数学建模投入产出模型
投入产出数学模型

投入产出的基本平衡关系
从左到右: 中间需求+最终需求=总产出 (1)
从上到下: 中间消耗+净产值=总投入
(2)
由此得产出平衡方程组(也称分配平衡方程组):
x11 x12 x1n y1 x1
x21
x22
x2n
表1:投入产出表(一般格式)
流量 产出 消耗部门
最终需求
投入
1 2 n 消费 累计 出口
生
1
x11 x12 x1n
产
2
x21 x22 x2n
部
门
n
xn1 xn2
xnn
新 创 价 值
工资 纯收入 合计
v1 v2 m1 m2 z1 z2
vn mn zn
总投入
x1 x2 xn
合计
y1 y2 yn
数学建模讲座
(二)投入产出数学模型
李媛
1
在经济活动中分析投入多少财力、物力、
人力,产出多少社会财富是衡量经济效益高
低的主要标志。
投入产出技术正是研究一个经济系统各部 门间的“投入”与“产出”关系的数学模型, 该方法最早由美国著名的经济学家瓦.列昂捷 夫(W.Leontief)提出,是目前比较成熟的 经济分析方法。
i1
由直接消耗系数的定义 xij aij x j,代入(3),得
a11x1 a12x2 a1n xn y1 x1
a21x1
a22x2
a2n xn
y2
x2
an1x1 an2 x2 ann xn yn xn
令 X x1 x2 xn ,Y y1 y2
(10)
投入产出-CGE模型及其应用

n 1
~ V j avibij
n i 1
n
j vj bij
i 1
n
*
j vj bij
i 1
就业乘数
Ej
*
a ei ~ zij
i 1
n 1
~ E j aei bij
n i 1
产出乘数
产出乘数=初始值+直接消耗系数+间接消耗系数+诱导系数 初始值=1( 一个单位的最终产品) 直接消耗:直接消耗系数按列相加的值。
前提
在进行经济影响分析时,需要确定以下方面: • • • • 经济影响分析的对象是什么(基础设施建设、旅游消费、体育赛事)? 经济影响分析的区域范围(市、省国家)? 经济影响分析的时间范围(哪一年)? 经济影响分析的结果表现(总产出、GDP、居民收入、就业)?
经济影响的三个方面
• 产出:某一部门增加一个单位最终产品对国民经济各个部门所产生 的生产需求量(产出乘数) • 居民收入:增加最终产品→扩大生产规模→增加居民收入(居民收 入乘数) • 就业:增加最终产品→扩大生产规模→增加劳动力需求(就业乘数)
投入产出、CGE模型及其应用
张伟 博士 环境保护部环境规划院 环境规划与政策模拟重点实验室
目录页
CONTENTS PAGE
1.投入产出模型 介绍
2.相关研究 介绍
3.CGE模型现有 工作基础
4.未来设想
投入产出模型介绍
Part
1
Part 1
Part 2
Part 3
Part 4
什么是投入产出法
投入产出法:在一定经济理论指导下,通过编制投入产出表,建立相应的投入产出数学模型, 综合系统地分析国民经济各部门、再生产各环节之间数量依存关系的一种经济数量分析方法。 是经济学、统计学、数学、计算机技术相结合的产物。属于宏观经济的范畴。 (一)投入:指一项经济活动中的各种消耗。 包括:物质和非物质产品消耗;有形和无形产品消耗 有形:原材料、辅助材料、燃料、动力、固定资产折旧、 无形:劳动力、金融、保险、技术专利、服务等。
投入产出数学模型练习题 数学建模

投入产出数学模型经济应用案例投入产出数学模型的应用领域很广,常用于分析经济系统的部门结构和比例关系、进行经济预测、调整经济计划等各个方面。
由投入产出模型的理论知道,只要经济系统各个部门的生产技术条件没有变化,就可将报告期的投入产出数学模型直接应用于计划期的经济工作。
下面将以实例说明其在经济中的应。
例题设某个地区的经济系统划分为工业、农业、其他产业三个部门。
上一年度三个部门的生产与消耗情况如下表所示:生产与消耗情况表假定该系统三个部门的生产技术条件都没有变化,从而该系统的直接消耗系数矩阵不变,由此建立的产品分配方程组和产值构成方程组也不变。
在此基础上,分别分析该系统的报告期投入产出数学模型在计划期经济计划工作方面的下列应用。
(1)在经济预测中的应用假定根据上例所示经济系统的生产发展情况,预计该系统工业、农业、其他产业三个部门的计划期总产品将在报告期总产品的基础上分别增长9%、7%、6%。
由于在生产过程中系统内部存在着复杂的产品消耗关系,故一般说来,各个部门最终产品的增长幅度与总产品的增长幅度并不一致。
试预测该系统最终产品的增长情况。
(2)在制订计划中的应用投入产出数学模型为合理制订经济系统的生产计划提供了一个科学的方法。
