投入产出表的数学模型.

合集下载

第四章-投入产出系数和模型

第四章-投入产出系数和模型

农业 轻工业 重工业
其它
农业 1. 109 0. 0464 0. 4114
0.0904
轻工业 × × × ×
重工业 × × × ×
其它 × × × ×
上表的第一列表明:要保证农业部门能提供一亿元的 最终产品,则农业部门的生产量要达到1·109亿元, 轻 工 业 部 门 要 达 到 0·0464 亿 元 , 重 工 业 部 门 要 达 到 0·4114亿元,其它部门要达到0·0904亿元。其中农业 部门生产总量只超过最终产品的部分(0·0904亿元) 以及引起其它各部门生产的数量,都是因为农业生产
Bv Av (B I )或者是Bv Av (I A)1
(2·7)
其中, Bv ——完全劳动消耗系数行向量, Bv (bv1, bv2 ,, bvn ) ;
Av ——直接劳动消耗系数行向量, Av (a01, a02 ,, a0n ) 。
二、实物型投入产出表的特点
1、实物型投入产出表的实物量作为计量单位,各类 产品的计量单位并不相同,表的纵列不能相加。
产品投入与产出的关系。若用“负”号表示投入,用 “正”号表示产出,则矩阵中每一列的含义说明,为生 产一个单位各种产品,需要消耗(投入)其它产品(包 括自身)的数量。而主对角线上各元素,则表示各种产 品扣除自身消耗后的净产出比重。同时,也可看到,此 矩阵的“行”则没有经济含义,因为每一行的元素不能 运算。
2、实物形态投入产出模型
(1) 实物形态投入产出模型的表式
在实物投入产出表中,是以产品来进行分类的,其计量 单位则是以实物单位来计量的。简化的实物形态投入产 出表如下所示:
上表的简要解释:
从行向看,反映的是各类产品的分配使用情况,其
中一部分作为中间产品供其它产品生产中使用(消 耗),另一部分则作为最终产品供投资和消费使用, 两部分相加就是一定时期内各类产品的生产总量。从 列向看,反映了各类产品生产中要消耗其它产品(包 括自身)的数量。但应指出的是,由于列向各类产品 的计量单位不一致,故不能进行运算,因此,实物投 入产出模型只有行模型没有列模型。

线性代数6.1 投入产出模型简介

线性代数6.1 投入产出模型简介
第六章 线性经济模型简介
6.1 投入产出模型简介
6.2 线性规划
6.3 单纯形法
《线性代数》精品课程
1.1 n阶行列式的定义
• 一、投入产出模型 • 二、直接消耗系数
• 三、平衡方程组的解 • 四、完全消耗系数 • 五、应用举例
一、投入产出模型
• 假设一个经济系统是由n个产业部门组成的,将这n个产
《线性代数》精品课程
直接消耗系数矩阵A具有以下性质: • 性质1 所有元素均非负,且
0 aij 1(i, j 1,2, , n)
性质2 各列元素的绝对值之和均小于1,即
n
a ij 1 ( j 1,2, , n)
i1
根据这两条性质,可证明以下结论: 投入产出模型中的矩阵(E-A)和(E-C)都是可逆矩阵。
x11 x12 x13 0 0.2 0.31256.49
0
0
x21 x22 x23 0.1 0 0.4 0 1448.16 0
x31 x32 x33 0.3 0.4 0 0
0 1556.20
0 289.63 466.86 125.65 0 622.48
376.95 579.26 0
《线性代数》精品课程
四、完全消耗系数
定义2 第j部门生产单位产品时对第i部门产品 量的直接消耗和间接消耗之和,称为第j部门 对第i部门的完全消耗系数,记作bij,即
n
bij aij bik akj k 1
(i, j 1,2, , n)
间接消耗的总和
矩阵表示为B=A+BA
完全消耗系数矩阵的计算公
60 y 70
60
试求该系统的总产出
矩阵X .
解:因为 X (E - A)-1Y (B E)Y

投入产出表相关知识介绍

投入产出表相关知识介绍

投入产出表相关知识介绍(一)投入产出表的由来投入产出表是运用投入产出技术,将国民经济各部门生产中投入的各种费用的来源与产出的各种产品和服务的使用去向,组成纵横交错的棋盘式平衡表,全面而系统地反映国民经济各部门在生产过程中互相依存、互相制约的经济技术联系。

