金属工艺学邓文英上册知识点总结
金属工艺学(邓文英, 郭晓鹏, 邢忠文主编) 06第六章

(2)划线工序的安排 形状较复杂的铸件、锻件和焊接件等,在单件
小批生产中,为了给安装和加工提供依据,一般在 切削加工之前安排划线工序。
有时为了加工的需要,在切削加工工序之间, 可能还要进行第二次或多次划线。
为了保证精基准的精度,在加工底面和导向面时,以加工 后的顶面为辅助精基准。并且在粗加工和时效之后,又以精加 工后的顶面为精基准,对底面和导向面进行精刨和精细加工( 刮研),进一步提高精加工阶段定位基准的精度,利于保证加 工精度。
4. 工艺过程
表 6-6 续
表 6-6 续
四、成形零件数控加工工艺
表6-4 单件小批生产轴的工艺过程
工 序 号
工序 名称
工序内容
加工简图
Ⅰ
车
倒头车两端面, 钻中心孔
设备 卧式车床
1.粗车、半精车右端φ40、
φ25外圆、槽和倒角,留
Ⅱ
车
磨削余量1mm; 2. .粗车、半精车左端
φ30、φ25外圆、槽和倒
角,留磨削余量1mm
卧式车床
Ⅲ
铣
粗、精铣键 槽
Ⅳ
热处 理
调质 40~45HRC
在机械加工中,要完全确定工件的
正确位置,必须有六个相应的支承点,
来限定工件的六个自由度,称为工件
的“六点定位原理”。
在Oxy平面上,限制
三个
自由度;在Oxz平面上,限制
两个自由度;在Oyz平面上,限制
一个自由度。
超定位或过定位 前后顶尖已限了制了 五个自由度,而三
爪卡盘又限制了 两个 自由度,在 两个自由 度上,定位点多于一个。
金属工艺学 邓文英(全套课件上)

洛氏硬度试验原理图
布氏硬度与洛氏硬度的特点比较
布氏硬度的特点: 布氏硬度因压痕面积较大,HB值的 代表性较全面,而且实验数据的重复性 也好,但由于淬火钢球本身的变形问题, 不能试验太硬的材料,一般在HB450以 上的就不能使用。 由于压痕较大,成品检验也有困难。 通常用于测定铸铁、有色金属、低合 金结构钢等材料的硬度。
1. 高纯材料—优异的软磁性、良好的耐腐蚀性、高残余电阻率,用
于高真空容器、核反应堆等。
2. 高强度材料—可减轻重量,用于航空航天、深海潜艇、原子能
等领域。
3. 超易切削钢—提高刀具寿命30倍,降低成本、节约能源。
4. 硬质合金与金属陶瓷—高硬度、高耐磨性、耐高温、抗氧化,
用于刀具、磨具、轧辊、轴承等领域。
三、金属的工艺性能
工艺性能是物理、化学、力学性能的综合。按 工艺方法的不同,可分为铸造性能、可锻性、焊接 性和切削加工性等 1 金属在铸造成形过程中获得外形准确、内部健 全铸件的能力称为铸造性能。铸造性能包括流动性、 吸气性、收缩性和偏析等。在金属材料中灰铸铁和 青铜的铸造性能较好。 2、 金属材料利用锻压加工方法成形的难易程度称 为锻造性能。锻造性能的好坏主要同金属的塑性和 变形抗力有关。塑性越好,变形抗力越小,金属的 锻造性能越好。
计机械和选择、评定金属材料时有重要意 义 。 机械零件多以σs作为强度设计的依据。 对于脆性材料,在强度计算时,则以σb为 依据。
塑性指标
(1)伸长率δ
δ= (L1-L0)/L0 ×100%
式中: L0—试样原标距的长度(mm)
L1—试样拉断后的标距长度(mm)
(2) 断面收缩率φ 断面收缩率是指试样拉断后断面处横截面积 的相对收缩值。 φ= (A0-A1)/A0 ×100% 式中:A0—试样的原始截面积(mm2) A1—试样断面处的最小截面积(mm2) δ和φ愈大,则塑性愈好。良好的塑性是金 属材料进行塑性加工的必要条件。
金属工艺学(邓文英, 郭晓鹏, 邢忠文主编) 05第五章

图5-2 在实体材料上加工孔的方案框图
(1)在实体材料上加工孔: 多属中、小尺寸的孔,必须先钻孔。
1)直径较小(小于30mm)的孔, 钻—扩—铰是典型的加工方案。
