半导体光电效应及其应用

半导体光电效应及其应用
半导体光电效应及其应用

半导体光电效应及其应用

量子力学无疑是20世纪最伟大的科学成就之一,它的诞生是人类对自然界,尤其对微观世界的认识有了质的飞跃,对许多造福人类的高新技术的发展起了奠基、催生和巨大的推动作用。

自20世纪中期开始,电子工业取得了长足的进步,目前已成为世界上最大的产业,而其基础为半导体材料。为了适应电子工业的巨大需求,从第一代半导体材料:硅、锗(1822年,瑞典化学家白则里用金属钾还原氟化硅得到了单质硅。)发展到第二代半导体材料:Ⅲ——Ⅴ族化合物,再到现在的第三代半导体材料:宽带隙半导体。半导体领域取得了突飞猛进的发展。

一、光电效应

光照射到某些物质上,引起物质的电性

质发生变化,也就是光能量转换成电能。这

类光致电变的现象被人们统称为光电效应

(Photoelectric effect)。这一现象是

1887年赫兹在实验研究麦克斯韦电磁理论

时偶然发现的。1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论。

光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,物体在光的照射下光电子飞到物体外部的现象,又称外光电效应。后两种现象发生在物体内部,物体受光照射后,其内部的原子释放出电子并不溢出物体表面,而是仍留在内部,称为内光电效应。内、外光电效应在光电器件和光电子技术中具有重要的作用,根据这些效应可制成不同的光电转换器件(光敏器件)。

通过大量的实验总结出光电效应具有如下实验规律:

1、每一种金属在产生光电效应是都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。相应的波长被称做极限波长

(或称红限波长)。当入射光的频率低于极限频率时,无论多强的光都无光电子逸出。

2、光电效应中产生的光电子的速度与光的频率有关,而与光强无关。

3、光电效应的瞬时性。实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,响应时间不超过十的负九次方秒(1ns)。

4、入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。

1、外光电效应

不言而喻,就是物体在光的照射下光电子飞到物体外部的现象,光电效应的发现与最初的研究就是主要通过外光电效应来进行的。

2.光电导效应

光吸收使半导体中形成非平衡载流子(光生载流子),载流子浓度的增大使其电导率σ增大,所引起的附加电导率称为光电导。光电导效应是光电子器件的基础。半导体材料对光的吸收系数随光的波长而变化,所以光电导具有一定的光谱分布。

3.光生伏特效应

如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。非平衡的载流子从产生处向势垒区(结区)运动;非平衡的电子和空穴在结区势场的作用下向相反的方向运动而分离。P区的非平衡电子穿过p-n结进入n区,而n区的非平衡空穴进入p区,从而在p型和n型区有电荷积累。由于p区边界积累非平衡空穴,n区边界积累非平衡电子,产生一个与平衡p-n结内电场方向相反的光生电场,于是在p区和n区建立了光生电动势。

此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。通过光照在界面层产生的电子-空

穴对越多,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。

二、光电效应的应用

1.光电探测器

光电探测器是通过电过程探测光信号的半导体器件。伴随着相干和非相干光源相远红外波段及紫外波段的扩展,对高速、高灵敏光电探测器的需求迅速增加,通常来讲,光电探测器包括三个基本过程:1)入射光产生载流子;2)通过某种电流增益机制形成载流子的输入和倍增;3)载流子形成端电流,提供输出信号。

在红外波段(0.8~1.6um)的光纤通信系统中,光电探测器十分重要,它可对光信号进行解调,即将光的变化转化为电学量的变化,然后将电学量放大并进一步处理。对于此类应用,光电探测器必须满足若干要求,例如在工作波段上要有高的灵敏度、快速的响应速度和低噪声。另外,光电探测器的体积应该较小,工作偏置电压和电流低,并且在使用条件下可靠工作。

1983年至1985年间,人们首次研究了量子阱中导带内、价带内的非带间跃迁的红外吸收。第一个基于束缚态到束缚态子带间跃迁的功能性异质结量子阱红外光电探测器有Levine等人在1987年实现。

本例中gaas为量子阱。其厚度约为5nm,通常是掺杂浓度为10^17cm^(-3)量级的n型半导体。势垒层不掺杂,其厚度约为30~50nm之间。典型周期数在20~50之间。