投入产出表的投入是指各部门在生产货物和服务时的各种投入,包括中间投入的最初投入。

产出是指各部门的产出及其使用去向,包括中间使用和最终使用。

投入产出表于二十世纪三十年代产生于美国,它是由美国经济学家、哈费大学教授瓦西里·列昂惕夫(W.Leontief)在前人关于经济活动相互依存性的研究基础上首先提出并研究和编制的。

列昂惕夫从1931年开始研究投入产出技术,编制投入产出表,目的是研究当时美国的经济结构。

为此,他利用美国国情普查资料编制了1919年和1929年美国投入产出表,并分析美国的经济结构和经济均衡问题。

1936年他在美国《经济学和统计学评论》(1936年8月)上发表了投入产出法的第一篇论文“美国经济制度中投入产出数量关系”,标志着投入产出分析的诞生。

1941年他出版了《美国经济结构1919—1929》一书,他在该书中详细阐述了投入产出技术的主要内容。

1951年该书在增加了1939年投入产出表和一些论文后再版。

1953年,列昂惕夫与他人合作,出版了《美国经济结构研究》一书。

通过这些论著,列昂惕夫提出了投入产出表的概念及其编制方法,阐述了投入产出技术的基础原理,创立了投入产出技术这一科学理论。

正是在投入产出技术方面的卓越贡献,列昂惕夫于1973年获得了第五届诺贝尔经济学奖。

投入产了方法在西方产生也不是偶然的,是有一定历史背景的,主要是为了适应当时资本主义经济发展的需要。

1929年爆发的震撼资本主义世界的经济危机是资本主义国家历史上最严重、持续时间最长的一次经济危机,传统的西方经济理论已无法解释这个问题,这一冲击在资本主义社会产生了极大的反响。

投入产出分析的公式汇总

投入产出分析的公式汇总

2.4.2.1 投入产出分析的基本数学模型表2-4-2-1 投入产出表从横列看,ij d 代表的是第i 产业生产过程中对第j 产业产品的需求;从纵列看,ij d 代表的是第j 产业生产过程中i 产业产品的投入量。

定义中间投入率∑ijijx d/定义中间需求率i ijx d/j∑定义直接投入系数i ij ij x d a /=定义进口系数)(∑++=jI i C i ij i if f d m m根据投入产出表的恒等关系,∑=-+++jii i I i C i ijx m e f f d应用矩阵的形式表示,XM E F F D I C =-+++其中,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=nn n n d d d d D .....................1111,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=C n C C f f F ...1,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=I n I If f F ...1,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n e e E ...1,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n m m M ...1,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n x x X (1)同时根据ij ij m a ,的定义,)](**[I C F A I C F F M AX M E F F AX X ++-+++=其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=nn n n a a a a A ............. (1111),⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==n FA m m m M M ..0.0000.000..00..021经过运算后,[][]G*B E )F )(F M -(I *)A M -(I -I X ICF-1A=++=其中[]-1A)AM -(I -I B =,E])F )(F M -[(I G I C F ++=起元素为ij b ,定义平均关联度∑∑i j ijb 1n 1定义感应系数∑∑∑j)1/(i jij ij b n b 定义影响力系数∑∑∑ii jij ij b n b )1/(对X 的结果进一步分解,[][][]BEBF BF E*)A M -(I -I F *)M -(I *)A M -(I -I F *)M -(I *)A M -(I -I X DI DC -1AIF-1ACF-1A++=++=算式表明了产出X 与各个部分的关系。

投入产出模型

投入产出模型

证明 由定理3知,
n
bij aij bik akj
k 1
将 n2个等式用矩阵表示为
i, j 1,2,,n
B A BA或BE A A
由定理1知(E-A)可逆,故
B AE A1
E E AE A1 E A1 E 16
例3 假设某公司三个生产部门间的报告价值型投入产出表如表4,
投入产出数学模型
1
一、投入产出数学模型(基础) 二、区域间投入产出模型基础知识
2
一、投入产出数学模型(基础)
在经济活动中分析投入多少财力、物力、人力,产出多 少社会财富是衡量经济效益高低的主要标志。
投入产出技术正是研究一个经济系统各部门间的“投入” 与“产出”关系的数学模型.
该方法最早由美国著名的经济学家瓦.列昂捷夫 (W.Leontief)提出,是目前比较成熟的经济分析方法。
4
表1:投入产出表
流量 产出 消耗部门
最终需求
投入
生1
产2


n
新 工资
创 纯收入
价 值
合计
总投入
1 2 n 消费 累计 出口
x11 x12 x1n x21 x22 x2n
xn1 xn2
xnn
v1 v2 vn m1 m2 mn z1 z2 zn
x1 x2 xn
合计
y1 y2 yn
3
(一)投入产出数学模型的概念
投入:从事一项经济活动的消耗; 产出:从事经济活动的结果; 投入产出数学模型:通过编制投入产出表,运用线性代数工具
建立数学模型,从而揭示国民经济各部门、再生产各环节之 间的内在联系,并据此进行经济分析、预测和安排预算计划。
按计量单位不同,该模型可分为价值型和实物型。 首先,必须清楚投入产出表。见下:

投入产出总复习

投入产出总复习
1

i 1
n
a ij 1 ;相对稳定;
第三章
• 2、完全消耗系数:
b11 b B 21 bn1 b12 b22 bn 2
1
b1n b2 n bnn
B (I A) I
X (I B)Y = (I-A)1Y • 行模型:
T 1
P 1 n
第三章
• 3、完全需求系数:
1+b11 b12 b 21 1 b 22 1 B I B ( I A) ... ... b n2 b n1 1 行模型:X (I B)Y (I A) Y
b1n ... b 2n ... ... ... 1 b nn ...
第三章
• 1、直接消耗系数:
aij
a11 a12 a a 22 21 A a n1 a n 2
xij X
j
a1n a2n a nn
第三章
行模型: Y = (I A)X X = (I - A) Y ˆ 中间流量: W = A X 三个特点: 0 a ij 1 ;
第三章
• 4、派生系数:
acj cj Xj
xiLeabharlann 1nijXj

i 1
n
xij Xj
aij
i 1
n
adj
Dj Xj
avj
Vj Xj
amj
mj Xj
acj adj avj amj 1
第三章
5、基本假定: (1)纯部门假定; (2)直接消耗系数稳定性假定; (3)比例性假定。 6、求解条件:

数学建模投入产出模型

1.3459 0.2504 0.3443 ( I A) 1 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167
x ( I A) 1 y y ( I A) x
若 ①最终产品
y (100,200,300)T x ( 287.96,457.76,494.91) y (300,200,300)T x (557.14,570.44,582.55)
企 业 I-O 模 型
例:某企业 I-O表
企业内部消耗
产品Ⅰ 产品 Ⅱ 产品Ⅲ 1 2 3
合计
平衡 因子
最终 产品 20 10 1210
总产品
自 产 产 品 外 购 材 料
产品Ⅰ 吨 产品 Ⅱ 吨 产品Ⅲ 吨
480
140 750
620 750
10 10 5
650 770 1215
原料Ⅰ 吨
原料Ⅱ 水 电 煤 吨 吨 吨 吨
因为 A 1 max aij max aij 1
j i 1 j i 1
n
n
所以 ( I A)
1

Ak (bij ) nn bij 0
k 1

i, j
所以 y 0有 x ( I A) 1 y 0 I O为可行的 又因为 V 0 由V T P T ( I A) P T V T ( I A) 1 0 所以 I O为有利。 证毕
投入产出数学模型
三 数学模型 :
1 投入产出表:实物型、价值型
投入—产出表
作为消耗部门 生产部门 农 工 业 业 . . . 1 2
*
最终 产品 总产出 新 创 造 价 值

投入产出数学模型

x n1
x12 x22
. . .
... ...
...
x1 n x2 n
x nn
y1 y2
. . . yn
x1 x2
. . .
社会纯收入 m1 , … ,mn 合计
z1 , … , zn
x1 , … , xn
服务业
n
xn 2
xn
总产值
xij :第i个部门的产品流入 (投入 到第 个部门的数量 (价值量 投入) 价值量) 第 个部门的产品流入 投入 到第j个部门的数量 价值量
因为 A
1
i)
= max
j 1


n
i =1
a ij = max
j k

n
i =1
a ij < 1 i, j
所以 ( I A )
=

k =1
A = ( b ij ) n × n b ij ≥ 0
所以 y ≥ 0 有 又因为
x = ( I A ) 1 y ≥ 0 I O 为可行的
T
V ≥ 0由 V
∑a P
i =1
n
ij i
(V = P AT P )
四 模型的可行和有利问题
定义: 1 定义:
①若在I-O模型中 y ≥ 0 x ≥ 0 则称模型为可行的 ( 价值型 ) 若在 模型中 ②若对 V ≥ 0 P ≥ 0 则称模型为有利的 ( 实物型 )
判别准则: 2 判别准则:
①矩阵范数: 矩阵范数:
1.3459 0.2504 0.3443 ( I A) 1 = 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167
x = ( I A) 1 y y = ( I A) x