2)直径大于50mm的孔, 一般采用钻—镗的加工方案。
3) 大批量或精度要求高、形状特殊的孔可选用拉削。 4) 对于已淬硬的孔,要选用磨削进行加工。
用于没有磨齿机或不 便磨齿(如大型齿轮 等)时,齿面淬硬齿 轮的精整加工。
第五章完
(2)对已经铸出或锻出的孔(多为中、大直 径的孔),可直接采用扩孔或镗孔。
第三节 平面的加工
根据平面所起的作用不同,大致可以分为如下几种:
(1)非结合面,这类平面只是在外观或防腐蚀需要 时才进行加工; (2)结合面和重要结合面,如零部件的固定连接平 面等; (3)导向平面,如机床的导轨面等; (4)精密测量工具的工作面等。
(2)传动的平稳性 要求齿轮传动瞬时传动比的变化不能过大。
(3)载荷分布的均匀性 要求齿轮啮合时,齿面接触良好。
(4)传动侧隙 要求齿轮啮合时,非工作齿面间应具有一定
的间隙。
二、齿轮齿形加工
按加工原理的不同,可以分为如下两大类: (1)成形法
用与被切齿轮齿间形状相符的成形刀具,直接切出齿形。 如铣齿、成形法磨齿等。 (2)展成法(也称范成法或包络法)
4)让刀运动 避免插齿刀在返回过程中,刀 齿的后面与工件的齿面发生摩擦。
(2)滚齿原理及运动 按一对螺旋齿轮啮合的原理进行加工。
滚切直齿圆柱齿轮时,其运动如下(图5-15): 1)主运动 即齿轮滚刀的旋转,其转速以n0表示。 2)分齿运动(展成运动)
即维持齿轮滚刀与被切齿 轮之间啮合关系的运动。滚刀 转速n0与被切齿轮转速nw之间, 应严格保证如下关系:
(完整word版)邓文英版_金属工艺学上下册重点知识点汇总(word文档良心出品)

绪论1.金属工艺学是一门传授有关制造金属零件工艺方法的综合性技术基础课,主要讲述各种工艺方法本身的规律性及其在机械制造中的应用和相互联系,金属零件的加工工艺过程和结构工艺性,常用金属材料的性能及对加工工艺的影响,工艺方法的综合比较等。
第一篇2.合金是以一种金属为基础,加入其他金属或非金属,经过熔炼或烧结制成的具有金属特性的材料。
3.金属材料的力学性能又称机械性能,是金属材料在力的作用下所表现出来的性能。
零件的受力情况有静载荷、动载荷和交变载荷之分。
用于衡量在静载荷作用下的力学性能指标有强度、塑性和硬度等;在动载荷作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。
4.强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。
强度有多种指标,工程上以屈服点和抗拉强度最为常用。
5.塑性是金属材料在力的作用下,产生不可逆永久变形的能力。
常用的塑性指标是伸长率和断面收缩率。
6.金属材料表面抵抗局部变形,特别是塑性变形、压痕、划痕的能力称为硬度。
常用的有布氏硬度法和洛氏硬度法。
7.理论结晶温度与实际结晶温度之差,称为过冷度。
过冷度的大小与冷却速度密切相关。
冷却速度越快,实际结晶温度就越低,过冷度就越大;反之,冷却速度越慢,过冷度越小。
8.液态金属的结晶过程是遵循“晶核不断形成和长大”这个结晶基本规律进行的。
9.细化铸态金属晶粒的主要途径是:1)提高冷却速度,以增加晶核的数目2)在金属浇注之前,向金属液内加入变质剂(孕育剂)进行变质处理,以增加外来晶核。
10. 同素异晶转变:1394℃912℃δ-Fe ----→γ-Fe ←----→α-Fe(bcc)(面心) (体心)11.凡化学成分、晶格构造和物理性能相同的均匀组成部分称为相。
12.铁碳合金的组织可分为固溶体、金属化合物和机械混合物三种类型。
13.溶质原子形成固溶体时,溶剂晶格将产生不同的不同程度的畸变,这种畸变使塑性变形阻力增加,表现为固溶体的强度、硬度有所增加,这种现象称为固溶强化。