对于由直接黛西材料形成的量子阱,因为子带间跃迁要求电磁波的电场有与量子阱的生长面垂直的分量,所以入射光垂直于表面时,吸收为零。这种计划选择规则需要某种技术使光与光敏感区耦合。

Qwip基于由子带间激发产生的光电导。跃迁的三种类型。在束缚态到束缚态的跃迁中,两个量子化的能量状态是被限定的,并且低于势垒能量。一个光子激发一个电子从基态跃迁到第一激发态上,随后电子隧穿出势阱;在束缚态到连续态(或束缚态到扩展态)激发中,基态上面的第一激发态能量高于势垒,受激电子可以更容易地逃离势阱,这种束缚态到连续态的激发对于具有高吸收、宽波长响应、低暗电流、高探测率和低压应用的探测器更有保障;对于束缚态到微带之间的跃迁,由于超晶格结构提出了微带的概念,基于此跃迁的qwip很适合于

焦点平面阵列成像传感器系统的应用。

Qwip的暗电流是由于越过量子阱势垒的热电子发射和势垒尖峰附近的热电子场发射造成的。由于此类光探测器针对约3~20um的波长范围,因此形成量子阱的势垒必须小,约为0.2eV。为了限制暗电流,qwip必须在4~77K的低温下工作。

Qwip对于用HgCdTe材料制作的波长光电探测器是一个具有吸引力的替代结构。HgCdTe光电探测器的问题在于遂穿暗电流过大,以及需要准确的组分重复能力以获得精确的带隙。Qwip与GaAs单片集成电路工艺兼容,可根据量子阱的厚度调整检测波长范围。研究表明,已有接近20um的长波探测能力。Qwip 可以用于两维成像的焦点平面阵列,其具体事例为热成像和陆地成像。Qwip具有高速和响应快等特性,这是由于在量子阱中,本征载流子寿命较短(数量级为5ps)。

2.太阳能电池

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。

从长远来看,随着太阳能电池制造技术的改进以及新的光—电转换装置的发明,各国对环境的保护和对再生清洁能源的巨大需求,太阳能电池仍将是利用太阳辐射能比较切实可行的方法,可为人类未来大规模地利用太阳能开辟广阔的前景。

太阳能光伏发电在不远的将来会占据世

界能源消费的重要席位,不但要替代部分常

规能源,而且将成为世界能源供应的主体。

预计到2030年,可再生能源在总能源结构

中将占到30%以上,而太阳能光伏发电在世

界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。

光电效应与康普顿效应比较

光电效应与康普顿效应的比较 周嘉夫 (天水师范学院物理与信息科学学院,甘肃天水741001) 摘要: 光电效应和康普顿效应是光的粒子性的两个重要证据,通过对两效应实验规律的比较及产生条件的分析,论述两效应之间存在的本质差异,进一步说明光电效应和康普效应虽然都是光子与原子的作用过程,但产生条件和现象却是根本不同的。 关键词:光电效应康普顿效应光子散射电子自由电子差异能量作用比较 The Comparison of Photoelectric Effect and Konpton Effect Zhou Jiafu ( School of Physics and Information Science, Tianshui Normal university, 741001) Abstract:Photoelectric effect and Compton effect is the particle nature of light are two important evidence. Effect of the two experiments and production of comparative law analysis of the conditions discussed between the two effects of differences in the photoelectric effect and further Compton Effect Although they are both the role of photon and atom, but phenomena arising from the conditions and it is step-by-step with the fundamental. Key words:Scattering, Electron, PhotoelectricEffect, Konpton Effec,Free Electron,Photon,Function,Energy,Comparison