投入产出表与模型投入产出分析知识介绍


数据来源
数据主要来源于统计调查、财务报告、行业协会等渠道。
数据质量审核
对收集到的数据进行质量审核,确保数据的准确性和完整性。
数据处理和分析
对数据进行处理和分析,包括数据的筛选、整理、计算等。
编制结果展示
表格形式展示
将编制结果以表格形式展示,包 括投入产出表、直接消耗系数表、 完全消耗系数表、最终使用表和 初次投入表等。
收集各部门之间的投入产出数据,编制直接消耗系数表,反映各部门 生产过程中的直接消耗关系。
编制完全消耗系数表
根据直接消耗系数表,推算出完全消耗系数表,反映各部门之间的间 接消耗关系。
编制最终使用表和初次投入表
根据完全消耗系数表,编制最终使用表和初次投入表,反映最终使用 和初次投入情况。
数据收集与策制定提供科学依据,帮 助政府和企业制定更加合理和有效的经济政策。
决策支持
投入产出表与模型可以为决策者提供全面的经济分析 和预测,帮助决策者做出更加明智和前瞻性的决策。
THANKS
感谢观看
智能化
借助人工智能和机器学习技术,投入产出表 与模型将实现智能化分析,自动识别数据规 律和趋势,为决策提供更精准的依据。
跨行业与跨区域的应用
跨行业
随着产业融合和跨界合作的发展,投入产出表与模型将应用于更多行业,帮助不同行业 之间实现资源共享和协同发展。
跨区域
随着全球化和区域一体化的发展,投入产出表与模型将应用于更广泛的区域,促进地区 间的经济交流和合作。
通过投入产出模型分析,可以预测经 济发展趋势,为制定经济发展规划提 供支持。
环境影响评价
通过投入产出模型分析,可以评估经 济发展对环境的影响,为环境保护提 供依据。
03

投入产出系数和投入产出模型


1600 2240 2560 1600 8000
7
• 对于假想表1所表示的投入产出模型,有
0.06 0.1 0.07 0.1 A 0.01 0.3 0.03 0.1
0.2 0.15 0.4 0.2 0.03 0.15 0.1 0.1
8
对于1997年中国价值型投入产出表(6部 门)有如下直接消耗系数矩阵
4
直接消耗系数的性质
a ① 0 ij
i, j 1,2,...,n
②对于价值型投入产出表,存在
aij ﹤ 1
n
aij ﹤ 1
i 1
i, j 1,2,..., n i, j 1,2,..., n
5
3、直接消耗系数矩阵
将直接消耗系数按照投入产出表中部门 (或产品)的顺序排列而成的矩阵。用A表 示,为一 n阶方阵。
24
四、 基于消耗系数的经济数学模型
投入产出经济数学模型是在投入产出表的 基础上,通过引入各种消耗系数而建立起来的 反映经济系统各“部分”(部门或产品)相互 依存的“投入-产出”平衡关系式。
行模型:按行向平衡关系建立的模型 列模型:按列向平衡关系建立的模型 • 其他各种复杂的投入产出应用模型,都是 这两个最基本的投入产出经济数学模型的扩展
48 336 256 160 800 480 320 800 1600
480 1568 1536 800 4384 2712 904 3616 8000
40 150 140 80 410
952 269 461 400 2082
128 253 423 320 1124
1120 672 1024 800 3616
0.043 0.048 0.021
0.025 0.037 0.058
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

… …



二 投入产出表的数学模型 投入产出表的数学模型主要表现四个方面的关系:
(一)横向关系 各生产部门为其他部门(包括本部门)提供的中间产品和为社会提供的 最终产品之和减进口等于该部门的总产品,公式表示为:
该式称为投入产出表的分配平衡方程组。 (二)纵向关系
各生产部门的中间投入加最初投入等于该部门的总投入,公式表示为:
所以: Y ( I A) X
1 0 0 0.1053 0.0111 0.1053 299.25 = 0 1 0 - 0.1404 0.1111 0.2632 1980 0 0 1 0.0526 0.0333 0.1754 638.4
Y ' M
i 1 i i 1
n
n
i
G j
j 1
n
三、
在模型中引入直接消耗系数
直接消耗系数是指第j部门生产单位产品所直接消耗的第i部门产品 或服务的数量, 记为aij (i、j=1、2、……、n)。公式表示为:
a ij
xij X
j
由上节简表中的数据计算的全部直接消 耗系数列表如下: 其他部门 3 0.1053 0.2632 0.1754 0.5439
第三章 投入产出表的数学模型
第一节
第二节
投入产出表数学模型的一般形式
完全消耗系数
第一节
投入产出表数学模型的一般形式
一、投入产出表的一般形式