根据社会需要确定社会产品的原则,先通过对计划期需要量的预测,确定系统各个部门的最终产品,再利用投入产出数学模型推算出各个部门的总产品,在此基础上编制经济系统计划期的投入产出表,作为安排各个部门计划期生产活动的依据。
现假定通过预测,引例所示经济系统三个部门的计划期最终产品需要量分别为工业部门:1216y=亿元,农业部门:2716y=亿元,其他产业部门:3120y=亿元。
试确定计划期总产品、部门间流量及计划期各部门净产值。
(3)在调整计划中的应用以上介绍了如何根据对最终产品的需求,制订经济系统的生产计划。
但是在执行计划时,可能由于不可预测的原因,导致系统某些部门的最终产品出现缺口(计划产量小于需要量),或者某些部门的最终产品出现余量(计划产量大于需求量),从而破坏了经济系统原计划的平衡性。
线性代数方法建模4投入产出分析--数学建模案例分析

§4 投入产出分析在一个国家或区域的经济系统中,各部门(或企业)既有消耗又有生产,或说既有投入又有产出,生产的产品供给系统内部各部门和系统以外的需求,同时也消耗系统内各部门所提供的产品。
消耗的目的是为了生产,生产的结果又必然要创造新价值,以支付工资和获取利润。
对每一部门,物质消耗和新创造的价值等于它生产的总产值,这就是投入和产出之间的平衡关系。
美国经济学家、哈佛大学教授W.Leontief 于20世纪30年代首先提出并成功建立了国民经济的投入产出数学模型,并数次制定主持美国的国民经济投入产出表,这一方法即投入产出法以其重要的应用价值迅速为世界各国经济学界和决策部门所采纳,因此他获得1973年的Nobel 经济学奖。
设有n 个经济部门组成的经济系统,假设1、部门i 仅生产一种产品i ,称为部门i 的产出,不同部门的产品不能相互替代;2、部门i 在生产过程中至少需要消耗另一部门 j 的产品,称为部门 j 对部门i 的投入,并且消耗的各部门产品的投入量与该部门的总产出量成正比。
记i x —部门i 的总产出 ),,2,1(n i =ij x —部门i 分配给部门j 的产品量),,2,1,(n j i =ij a —部门 j 的单位产品对部门i 产品的消耗),,2,1,(n j i =,显然j ij ij x a x =i y —外部对部门i 的需求),,2,1(n i =j z —部门j 新创造的价值),,2,1(n j =利用统计资料,可以编制下面的投入产出表。
投入产出模型按计量单位的不同,分为价值型和实物型,在价值型模型中,各部门的投入、产出均以货币单位表示;在实物型模型中,则按各产品的实物单位(如吨、米等)为单位。
我们在这里仅讨论价值型模型,至于实物型模型,可以证明相应的直接消耗系数矩阵与货币型模型的直接消耗系数矩阵相似,因此模型的结论是一致的。
一、平衡方程组对每一部门,作为系统内部各部门的消耗+外部需求=总产品即 ),,2,1(1n i x y x a i i j ij nj ==+∑= (1)(1) 称为分配平衡方程组。
《投入产出模型》课件

目录
CONTENTS
• 投入产出模型概述 • 投入产出模型的构建 • 投入产出模型的分析方法 • 投入产出模型的应用案例 • 投入产出模型的未来发展
01
CHAPTER
投入产出模型概述
定义与特点
定义
投入产出模型是一种经济数量分析方法,通过建立数学模型来描述和分析各部 门之间的经济技术联系和投入产出关系。
02
Excel是一款常用的办公软件, 可以通过添加插件或使用自定 义函数来处理投入产出模型的 数据。
03
SAS和Stata则是专业的统计分 析软件,具有强大的数据处理 和模型分析功能,适用于复杂 的投入产出模型分析。
04
CHAPTER
投入产出模型的应用案例
地区经济分析
总结词
投入产出模型在地区经济分析中,能够全面反映各产业间的经济联系,为地区经济发展战略制定提供决策依据。
数据来源
通过调查、统计和会计资料等途径获取各部门之间的 经济联系数据。
编制方法
采用会计和经济统计方法,按照生产活动的流程和特 点,将各部门之间的经济联系进行分类和整理。
直接消耗系数的计算
直接消耗系数
表示某部门生产单位产品所需直接消耗的另一 部门产品的数量。
计算方法
通过投入产出表中的投入数据计算,反映部门 之间的直接经济联系。
特点
投入产出模型具有系统性、动态性、预测性和政策模拟性,能够全面反映经济 系统的结构、功能和运行机制,为政策制定和经济发展提供科学依据。
投入产出模型的应用领域
产业结构分析
投入产出模型可以用于分析产业 间的关联关系和依存度,揭示产 业发展的内在规律和趋势,为产 业结构调整和优化提供决策支持 。
投入产出数学模型

x12 x22
. . .