半导体的光电效应

半导体的光电效应 发布日期:2008-04-25 我也要投稿!作者:网络阅读: 787[ 字体选择:大中小] 一、半导体的能带结构 按照量子力学理论,由于物质内原子间靠得很近,彼此的能级会互相影响,而使原子能级展宽成一个个能带。又由于电子是费米子,遵从泡利不相容原理。电子以能量大小为序,从基态开始,每个量子态上一个电子向上填充,直填到费米能εF为止。再上面的能级都是空的。被电子填满的能带叫满带。满带中的电子如同很多人挤在一个狭小的空间,谁也动不了。所以,虽然有许多电子,但是不能形成定向移动,因而满带中的电子不是载流子,是不能导电的。全部空着的能带称为空带。能带间的间隔叫带隙(用Eg表示)或禁带,禁带不允许有电子存在。图1所示的是导体、绝缘体、半导体的能带结构示意图。如图1(a)所示,导体的费米能级εF在一个能带的中央,该能带被部分填充。由于能带的亚结构之间的能量相差很小,因此这时只需很少的能量(如一外加电场),就能把电子激发到空的能级上,形成定向移动的电流。这正是具有这种能带结构的物质被称为导体的原因。如果某一能带刚好被填满,它与上面的空带间隔着一个禁带,此时大于带隙间隔的能量才能把电子激发到空带上去。一般带隙较大(大于10eV数量级)的物质,被称为绝缘体,如图1(b)所示;而带隙较小(小于1eV数量级)的物质,被称为半导体,如图1(c)所示。半导体的费米能级位于满带与空带之间的禁带内,此时紧邻着禁带的满带称为价带,而上面的空带称为导带。如果由于某种原因将价带顶部的一些电子激发到导带底部,在价带顶部就相应地留下一些空穴,从而使导带和价带都变得可以导电了。所以半导体的载流子有电子和空穴两种。可见,半导体介于导体与绝缘体之间的特殊的导电性是由它的能带结构决定的。

常用半导体器件复习题

第1章常用半导体器件 一、判断题(正确打“√”,错误打“×”,每题1分) 1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。()3.本征半导体就是纯净的晶体结构的半导体。() 4.PN结在无光照、无外加电压时,结电流为零。() 5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。()6.晶体三极管的β值,在任何电路中都是越大越好。( ) 7.模拟电路是对模拟信号进行处理的电路。( ) 8.稳压二极管正常工作时,应为正向导体状态。( ) 9.发光二极管不论外加正向电压或反向电压均可发光。( ) 10.光电二极管外加合适的正向电压时,可以正常发光。( ) 一、判断题答案:(每题1分) 1.√; 2.×; 3.√; 4.√; 5.×; 6.×; 7.√; 8.×; 9.×; 10.×。

二、填空题(每题1分) 1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。2.由于浓度不同而产生的电荷运动称为。 3.晶体二极管的核心部件是一个,它具有单向导电性。 4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。7.PN结加正向电压时,空间电荷区将。 8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流围表现出稳压特性,且能保证其正常可靠地工作。 9.晶体三极管三个电极的电流I E 、I B 、I C 的关系为:。 10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。 二、填空题答案:(每题1分) 1.空穴 2.扩散运动 3.PN结 4.导通 5.反向 6.发射机e 7.变薄 8.反向 9.I E =I B +I C 10.材料 三、单项选择题(将正确的答案题号及容一起填入横线上,每题1分)

大学物理练习题 光电效应 康普顿效应

练习二十一光电效应康普顿效应 一、选择题 1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是 (A) 535nm。 (B) 500nm。 (C) 435nm。 (D) 355nm。 2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射。若反冲电子的动能为0.1MeV,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A) 0.20。 (B) 0.25。 (C) 0.30。 (D) 0.35。 3. 用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为E k,若改用频率为2ν的单色光照射此种金属,则逸出光电子的最大动能为 (A)hν+E k。 (B) 2hν?E k。 (C)hν?E k。 (D)2E k。 4. 下面这此材料的逸出功为:铍,3.9eV;钯, 5.0eV;铯,1.9eV;钨,4.5eV。要制造能在可见光(频率范围为3.9×1014Hz-7.5×1014Hz)下工作的光电管,在这此材料中应选: (A)钨。 (B)钯。 (C)铯。 (D)铍。 5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程。对此过程,在以下几种理解中,正确的是: (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程。 (B) 两种效应都相当于电子与光子的弹性碰撞过程。 (C) 两种效应都属于电子吸收光子的过程。 (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 6. 一般认为光子有以下性质 (1) 不论在真空中或介质中的光速都是c; (2) 它的静止质量为零; (3) 它的动量为hν/c2; (4) 它的动能就是它的总能量; (5) 它有动量和能量,但没有质量。 以上结论正确的是 (A)(2)(4)。 (B)(3)(4)(5)。 (C)(2)(4)(5)。 (D)(1)(2)(3)。 7. 某种金属在光的照射下产生光电效应,要想使饱和光电流增大以及增大光电子的初动能,应分别增大照射光的