《金属工艺学》,邓文英版

3 .金属工艺学的课程特点 金属工艺学的课程特点 (1)是一门综合技术基础课,它除了包括传统 )是一门综合技术基础课, 的加工工艺,还包括了其它学科的诸多内容。 的加工工艺,还包括了其它学科的诸多内容。 (2)传统机械制造工艺的发展和改变,出现了 )传统机械制造工艺的发展和改变, 数字化、专业化、柔性化综合发展的新局面。 数字化、专业化、柔性化综合发展的新局面。 (3)金属工艺学是机械(电)类各专业必修的 )金属工艺学是机械( 技术基础课。在学习中,要完成传授知识、 技术基础课。在学习中,要完成传授知识、训 练技能和培养能力三个方面的任务。 练技能和培养能力三个方面的任务。
拉伸试验的方法是将图1—1(a)所示的标 准试样安装在拉伸试验机上,并对试样 施加一个缓慢增加的轴向拉力.随着拉 力增加,试样产生变形,直到断裂,如 图l—1(b)、(c)所示。用绝对伸长量L为 横坐标,外力p为纵坐标绘制出外力与伸 长量的关系曲线。图l—2为普通低碳钢的 拉伸曲线。
变形特点分析: ① OE段,变形与外力成正比,试样只产生弹性变形, 即当外力去除后,试样就恢复到原始长度。材料在弹 性范围内所能承受的最大应力称为弹性极限,用σe 表 示
六、疲劳强度 许多机械零件,如曲轴、齿轮、连杆、弹簧等,是在 交变载荷下的作用下工作的。虽然零件所受的应力远 低于材料的抗拉强度,甚至远低于屈服点,但在使用 中往往会发生突然断裂,这种现象称为疲劳破坏。据 统计,约有80%的机械零件的失效是属于疲劳造成的 。金属材料在无数次重复交变载荷作用下不致引起断 裂的最大应力称为疲劳强度。应力愈高,则断裂前所 承受的循环次数愈低,应力愈低,则断裂前所承受的 循环次数愈高,如图1—8所示。
式中:δ-一试样的伸长率,%; L0——试样的原始标距长度,mm; Lk——试样拉断后的标距长度,mm
(完整版)金属工艺学_邓文英_第五版_课后习题参考答案-副本.

(完整版)⾦属⼯艺学_邓⽂英_第五版_课后习题参考答案-副本.第⼀章(p11)1.什么是应⼒?什么是应变?答:应⼒是试样单位横截⾯的拉⼒;应变是试样在应⼒作⽤下单位长度的伸长量2.缩颈现象在拉伸实验中当载荷超过拉断前所承受的最⼤载荷时,试样上有部分开始变细,出现了“缩颈”;缩颈发⽣在拉伸曲线上bk 段;不是,塑性变形在产⽣缩颈现象前就已经发⽣,如果没有出现缩颈现象也不表⽰没有出现塑性变形。
4.布⽒硬度法和洛⽒硬度法各有什么优缺点?下列材料或零件通常采⽤哪种⽅法检查其硬度?库存钢材硬质合⾦⼑头锻件台虎钳钳⼝洛⽒硬度法测试简便,缺点是测量费时,且压痕较⼤,不适于成品检验。
布⽒硬度法测试值较稳定,准确度较洛⽒法⾼。
;迅速,因压痕⼩,不损伤零件,可⽤于成品检验。
其缺点是测得的硬度值重复性较差,需在不同部位测量数次。
硬质合⾦⼑头,台虎钳钳⼝⽤洛⽒硬度法检验。
库存钢材和锻件⽤布⽒硬度法检验。
第五题下列符号所表⽰的⼒学性能指标名称和含义是什么?σb抗拉强度它是指⾦属材料在拉断前所能承受的最⼤应⼒. σs屈服点它是指拉伸试样产⽣屈服时的应⼒。
σ2.0规定残余拉伸强度σ1-疲劳强度它是指⾦属材料在应⼒可经受⽆数次应⼒循环不发⽣疲劳断裂,此应⼒称为材料的疲劳强度。
σ应⼒它指试样单位横截⾯的拉⼒。
a K冲击韧度它是指⾦属材料断裂前吸收的变形能量的能⼒韧性。
HRC 洛⽒硬度它是指将⾦刚⽯圆锥体施以100N的初始压⼒,使得压头与试样始终保持紧密接触,然后,向压头施加主载荷,保持数秒后卸除主载荷。
以残余压痕深度计算其硬度值。
HBS 布⽒硬度它是指⽤钢球直径为10mm,载荷为3000N为压头测试出的⾦属的布⽒硬度。
HBW 布⽒硬度它是指以硬质合⾦球为压头的新型布⽒度计。
