 2无穷限反常积分收敛性判别法:比较判别法及p-函数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法 3无界函数反常积分概念,无界函数反常积分比较判别法及p-函数判别法

十一、定积分的应用

1 平面图形的面积

2 由截面面积求体积、旋转体的体积

3 曲线的弧长与曲率

4 旋转曲面的面积

十二、数项级数

1 级数收敛的概念,柯西收敛准则,收敛级数的性质

2 正项级数收敛判别法(比较判别法、p-级数判别法、比式与根式判别法、积分判别法)

3 一般项级数的绝对收敛与条件收敛、交错级数的莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法,绝对收敛级数的性质

十三、函数列与函数项级数

1 函数列与函数项级数的一致收敛性,柯西准则,函数项级数的维尔斯特拉斯(Weierstrass)优级数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法

2 函数列极限函数与函数项级数和函数的连续性、可积性、可微性

十四、幂级数

1 幂函数的收敛性,阿贝尔定理,收敛半径与收敛域,内闭一致收敛性,和函数的分析性质

2 函数的幂级数展开

十五、傅里叶级数

1 傅里叶级数的概念,三角函数系的正交性

2 以2L为周期的函数的展开式,奇式与偶式展开

3 收敛定理的证明

十六、多元函数的极限与连续

1 平面点集与多元函数

2 二元函数的极限,重极限与累次极限

3 二元函数的连续性,有界闭域(集)上连续函数的性质

十七、多元函数的微分学

1偏导数与全微分概念,可微性 2 复合函数微分法,高阶导数,高阶微分,混合偏导数与其顺序无关性 3 方向导数与梯度 4 泰勒公式与极值问题

十八、隐函数定理及其应用

1隐函数的概念,隐函数定理 2隐函数组定理,隐函数组求导、反函数组与坐标变换,函数行列式及其性质 3 几何应用(空间曲线的切线与法平面,曲面的切平面与法线) 4 条件极值与拉格朗日乘数法

十九、含参量积分

1 含参量正常积分,连续性、可积性与可微性

2 含参量反常积分的收敛与一致收敛,柯西准则,维尔特拉斯(Weierstrass)判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法,含参量无穷积分的连续性,可积性与可微性

3 欧拉积分

二十、曲线积分

1第一型曲线积分的概念,性质和计算公式 2第二型曲线积分的概念,性质和计算公式,两类曲线积分之间的关系

二十一、重积分

1 二重积分概念与性质

2 二重积分的计算(化为累次积分),二重积分的换元法(极坐标与一般变换) 3. 格林(Green)公式,曲线积分与路线的无关性

3 三重积分的概念与计算,三重积分的换元法(柱坐标、球坐标与一般变换)

4 重积分的应用(体积、曲面面积等)

二十二、曲面积分

1第一型曲面积分的的概念与计算 2第二型曲面积分的概念与计算,两类曲面积分之间的关系 3高斯(Gauss)公式,斯托克斯(Stokes)公式

历年华东师范大学602高等数学(B)考研真题试卷与资料答案

历年华东师范大学602高等数学(B)考研真题试卷与 资料答案 一、考试解读: part 1 学院专业考试概况: ①学院专业分析:含学院基本概况、考研专业课科目:602高等数学(B)的考试情况; ②科目对应专业历年录取统计表:含华东师范大学相关专业的历年录取人数与分数线情况; ③历年考研真题特点:含华东师范大学考研专业课602高等数学(B)各部分的命题规律及出题风格。 part 2 历年题型分析及对应解题技巧: 根据华东师范大学602高等数学(B)考试科目的考试题型(名词解释题、简答题、论述题、案例分析题等),分析对应各类型题目的具体解题技巧,帮助考生提高针对性,提升答题效率,充分把握关键得分点。

part 3 2018真题分析: 最新真题是华东师范大学考研中最为珍贵的参考资料,针对最新一年的华东师大考研真题试卷展开深入剖析,帮助考生有的放矢,把握真题所考察的最新动向与考试侧重点,以便做好更具针对性的复习准备工作。 part 4 2019考试展望: 根据上述相关知识点及真题试卷的针对性分析,提高2019考生的备考与应试前瞻性,令考生心中有数,直抵华东师范大学考研的核心要旨。 part 5 华东师范大学考试大纲: ①复习教材罗列(官方指定或重点推荐+拓展书目):不放过任何一个课内、课外知识点。 ②官方指定或重点教材的大纲解读:官方没有考试大纲,高分学长学姐为你详细梳理。 ③拓展书目说明及复习策略:专业课高分,需要的不仅是参透指定教材的基本功,还应加强课外延展与提升。 part 6 专业课高分备考策略:

①考研前期的准备; ②复习备考期间的准备与注意事项; ③考场注意事项。 part 7 章节考点分布表: 罗列华东师范大学602高等数学(B)的专业课试卷中,近年试卷考点分布的具体情况,方便考生知晓华东师大考研专业课试卷的侧重点与知识点分布,有助于考生更具针对性地复习、强化,快准狠地把握高分阵地。 二、华东师范大学历年考研真题与答案: 汇编华东师大考研专业课考试科目的1997-2007,2011-2015年考研真题试卷,并配备2011-2015年答案与解析,方便考生检查自身的掌握情况及不足之处,并借此巩固记忆加深理解,培养应试技巧与解题能力。 2015年华东师范大学602高等数学(B)考研真题答案详解 2014年华东师范大学602高等数学(B)考研真题答案详解 2013年华东师范大学602高等数学(B)考研真题答案详解 2012年华东师范大学602高等数学(B)考研真题答案详解 2011年华东师范大学602高等数学(B)考研真题答案详解 2010年华东师范大学602高等数学(B)考研真题答案详解

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

数学解题技巧与解题思路

解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后, 如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

【专题整理】【解答题】【数学归纳法、放缩法】【数列】

数学归纳法和放缩法 放缩法证明不等式 1、添加或舍弃一些正项(或负项) 【例1】已知:* 21().n n a n N =-∈,求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈. 【解析】 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-,1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->-,*122311...().232 n n a a a n n n N a a a +∴-<+++<∈. 【点评】若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 【例2】函数x x x f 4 14)(+=,求证:2121)()2()1(1-+>++++n n n f f f (*∈N n ). 【解析】 由n n n n n f 2 21 14111414)(?->+-=+=得:n n f f f 221122112211)()2()1(21?-++?-+?- >+++ 2 1 21)21211(4111-+=+++-=+-n n n n (*∈N n ). 【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可. 3、先放缩,后裂项(或先裂项再放缩) 【例3】已知:n a n =,求证: 31 2 <∑=n k k a k .

602数学大纲

602数学(含高等数学、线性代数) 一、函数、极限、连续 考试内容 函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数。 数列极限与函数极限的相关内容。 二、一元函数微分学考试内容 导数和微分的概念,导数和微分的四则运算,复合函数、反函数、隐 函数以及参数方程所确定的函数的微分法,高阶导数。一阶微分形式的不变性,微分学中值定理,洛必达(L’Hospital)法则,微分学的应用。 三、一元函数积分学 考试内容 原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质。 定积分中值定理,变上限定积分定义的函数及其导数,牛顿-莱布尼茨(Newton-Leibniz)公式,不定积分和定积分的换元积分法部积分法,有理函数、三角函数的有理式和简单无理函数的积分,广义积分的概念,定积分的应用。 四、向量代数和空间解析几何 考试内容 向量的概念,向量的线性运算,向量的数量积和向量积的概念及运算,向量的混合积,两向量垂直、平行的条件,两向量的夹角,向量的坐标表达式及其运算,单位向量方向数与方向余弦,平面方程、直线方程平面与平面、平面与直线、直线与直线的平行、垂直的条件和夹角,点到平面和点到直线的距

离。球面、母线平行于坐标轴的柱面,旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形。空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程。 五、多元函数微分学 考试内容 多元函数的概念,二元函数的极限和连续的概念。有界闭区域上的多元连续函数的性质,多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,多元复合函数、隐函数的求导法,高阶偏导数,方向导数和梯度的概念及其计算,空间曲线的切线和法平面,曲面的切平面和法线。 多元函数极值和条件极值求法及应用。 六、多元函数积分学 考试内容 二重积分、三重积分的概念及性质,二重积分与三重积分的计算和应用。两类曲线积分的概念、性质及计算。两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,已知全微分求原函数。两类曲面积分的概念、性质及计算。高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用。 七、无穷级数 考试内容 常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,正项级数的比较审敛法、比值审敛法、根值审敛法。 交错级数与莱布尼茨定理,任意项级数的绝对收敛与条件收敛,函数项级数的收敛与和函数的的概念,幂级数及其收敛半径、收敛区间和收敛域,幂级数的和函数,幂级数在其收敛区间内的基本性质,幂级数的和函数的求法,函数的泰勒级数的展开。 傅里叶级数,函数在[-l,l]上的傅里叶级数,函数在[0,l] 上的正弦级数和余弦级数。 八、常微分方程