半导体照明技术专利竞争态势分析_图文(精)

第10期(2009年lo月中国科技论坛 ?99? 2.2专利申请国别分析 图1显示了1998--2007年的十年间,国外九个发达国家和地区在华有关半导体照明领域的专利申请量。其中,在总量方面,以台湾、日本、美国高居榜首。但是,在发明专利上,除台湾、日本、美国以外,韩国、荷兰、德国也显示出强大的实力。在实用新型方面,台湾香港地区为主,其他国家和地区很少,而香港较之台湾专利申请的差距十分明显。对于日本,在外观设计方面具有较强的领先优势,说明日本在相关半导体照明产品市场化方面居于前列。

图l 九个国家和地区专利申请详细分布图 国外在华申请的三个专利类型数量均在总体上呈现逐年上升的趋势(见图2。在2000年前,国外在华申请的有关半导体照明的专利几乎全部是发明专利,其原因一方面是在半导体照明领域,国外技术还处于发展早期阶段,比较注重于基础技术的研发,发明专利较多;另一方面,国外具有强烈的知识产权保护专利战略意识,一旦实现技术突破,就很快申请专利保护,抢占未被充分开发的市场,实现专利技术价值。在

2000年后,国外在华发明专利的申请数量继续保持突飞猛进,而在同时,实用新型和外观设计也成为国外企业的关注重点,其数量也在逐年提高。2.3半导体照明发明专利申请量趋势分析 1998 图2国外在华专利类型申请历年变化图 发明专利,其中台湾、美国、日本、韩国、荷兰、德国申请的发明专利均超过100件。在半导体照明领域,美日两国可以说是老牌专利大国,一直保持稳定快速发展的势头。我国台湾地区这一领域的专利,从2002年在大陆地区申请第一个发明专利以来,迅速发展,已经在量上赶超美日,可以说是这一领域的后起之秀。另外,作为一个新兴电子强国,韩国在半导体照明领域的发明专利申请量也很大(见图3。2.4半导体照明领域的企业竞争力分析 本文统计了各个国家和地区有关半导体照明领域的专利申请量大于10项(包含10项的企业数量,根据统计过程,这些专利以发明专利为主,且法国、新加坡由于专利少,没有企业归入(见图4。 图3有关半导体照明发明专利历年申请量变化图 图4有关半导体照明灯各国企业专利≥10个的企业个数

LED照明技术细节分析

LED照明技术细节分析 led光源的技术日趋成熟,每瓦发光流明迅速增长,促使其逐年递减降价。led绿色灯具的海量市场和持续稳定数年增长需求将是集成电路行业继VCD、DVD、手机、MP3之后的消费电子市场的超级海啸! LED灯具的高节能、长寿命、利环保的优越性能获得普遍的公认。 led高节能:直流驱动,超低功耗(单管0.03瓦-1 瓦)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 led长寿命:led 光源被称为长寿灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰快等缺点。 led寿命:使用寿命可达5万到10万小时,比传统光源寿命长10倍以上。 led利环保:led是一种绿色光源,环保效益更佳。光谱中没有紫外线和红外线,热量低和无频闪,无辐射,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。 led光源工作特点照明用led光源的VF电压都很低,一般VF =2.75-3.8V,IF在15-1400mA;因此LED驱动IC的输出电压是VF X N或VF X 1, IF恒流在15-1400mA。LED灯具使用的led光源有小功率 (IF=15-20mA)和大功率(IF》200mA))二种,小功率led多用来做led日光灯、装饰灯、格栅灯;大功率LED用来做家庭照明灯、射灯、水底灯、洗墙灯、路灯、隧道灯、汽车工作灯等。功率led光源是低电压、大电流驱动的器件,其发光的强度由流过led的电流大小决定,电流过强会引起led光的衰减,电流过弱会影响led的发光强度,因此,led的驱动