... ...
...
x1 n x2 n
x nn
y1 y2
. . . yn
x1 x2
. . .
社会纯收入 m1 , … ,mn 合计
z1 , … , zn
x1 , … , xn
服务业
n
xn 2
xn
总产值
xij :第i个部门的产品流入 (投入 到第 个部门的数量 (价值量 投入) 价值量) 第 个部门的产品流入 投入 到第j个部门的数量 价值量
因为 A
1
i)
= max
j 1
∑
∞
n
i =1
a ij = max
j k
∑
n
i =1
a ij < 1 i, j
所以 ( I A )
=
∑
k =1
A = ( b ij ) n × n b ij ≥ 0
所以 y ≥ 0 有 又因为
x = ( I A ) 1 y ≥ 0 I O 为可行的
T
V ≥ 0由 V
∑a P
i =1
n
ij i
(V = P AT P )
四 模型的可行和有利问题
定义: 1 定义:
①若在I-O模型中 y ≥ 0 x ≥ 0 则称模型为可行的 ( 价值型 ) 若在 模型中 ②若对 V ≥ 0 P ≥ 0 则称模型为有利的 ( 实物型 )
判别准则: 2 判别准则:
①矩阵范数: 矩阵范数:
1.3459 0.2504 0.3443 ( I A) 1 = 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167
x = ( I A) 1 y y = ( I A) x
【数学建模】投入产出模型

推论 . 若 A ≥ 0 且存在一个非负 p ≥ 0 , 使得 pT(I-A) > 0, 则 (I - A)-1 存在且非负 .
投入产出
• •
2. 消耗分析 10. 直接消耗系数 aij : 生产单位产品 j 对产品 i 的直接需求量 .
⎡0.059 ⎢0.002 A= ⎢ ⎢0.026 ⎢ ⎣0.026
0.254 0.192 0.208⎤ 0.456 0.069 0.150⎥ ⎥ 0.493 0.888 0.495⎥ ⎥ 0.362 0.315 0.295⎦ -1
投入产出
Байду номын сангаас直接需求
a33>a22>a34>a42>a44>a32>a43. 完全需求 b33>b34>b32>b22>b42>b43>b44. 直接: 轻需轻 > 轻需他 > 轻需重 完全需求 : 轻需重 > 轻需轻> 轻需他
I. 中间产品的投入和产出, II. 总产品中可供社会最终使 用的部分, III. 外购资源和劳力, 社会投入, IV. 国民收入 的再分配
• 3. 例. 全国农、轻、重投入产出表
产出 投 入
农业 农业 98.3
中
244.2 631.4 304.9 351.7 1532.2
间
209.0 36.8
产
11 12 11 21 22
1− a11 − a12 1− a11 > 0 , > 0, − a21 1− a22
, | D |> 0
Hawkins-Simon 条件.
投入产出
定理 2 . 若 A ≥ 0 且存在一个非负x ≥ 0 , 使得 (I-A) x > 0, 则 (I - A)-1 存在且非负 .
线性代数数学建模案例

【问题描述】: 某城市单行线如下图所示, 其中的数字表示该路段每小时按 箭头方向行驶的车流量(单位: 辆).