产出 投入 部门1 部门2 … 部门n 部 门1 x11 x21 … xn1
1

使

合计 ∑x1j ∑x2j … ∑xnj ∑∑x
ij

最终 消费 wi w1 w2 …. wn ∑ wi
Y ( I A) X
X ( I A) 1 Y
投入产出 表行模型
出 X。
例:利用上述的直接消耗系数,已知农业、工业和“其 他”三个部门的总产出分别在285亿元、1800亿元和570亿元 的基础上增长5%、10%和12%,试推算各部门的最终使用。
285 × 105% = 299.25 0.1053 0.0111 0.1053 X = 1800 × 110% = 1980 A = 0.1404 0.1111 0.2632 解:已知 570 × 112% = 638.4 0.0526 0.0333 0.1754
Y1 a11 a12 L a1n X1 Y a 21 a 22 L a 2n X2 Y = 2 式中: A = X = L L L Yn X a a L a n n1 n2 nn
该方程组称为投入产出表的消耗平衡方程组。
(三)横向与纵向关系 就各部门而言(即i=j时),i部门总产出等于j部门总投入,即第 I、II象限之和等于第I、III象限之和,公式表示为:
x
j 1
n
ij
Y 'i M i xij G j
i 1
n
(四)最终使用与最初投入之间的关系 第II象限总量等于第III象限总量,即在一定时期内,全社会 国内生产总值的使用额与生产额相等。公式表示为:
a11X1 + a12 X 2 + a 21X1 + a 22 X 2 +
…… a n1X1 + a n2 X 2 + + a nn X n + Yn - M n = X n 第n行 为了简便,令 Y 'i M i Yi (下文仍称Yi为最终产品) 上述方程组可用矩阵表示为: AX Y X
i
中 间 投 入




∑ xi ∑ xi … ∑ xi d1 v1 T1 r1 G1 X1 d2 v2 T2 r2 G2 X2 dn vn Tn rn Gn Xn

∑Y ’i
∑ Mi ∑ X
最 初 投 入
固定资产折 旧 劳动者报酬 生产税净额 营业盈余 合 计

∑ dj ∑vj ∑Tj ∑rj ∑ Gj ∑ Xj
0.1053 0.0111 0.1053 0.1404 0.1111 0.2632 0.0526 0.0333 0.1754
直接消耗系数反映的是各部门之间的技术经济联系。直接消耗系数是 投入产出模型的核心。有了直接消耗系数,我们就可以把经济因素和技术因 素有机地结合起来,对经济问题进行定性与定量的结合分析。
把直接消耗系数引入投入产出表的行模型: 由式 aij 第一行 第二行
= xij Xj

xij aij X j 代入投入产出表的横向关系方程:
+ a1n X n + Y1 - M1 = X1 + a 2n X n + Y2 - M 2 = X 2
可以由已知的各部 门总产出Xi推算各 部门的最终使用Yi 当知道 直接消 耗系数 矩阵A和 最终使 用列向 量Y时, 可推算 各部门 的总产

使

部 门2 x12 x22 … xn2
2
部门 … n x1n x2n … xnn
n
出口 合计 资本 … 形成Hi Ei Y’i H1 H2 … Hn ∑ Hi E1 E2 … En ∑ Ei Y ’1 Y ’2 … Y ’n
进 口 (-) Mi
M1 M2 … Mn
总 产 出 Xi
X1 X2 … Xn
xn1 xn 2 xnn Y ' n M n X n
x11 x12 x1n Y '1 M 1 X 1 x21 x22 x2n Y ' 2 M 2 X 2 ……..
x11 x21 xn1 G1 X 1 x12 x22 x2n G2 X 2 …… x1n x2n xnn Gn X n
直接消耗系数表 农业部门 1 工业部门 2 农业部门1 工业部门2 其他部门3 合 计 0.1053 0.1404 0.0526 0.2983 0.0111 0.1111 0.0333 0.1555
全部直接消耗系数组成的矩阵称直接消耗系数矩阵,用大写字母A表 示,即:
a11 a 21 A = a n1 a12 a 22 a n2 a1n a 2n a nn
相关文档
最新文档