需要提供恒流电源,以保证大功率led使用的安全性,同时达到理想的发光强度。在led照明领域,要体现出节能和长寿命的特点,选择好LED 驱动IC至关重要,没有好的驱动IC的匹配,led照明的优势无法体现。led照明设计需要注意的技术细节led灯具对低压驱动芯片的要求: 1. 驱动芯片的标称输入电压范围应当满足DC8-40V,以覆盖应用面的需要,耐压如能大于45V更好;AC 12V或24 V输入时简单的桥式整流器输出电压会随电网电压波动,特别是电压偏高时输出直流电压也会偏高,驱动IC如不能适应宽电压范围,往往在电网电压升高时会被击穿,led光源也因此被烧毁。 2. 驱动芯片的标称输出电流要求大于1.2-1.5A,作为照明用的led 光源,1W功率的led光源其标称工作电流为350mA,3W功率的led光源其标称工作电流为700mA,功率大的需要更大的电流,因此LED照明灯具选用的驱动IC必需有足够的电流输出,设计产品时必需使驱动IC工作在满负输出的70-90%的最佳工作区域。使用满负输出电流的驱动IC在灯具狭小空间散热不畅,容易疲劳和早期失效。 3. 驱动芯片的输出电流必需长久恒定,led光源才能稳定发光,亮度不会闪烁;同一批驱动芯片在同等条件下使用,其输出电流大小要尽可能一致,也就是离散性要小,这样在大批量自动化生产线上生产才能有效和有序;对于输出电流有一定离散性的驱动芯片必选在出厂或投入生产线前分档,调整PCB板上电流设定电阻(Rs)的阻值大小,使之生产的led 灯具恒流驱动板对同类led光源的发光亮度一致,保持最终产品的一致性。

常用半导体器件

第4章常用半导体器件 本章要求了解PN结及其单向导电性,熟悉半导体二极管的伏安特性及其主要参数。理解稳压二极管的稳压特性。了解发光二极管、光电二极管、变容二极管。掌握半导体三极管的伏安特性及其主要参数。了解绝缘栅场效应晶体管的伏安特性及其主要参数。 本章内容目前使用得最广泛的是半导体器件——半导体二极管、稳压管、半导体三极管、绝缘栅场效应管等。本章介绍常用半导体器件的结构、工作原理、伏安特性、主要参数及简单应用。 本章学时6学时 4.1 PN结和半导体二极管 本节学时2学时 本节重点1、PN结的单向导电性; 2、半导体二极管的伏安特性; 3、半导体二极管的应用。 教学方法结合理论与实验,讲解PN结的单向导电性和半导体二极管的伏安特性,通过例题让学生掌握二半导体极管的应用。 4.1.1 PN结的单向导电性 1. N型半导体和P型半导体 在纯净的四价半导体晶体材料(主要是硅和锗)中掺入微量三价(例如硼)或五价(例如磷)元素,半导体的导电能力就会大大增强。掺入五价元素的半导体中的多数载流子是自由电子,称为电子半导体或N型半导体。而掺入三价元素的半导体中的多数载流子是空穴,称为空穴半导体或P型半导体。在掺杂半导体中多数载流子(称多子)数目由掺杂浓度确定,而少数载流子(称少子)数目与温度有关,并且温度升高时,少数载流子数目会增加。 2.PN结的单向导电性 当PN结加正向电压时,P端电位高于N端,PN结变窄,而当PN结加反向电压时,N端电位高于P端,PN结变宽,视为截止(不导通)。 4.1.2 半导体二极管 1.结构 半导体二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。由P区引出的电极称为阳极,N区引出的电极称为阴极。因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。 2. 二极管的种类 按材料来分,最常用的有硅管和锗管两种;按用途来分,有普通二极管、整流二极管、稳压二极管等多种;按结构来分,有点接触型,面接触型和硅平面型几种,点接触型二极管(一般为锗管)其特点是结面积小,因此结电容小,允许通过的电流也小,适用高频电路的检波或小电流的整流,也可用作数字电路里的开关元件;面接触型二极管(一般为硅管)其特点是结面积大,结电容大,允许通过的电流较大,适用于低频整流;硅平面型二极管,结面积大的可用于大功率整流,结面积小的,适用于脉冲数字电路作开关管。