第⼆章(p23)(1)什么是“过冷现象”?过冷度指什么?答:实际结晶温度低于理论结晶温度(平衡结晶温度),这种线性称为“过冷”;理论结晶温度与实际结晶温度之差,称为过冷度。
金属工艺学知识点总结

第一篇金属材料的基本知识第一章金属材料的重要性能金属材料的力学性能又称机械性能, 是金属材料在力的作用所表现出来的性能。
零件的受力情况有静载荷, 动载荷和交变载荷之分。
用于衡量在静载荷作用下的力学性能指标有强度, 塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。
金属材料的强度和塑性是通过拉伸实验测定的。
P6低碳钢的拉伸曲线图1,强度强度是金属材料在力的作用下, 抵抗塑性变形和断裂的能力。
强度有多种指标, 工程上以屈服点和强度最为常用。
屈服点: δs是拉伸产生屈服时的应力。
产生屈服时的应力=屈服时所承受的最大载荷/原始截面积对于没有明显屈服现象的金属材料, 工程上规定以席位产生0.2%变形时的应力, 作为该材料的屈服点。
抗拉强度: δb是指金属材料在拉断前所能承受的最大应力。
拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积2,塑性塑性是金属材料在力的作用下, 产生不可逆永久变形的能力。
常用的塑性指标是伸长率和断面收缩率。
伸长率: δ试样拉断后, 其标距的伸长与原始标距的比例称为伸长率。
伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100%伸长率的数值与试样尺寸有关, 因而实验时应对所选定的试样尺寸作出规定, 以便进行比较。
同一种材料的δ5 比δ10要大一些。
断面收缩率:试样拉断后, 缩颈处截面积的最大缩减量与原始横截面积的比例称为断面收缩率, 以ψ表达。
收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100%3,伸长率和断面收缩率的数值愈大, 表达材料的塑性愈好。
4,硬度金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。
金属材料的硬度是在硬度计上测出的。
常用的有布氏硬度法和洛氏硬度法。
1,布氏硬度(HB)2,是以直径为D的淬火钢球HBS或硬质合金球HBW为压头, 在载荷的静压力下, 将压头压入被测材料的表面, 停留若干秒后卸去载荷, 然后采用带刻度的专用放大镜测出压痕直径d, 并依据d的数值从专门的表格中查出相应的HB值。
金属工艺学(邓文英, 郭晓鹏, 邢忠文主编) 02第二章

第一节 切削机床的类型和基本构造
一、切削机床的类型
按加工方式、加工对象或主要用途分为11大类,即车 床、钻床、镗床、磨床、齿轮加工机床、螺纹加工机床、 铣床、刨插床、拉床、锯床和其他机床等。在每一类机床 中,又按工艺范围、布局形式和结构分为若干组,每一组 又细分为若干系列。国家制定的金属切削机床型号编制方 法(GB/T 1537-2008)就是依据此分类方法进行编制的。
综合上述特点,数控机床适宜在多品种、中小批量
生产中,加工形状比较复杂且精度要求较高的零件。
4. 数控机床的发展
数控机床的工艺性能已由加
工循环控制、加工中心,发展到
适应控制。
数控机床的控制装置,经历
了电子管元件—晶体管和印刷电
路板元件—集成电路—小型计算
机—微处理器的发展过程。
图 2-17 立式加工中心
图 2-23 CAM的狭义概念
第二章完
(2)柔性制造系 统(FMS)
(3)柔性自动
生产线(FTL) 它是由更多的
数控机床、输送和 存储系统等所组成 的性制造系统。
图 2-21 几种制造系统的对比
三、计算机集成制造系统