400
500 1
x1
2 300
x2 100
3
200
x3 X4 4 300
图3 某城市单行线车流量示意图
现在需要解决的问题如下:
(1) 建立确定每条道路流量的线性方程组. (2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x4 = 350时, 确定x1, x2, x3的值.
【模型分析】
• 若令1 = (2, 3, 1, 1)T, 2 = (1, 2, 1, 1)T, = (4, 7, 5, 3)T, 则原问题等价于“线性方程组Ax = b是否有 解”, 也等价于“能否由1, 2线性表示”。
• 若四种原料的比例是按体积计算的, 则还要考虑混合前后体 积的关系(未必是简单的叠加), 因而最好还是先根据具体情 况将体积比转换为重量比, 然后再按上述方法处理.
图5 日常膳食搭配
图6 几种常见的作料
【模型准备】:
一种佐料由四种原料A、B、C、D混合而成. 这种佐料现有两种规格, 这 两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种 原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两 种规格的佐料按一定比例配制而成?
一个网络由一个点集以及连接部分或全部点的直线或弧线构成。 网络中的 点称作联结点(或节点),网络中的连接线称作分支. 每一分支中的流量方向已经指
定,并且流量(或流速)已知或者已标为变量。
x3
x1
60
x4
80
x2
(a)
x5 (b)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x ( I A) 1 y y ( I A) x
若 ①最终产品
y (100,200,300)T x ( 287.96,457.76,494.91) y (300,200,300)T x (557.14,570.44,582.55)
企 业 I-O 模 型
例:某企业 I-O表
企业内部消耗
产品Ⅰ 产品 Ⅱ 产品Ⅲ 1 2 3
合计
平衡 因子
最终 产品 20 10 1210
总产品
自 产 产 品 外 购 材 料
产品Ⅰ 吨 产品 Ⅱ 吨 产品Ⅲ 吨
480
140 750
620 750
10 10 5
650 770 1215
原料Ⅰ 吨
原料Ⅱ 水 电 煤 吨 吨 吨 吨
因为 A 1 max aij max aij 1
j i 1 j i 1
n
n
所以 ( I A)
1
Ak (bij ) nn bij 0
k 1
i, j
所以 y 0有 x ( I A) 1 y 0 I O为可行的 又因为 V 0 由V T P T ( I A) P T V T ( I A) 1 0 所以 I O为有利。 证毕
投入产出数学模型
三 数学模型 :
1 投入产出表:实物型、价值型
投入—产出表
作为消耗部门 生产部门 农 工 业 业 . . . 1 2
*
最终 产品 总产出 新 创 造 价 值
农业 工业 … 服务业 1 2 … n
* 附:
劳动报酬
v1 , … , vn
x11 x21
xn1
x12 x22
xn 2
. . .
n
A (aij ) nn
ij
(列的绝对值和)
A
2
max
i
a
ij
(行的绝对值和)
1 ②矩阵性质: 2 3
A B A B (用定义证明 ) 若 A 1 lim
k
Ak 0 ( T k T
n k 1
k
)
A 1 I A可逆.注意: ( I - A )( Ak ) I Ak )
n
最终产品 总产品 y1 y2 yn
x x x
11 11
x … x x … x
12 12
1n 1n
x1 x2 xn
n1
x … x
n2
1n
1 2 n
l11
l
l
21
k1
l12 … l22 … lk2 …
l1n l2n lkn
企 业 I-O 模 型
三 数学模型: 1. x y x 或 x
lk 或
l
j 1
n
kj
Tk lk , 这里Tk 是第k种外购物料的损耗平衡 因子。 D (d kj ) k n , d kj lkj xj
Dx L 或 Dx T L
d kj : 生产单位j中产品消耗第k种外购物料的数量— 外购物料的直接消耗系 数 x ( I A) 1 y y ( I A) x L Dx
150 180 520 800 200 2200 420 8000 12000 15000 28000 140 100 440
850 1000 10620 55000 680
①建立该企业的I-O模型
②若下 个月的最终产品为
0 y 0 总产出 x ? 外购物料 L ? 1 40 0
... x1n y1 ... x2n y2
. . .
x1 x2
xn
. . .