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

602数学(理)河南师范大学

第1页,共3页 ........................ 优质文档.......................... 2018年攻读硕士学位研究生入学考试试题 科目代码与名称:602 (理) 适用专业或方向:计算机科学与技术 考试时间:3小时 满分:]50分 (必须在答题纸上答题,在试卷上答题无效,答题纸可向监考老师索要) 一、单项选择题(1-8题,每小题4分,共32分)请将答案写在答题纸上. 1.设极限hm/(x )和limg (x )都存在,则以下极限未必存在的是 X-?aO X —>00 (B )lim[/(x)-g(x)] (D) hm 竺 X* g(X ) 且临/[+")=1,则 10 h (c))/(i)=i. r(i)=o 3.设函数J\x)的导数是sin2x ,则/(x)的一个原函数是 (A) — sin2x (B) -4sin 2x (C) 4sin 2x (D)—丄sin2x + 2x + I 4 5. 设函数/(X )在[a,句上有定义,在开区间(。0)内可导,则 (A )当/(o )/■传)<0时,存在^e (a,b ),使/佔)=0 (B)对任何?(a,b),有lim[/(x)-/(^)] = O (0当,(。)=/(幻时,存在汩a,b),使广(g) = 0 (D)存在兴(a,b),使 f(b)-f(a) = f'^)(b-a) 6. 交换累次积分\'n dx^' f(x,y)dy 的次序得 () 试题编号: B 卷 (C) lirn[./(x)g(x)] 2.设函数/(x )在x = l 处连续, (A )/(I )=O , r (i ) =o (B ))/(I )=O , r (i )=i (D ))/(i )=i. r (i )=i 3 , /(x)=『(cos? x),则 f (B) 2V2 (C) 1 (D) -3 4.设/

西安电子科技大学2018考研大纲:602高等数学.doc

西安电子科技大学2018考研大纲:602高等 数 出国留学考研网为大家提供西安电子科技大学2018考研大纲:602高等数学,更多考研资讯请关注我们网站的更新! 西安电子科技大学2018考研大纲:602高等数学 602高等数学复习提纲 一、课程考试内容 1、函数与极限 数列的极限,函数的极限,极限存在准则,两个重要极限,函数的连续性与间断点,连续函数的运算与初等函数的连续性,闭区间上连续函数的性质。 2、导数与微分 导数概念,函数的四则运算求导法则,反函数的导数,复合函数求导法则,高阶导数,隐函数的导数,参数方程所确定的函数的导数,函数的微分。 3、中值定理与导数应用 四大中值定理,洛必达法则,函数单调性的判别,函数的极值和最值,曲线的凹凸与拐点。 4、不定积分

不定积分的概念与性质,换元积分法,分部积分法,几种特殊类型函数的积分。 5、定积分及其应用 定积分的概念,定积分的性质和积分中值定理,微积分基本公式,定积分的换元法, 定积分的分部积分法,广义积分;定积分的元素法,平面图形的面积和体积,平面曲线的弧长,功、水压力和引力。 6、空间解析几何与向量代数 空间直角坐标系,向量及其加减法,向量与数的乘法,数量积和向量积;曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程,二次曲面。 7、多元函数微分法及其应用 多元函数的基本概念,偏导数,全微分及其应用,多元复合函数的求导法则,隐函数的求导;微分法在几何上的应用,方向导数与梯度,多元函数的极值及其求法。 8、重积分 二重积分的概念与性质,二重积分的计算方法;三重积分的概念及其计算法,重积分的应用。 9、曲线积分与曲面积分 对弧长的曲线积分,

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 令狐采学 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点:两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n=1时,左边31311=?= ,右边3 1121=+=,左边=右边,等式成立. ②假设n=k 时,等式成立,即: ()()1212121751531311+=+-++?+?+?k k k k . 当n=k+1时. 这就说明,当n=k+1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n=1时,左边=1,右边=2.

左边<右边,不等式成立. ②假设n=k 时,不等式成立,即 k k 21 31 21 1<++++ . 那么当n=k+1时, 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n=k+1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是 要证明: 1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n ≥2,n ∈N*). (1)当n =5时,求a0+a1+a2+a3+a4+a5的值. (2)设bn =a2 2n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法 证明:当n ≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时, 原等式变为(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+

利用数学归纳法解题举例

利用数学归纳法解题举例 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立, 再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或 n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳0 的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 一、运用数学归纳法证明整除性问题 例1.当n∈N,求证:11n+1+122n-1能被133整除。 证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。命题成立。 (2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,

高中数学各种题型的解题技巧

高中数学各种题型的解题技巧 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。数学大题表面上是很难,但是通过多年的教学积累和经验总结,我们发现数学整个学科的解题思维基本上趋于一致,能够形成通解,使我们在数学教学上大幅的简化,甚至不需要刻意的思考。掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。 六种题型解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

相关文档
最新文档