图 2-22 CIMS的基本组成
四、计算机辅助设计与制造(CAD/CAM)概述
图 2-23 CAD的概念
计算机辅助制造(CAM)狭义的概念如下图所示
⑶ 刀架回转的传动系统 液压马达—平板分度凸轮—一对齿轮副—刀架回转 ⑷ 螺纹加工的实现
主轴脉冲发生器直接或间接测定主轴的转速—数 控系统—进给传动伺服电机
4. 机床机械传动的组成
机床机械传动主要由以下几部分组成: ⑴ 定比传动机构
具有固定传动比或固定传动关系的机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属工艺学绪论金属工艺学是一门传授有关制造金属零件工艺方法的综合性技术基础课,主要讲述各种工艺方法本身的规律性及其在机械制造中的应用和相互联系,金属零件的加工工艺过程和机构工艺性。
第一篇金属材料的基本知识第一章金属材料的主要性能第一节金属材料的力学性能金属材料的力学性能是金属材料在力的作用下所表现出来的性能。
一、强度与塑性1.强度金属材料的抗变形能力(永久变形)和抗断裂能力称之为强度。
抵抗能力越大,则强度越高。
2.塑性塑性是指金属材料受力后在断裂之前产生不可逆永久变形的能力。
断面收缩率是指试样拉断后,缩颈处面积变化量与原始横截面积比值的百分率。
ψ=s−s0S0×100%二、硬度硬度是指金属材料抵抗局部変形的能力。
(1)布氏硬度 HB(2)洛氏硬度 HR(3)维氏硬度三、韧性冲击韧性是指金属材料在断裂前吸收变形能量的能力。
韧性主要反映了金属抵抗冲击力而不断裂的能力。
韧性好的金属抗冲击的能力强。
αK=A K S四、疲劳强度金属材料在无数次交变载荷的作用下而不发生断裂的最大应力称为疲劳强度,用σ−1表示。
提高疲劳强度的措施:通过改善零件的结构形状,避免应力集中,改善表面粗糙度,进行表面热处理和表面强化处理等可以提高材料的疲劳强度。
第二章铁碳合金第一节纯铁的晶体结构及其同素异形体转变一、纯铁晶体结构及同素异晶转变晶体:原子在空间呈规律性排列。
结晶:金属的结晶就是金属液态转变为晶体的结构。
过冷度:理论结晶温度与实际结晶温度之差,称为过冷度。
晶核:液态中先出现一些极小晶体,称为晶核。
晶粒:每个晶核长成的晶体称为晶粒。
晶界:晶粒之间的接触面称为晶界。
二、纯铁的晶体结构晶胞:将每个原子看成是一个点,再把相邻原子中心用假想的直线连接起来。
使之形成晶格,从晶格中取出一个最基本的几何单元,这个单元称为晶胞。
纯铁的晶体结构有体心立方和面心立方。
1.体心立方晶格体心立方晶格的晶胞是一个长、宽、高相等的立方体,在立方体的八个顶角上各有一个原子,在立方体的中心还有一个原子。
2.面心立方晶格面心立方晶格的晶胞也是个立方体,除在立方体的八个顶角各有一个原子外,在立方体六个面的中心处还有一个原子。
三、纯铁的同素异晶转变同素异晶转变:随着温度的转变,固态金属的晶格也随之改变的现象的同素异晶转变。
四、细化金属晶粒的主要途径是:(1)提高冷却速度,以增加晶核的数目。
(2)在金属浇筑之前,向金属液内加入变质剂(孕育剂)进行变质处理,以增加外来晶核。
(3)采用热处理或塑性加工方法,使固态金属晶粒细化。
第二节铁碳合金的基本组织合金:两种或两种以上的金属元素,或金属与非金属元素熔合在一起,构成具有金属特性的物质称为合金。
组元:组成合金的元素称为组元,简称元。
相:在合金组织中,凡化学成分、晶体结构和物理性能相同的均匀组成部分称为相。
组织:按照显微镜下各相的形态特征,又可分为不同的组织。
置换固溶体:当溶质原子代替了一部分溶剂原子、占据溶剂晶格的某些结点位置时,所形成的固溶体称为置换固溶体。
间隙固溶体:当溶质原子咋溶剂晶格中不是占据结点位置,而是嵌入各结点之间的空隙时。