社会纯收入 m1 , … ,mn
合计
z1 , … , zn
x1 , … , xn
服务业
n
... xnn yn
总产值
xij :第i个部门的产品流入 (投入) 到第j个部门的数量 (价值量)
投入产出数学模型
2 基本平衡方程:
产品分配平衡方程: xi
n
x
j 1
n
ij yi
(i 1,...,n)
产值平衡方程: x j
x
i 1
ij z j
aij xij x j :生产单位第 j种产品消耗第 i种产品的数量 (直接消耗系数 ) x Ax y 1 x ( I A ) y —— 投入产出数学模型 ( I A) x y
y ( B I ) 1 x x (B I ) y
消耗部门
农业
制造业
服务业
最终产品
总产量
例: 生产部门
农 业 制造业 服务业
15 30 20
20 10 60
30 45 /
35 115 70
100 200 150
0.15 0.10 0.20 0.85 0.10 0.20 直接消耗系数矩阵 A 0.30 0.05 0.30 I A 0.3 0.95 0.3 0.20 0.30 0.00 0 . 2 0 . 3 1. 0
企 业 I-O 模 型
分析:
640 x x T 760 视为模型中的 x 1210 1 0.632 0.208 y1 1 x ( I A) y 0 0 0.920 y2 0 0 1 y3 0.234 0.237 0.430 0 x1 1.250 0.263 L D x 3.438 0.553 6.612 x2 18 . 750 19 . 737 23 . 140 x3 0.219 0.132 0.364 974.1 1117 . 3 0 711.2 当 y 0 时, x 868.2 L 12182 .0 1400 1400 .0 62863 780.0 650 x 770 1215 20 T 10 5
2 价格—价值系统
Pj 产品j的价格 V j 单位产品j增值 显然有 : V j Pj V T PT PT A V T PT ( I A) V T x PT ( I A) x PT y 即V T x PT y 揭示了I O模型与伴随价格 价值系统之间的联系 V T x 可解释为国民经济产生 的价值 PT y 可解释为国民经济产生 的收入 V1 P 1 V 增值向量 P _ 价格向量 V P n n
n n j 1 ij i i j 1 ij
yi Ti xi
Ti 第i种物 (产) 品的损耗平衡因子
x Ax y x ( I A) 1 y y ( I A) x
2.
A (aij ) nn
aij
xij xj
x : x T
l
j 1
n
kj
投入产出数学模型
一 问题 :
国民经济各个部门之间存在着关系,一个经济部门的生产依赖于其他 部门的产品或者半成品,如何在确定的经济环境下确定各经济部门的投入 产出水平以满足整个社会的经济需要。
U.S.A经济学家Leontief(列昂第夫)最早提出,
在 1936 发表《美国经济系统中的投入和产出的数量关系》
我国于70年代开始应用该模型编制国民经济预算 , 1974 目的:①编制国民经济预算 ②经济结构分析等
二 模型假设:
H1: 国民经济划分为n个部门,每个部门生产一种或
一类产品
H2 : 每个生产部门的生产意味着将本部门和其它部门
的产品经过加工变成本部门的产品。在这个过程中
消耗的产品称“投入”,生产所得的最终产品 称为“产出”。对于每个部门而言,投入产出的关 系是不变的。
③ 判别定理:
若投入系数矩阵 A (aij ) (直接消耗系数矩阵) 满足
i, j aij 0 n n a 1 j (or a 1 ij ij j 1 i 1
则 I-O模型为可行的 ( 价值型 ) I-O模型为有利的 ( 实物型 ) 证明:
i )
y ( I A) x
x1 其中:x x n y1 y y n A (aij ) nn
补充: 完全消耗系数 bij 直接消耗系数 间接消耗系数 aij bik akj
k 1 n
B A BA 所以 B A( I A) 1 ( I ( I A))(I A) 1 ( I A) 1 I B ( I A) 1 这样,投入产出模型的 另一种表达形式
②若给出投入x,则可计算出最终产品y
企 业 I-O 模 型
一 问题:一个大型企业由若干个部门组成,企业与外部及企业内部
各个部门之间存在着关系,如何在确定的经济环境下确定企业与外部 的关系及企业内部各部门的投入产出水平以满足整个企业的生产需要。
二 企业I-O表:
企业内部消耗 1 2 … n
企 业 自 产 产 品 外 购 物 料 1 2
三 开放的I-O模型
1 实物型I-O模型
xi 部门i的总产量 xij 部门i提供给部门j的产品数 yi 对部门i的产品社会需求量 aij 生产一件产品 j需要消耗产品 i的件数 aij 投入系数or直接消耗系数 aij xij xj (i, j 1,...,n)