所形成的固溶液称为间隙固溶体、固液强化:形成固溶液时,溶剂晶格产生不同程度的畸变,这种畸变使塑性变形阻力增加,表现为固溶体的强度,硬度有所增加,这种现象称为固液强化。
1.铁素体碳溶解于α−Fe中形成的固溶体称为铁素体,呈体心立方晶格,通常以符号F表示。
2.奥氏体碳溶入γ−Fe中形成的固溶体称为奥氏体,呈面心立方晶格,以符号A表示。
二、化合物单相组织:金属化合物是各组元按一定整数比结合而成、并具有金属性质的均匀物质,属于单相组织。
三、机械混合物机械混合物是由结晶过程所形成的两相混合物组织。
它可以是纯金属、固溶体或化合物各自的混合,也可以是他们之间的混合。
铁碳合金中的机械混合物有珠光体和莱氏体。
1.珠光体铁素体和渗碳体组成的机械混合物,用符号P或F+Fe3C表示。
2.莱氏体分为高温莱氏体和低温莱氏体。
奥氏体和渗碳体组成的机械混合物称为高温莱氏体,用符号Ld或A+Fe3C表示。
珠光体和渗碳体的机械混合物称为低温莱氏体。
用符号Ld'或P+Fe3C表示。
第三章钢的热处理钢的热处理是将钢在固态下,保温和冷却,以获得预期组织和性能工艺。
(1)普通热处理:包括退火、正火、淬火和回火。
(2)表面热处理:包括表面淬火和化学热处理。
第二节钢的退火和正火一、退火退火是将钢加热、保温,然后随炉或埋入灰中使其缓慢冷却的热处理工艺。
退火的目的:①降低硬度,便于机械加工。
②细化晶粒,提高塑性韧性。
③消除内应力。
(1)完全退火:将亚共析钢加热到AC3以上30-50℃(2)球化退火:主要用于过共析钢件,球化退火时将钢加热到1Ac以上20-30℃(3)去应力退火:主要用于部分铸件、锻件及焊接件,有时也可用于精密零件的切削加工,使其通过原子扩散及塑性变形消除内应力,防止钢件产生变形。
二、正火正火是通过将钢加热到AC3以上30-50℃(过共析钢)保温后在空气中冷却的热处理工艺。
目的:(1)取代部分完全退火(2)用于普通结构件的最终热处理(3)用于过共析钢,以减少或消除第二次渗碳体呈网状析出第三节淬火和回火一、淬火淬火是将钢加热到AC3或AC1以上30-50℃,保温后在淬火介质中快速冷却,以获得马氏体组织的热处理工艺。
措施:(1)严格控制淬火加热温度(2)合理选择淬火介质(3)正确选择淬火方法二、回火将淬火的钢重新加热到AC3以下某温度,保温后冷却到室温的热处理工艺,称为回火。
目的:消除淬火内应力,以降低淬火钢的内应力和脆性回火的种类:(1)低温回火:目的是降低淬火钢的内应力和脆性。
(2)中温回火:目的是使钢获得高弹性,保持较高韧性,主要用于弹簧。
(3)高温回火:淬火并高温回火的复合热处理工艺称为调制处理。
第四章工业用钢第一节碳素钢碳素钢即“非合金钢”,简称碳钢。
碳素钢的含碳量在1.5%以下,除碳之外,还含有硅、锰、磷、硫等杂质。
磷和硫是钢中的有害杂质。
磷可使钢的塑性、韧性下降,特别是在低温时脆性急剧增加,这种现象称为冷脆性。
硫在钢的晶界处可形成低熔点的共晶体,致使含硫较高的钢在高温变回工时容易产生裂纹,这种现象称为热脆性。
硅和锰是炼钢后期作为脱氧剂加入钢液中残存的。
硅和锰可提高钢的强度和硬度,锰还能与硫形成MnS,从而抵消硫的部分有害作用。
显然,它们都是钢中的有益元素。
碳素钢通常分为如下三类:碳素结构钢、优质碳素结构钢、碳素工具钢。
1、碳素结构钢的牌号以代表屈服点的“屈”字汉语拼音首字母Q和后面三位数字来表示,每个牌号中的数字表示该钢种厚度小于16mm时的最低屈服点(Mpa)。
在钢号尾部A、B为普通级别,C、D为磷、硫低的优等级别,可用于较重要的焊接结构。
Q315塑性好通常轧制成薄板、钢管、型材制造钢结构,也用于制作铆钉、螺钉、冲压件、开口销等。
Q235强度较高,塑性也较好,常轧制成各种型钢、钢管、钢筋等制成各种钢构件、冲压件、焊接件及不重要的轴类、螺钉、螺母等。
Q255强度更高,用做键、轴、俏、齿轮、撙、连杆、销钉等。
2、优质碳素结构钢的硫、磷含量较低,供货时既保证化学成分,又保证力学性能,主要用于制造机器零件。
优质碳素结构钢的牌号用两位数字表示,这两位数字即是钢中平均含碳量的万分数。
例如,20钢表示平均含碳量为0.20%的优质结构钢。
08、10、15、20等牌号属于低碳钢。
20钢用途最广,常用于制造螺钉、螺母、垫圈、小轴,焊接件,有时也用于渗碳件。
40、45等牌号属于中碳钢。
45钢常用来制造主轴、丝杠、齿轮、连杆、、套筒、键和重要螺钉等。
60、65等牌号属于高碳钢。
它们经过淬火、回火后,不仅强度、硬度显著提高,且弹性优良,常用弹簧、发条、钢丝绳、轧辊、凸轮等。
3、碳素工具钢的含碳量高达0.7%-1.3%,淬火、回火后有高的硬度和耐磨性,常用于制造锻工、钳工工具和小型模具。
碳素工具钢一般均为优质钢。
对于硫、磷含量更低的高级优质碳素工具钢,则在数字后面增加“A”表示,例如,T10A 表示平均含碳量为1.0%的高级优质碳素工具钢。
T8冲头、錾子、锻工工具、木工工具、台钳钳口等。
T10/T10A硬度较高、但仍要求一定韧性的工具,如手锯条、小冲模、丝锥、板牙等。
T12适用于不受冲击的耐磨工具,如钢锉、刮刀、绞刀等。
第二节低合金钢合金钢是为了改善钢的某些性能,在钢的基础上加入某些合金元素所炼成的钢。
如果钢中的含硅量大于0.5%,或者含锰量大于1.0%,也属于合金钢。
低合金钢是指合金总含量较低(小于3%)、含碳量也较低的合金结构钢。
可焊接低合金高强钢(简称合金高强钢)应用最为广泛。
低合金高强钢的牌号表示方法与碳素钢相同,即以字母“Q”开始,后面以三们数字表示其最像屈服点,最后以符号表示其质量等级。
如Q345A表示不小于345Mpa的A级低合金高强钢。
Q295低压容器、输油管道、车辆等Q345桥梁、船舶、压力容器、车辆等Q390桥梁、船舶、起重机、压力容器等Q420高压容器、牺牲、桥梁、锅炉等第三节合金钢合金钢:当钢中合金元素超过低钢的限度时,即为合金钢。
合金钢不仅合金元素含量高,且严格控制硫、磷等有害杂质的含量,属于优质钢或高级优质钢。
合金钢可分为合金结构钢(常用于制造机器零件用的合金钢),合金工具钢(主要用于制造刀具、量具、模具等,含碳量甚高),特殊性能钢(包括不锈钢,耐磨钢,耐蚀钢及具有软磁,永磁,无磁等特殊性能的钢合金钢是为了改善钢的某些性能,在碳素钢的基础上加入某些合金元素所炼成的钢。
如果钢中的含硅量大于0.5%,或者含锰量大于1.0%,也属于合金钢。
低合金钢是指合金总含量较低(小于3%),含碳量也较低的合金结构钢。
第二篇铸造将液态金属浇注到模型中,待其冷却凝固,以获得一定的形状、尺寸和性能的毛坯或零件的成形方法,称为铸造优点:可制成形状复杂,特别是具有复杂内腔的毛坯,如箱体,气缸体等。
第一章铸造工艺基础第一节液态合金的充型液态合金填充铸型的过程,称为充型。
液态合金充满铸型型腔,获得形状准确,轮廓清晰铸件的能力,称为液态合金的充型能力。
若充型能力不足,会产生浇不到或冷隔等缺陷。
影响充型能力的主要因素:(1)合金的流动性(2)浇注条件(3)铸型填充条件(4)铸件结构第二节铸件的凝固与收缩一、铸件的凝固方式在铸件的凝固过程中,其断面上一般存在于三个区域,即固相区、凝固区和液相区。
1.逐层凝固随着温度的下降,固体层不断加厚、液体层不断减少,直达铸件的中心,这种凝固方式称为逐层凝固。
2.糊状凝固先呈糊状而后固化,故称糊状凝固。
3.中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固。
二、铸造合金的收缩合金从浇注、凝固直至冷却到室温,其体积或尺寸缩减的现象,称为收缩。