半导体照明技术作业答案

某光源发出波长为460nm 的单色光,辐射功率为100W ,用Y 值表示其光通量,计算其色度坐标X 、Y 、Z 、x 、y 。 解:由教材表1-3查得460nm 单色光的三色视觉值分别为0.2908X =,0.0600Y =, 1.6692Z =,则对100W P =,有 4356831000.2908 1.98610lm 6831000.0600 4.09810lm 683100 1.6692 1.14010lm m m m X K PX Y K PY Z K PZ ==××=×==××=×==××=× 以及 )()0.144 0.030x X X Y Z y Y X Y Z =++==++=

1. GaP绿色LED的发光机理是什么,当氮掺杂浓度增加时,光谱有什么变化,为什么?GaP红色LED的发光机理是什么,发光峰值波长是多少? 答:GaP绿色LED的发光机理是在GaP间接跃迁型半导体中掺入等电子陷阱杂质N,代替P原子的N原子可以俘获电子,又靠该电子的电荷俘获空穴,形成束缚激子,激子复合发光。当氮掺杂浓度增加时,总光通量增加,主波长向长波移动,这是因为此时有大量的氮对形成新的等电子陷阱,氮对束缚激子发光峰增加,且向长波移动。 GaP红色LED的发光机理是在GaP晶体中掺入ZnO对等电子陷阱,其发光峰值波长为700nm的红光。 2. 液相外延生长的原理是什么?一般分为哪两种方法,这两种方法的区别在哪里? 答:液相外延生长过程的基础是在液体溶剂中溶质的溶解度随温度降低而减少,而且冷却与单晶相接触的初始饱和溶液时能够引起外延沉积,在衬底上生长一个薄的外延层。 液相外延生长一般分为降温法和温度梯度法两种。降温法的瞬态生长中,溶液与衬底组成的体系在均处于同一温度,并一同降温(在衬底与溶液接触时的时间和温度上,以及接触后是继续降温还是保持温度上,不同的技术有不同的处理)。而温度梯度法则是当体系达到稳定状态后,整个体系的温度再不改变,而是在溶液表面和溶液-衬底界面间建立稳定的温度梯度和浓度梯度。 3. 为何AlGaInP材料不能使用通常的气相外延和液相外延技术来制造? 答:在尝试用液相外延生长AlGaInP时,由于AlP和InP的热力学稳定性的不同,液相外延的组分控制十分困难。而当使用氢化物或氯化物气相外延时,会形成稳定的AlCl化合物,会在气相外延时阻碍含Al磷化物的成功生长。因此AlGaInP 材料不能使用通常的气相外延和液相外延技术来制造。

常用半导体器件

《模拟电子技术基础》 (教案与讲稿) 任课教师:谭华 院系:桂林电子科技大学信息科技学院电子工程系 授课班级:2008电子信息专业本科1、2班 授课时间:2009年9月21日------2009年12月23日每周学时:4学时 授课教材:《模拟电子技术基础》(第4版) 清华大学电子学教研组童诗白华成英主编 高教出版社 2009

第一章常用半导体器件 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。 (一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电 路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导 电工作原理、 ?二极管的V-I特性及主要性能指标 1.1 半导体的基本知识 1.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。

光电效应与康普顿效应的区别

一、选题的依据、意义和理论或实际应用方面的价值 光电效应和康普顿效应是光学课程最主要的内容之一,在大学本科层次的光学教学中的光学教学中,我们对光的反射、折射现象和成像规律已比较熟悉。但对光的波动性、干涉和衍射现象,还是比较生疏的,理论解释也比较困难,光与物质相互作用的光电效应和康普顿效应更抽象,因此,不易讲解,我们在理解过程中存在一些概念的错误和混淆。光的本质是电磁波,它具有波动的性质。近代物理又证明,光除了具有波动性之外还具有另一方面的性质,即粒子性。光具有粒子性,最好的例证就是著名的“光电效应”和“康普顿效应”。光电效应与康普顿效应研究的都是光子与电子之间的相互作用,都是光具有粒子性的体现,但两者存在重要的不同。光电效应是指电子在光的作用下从金属表面发射出来的现象. 我们把逸出来的电子称为光电子. 而康普顿效应是指在X 射线的散射现象中, 发现散射谱线中除了波长和原射线相同的成分以外, 还有一些波长较长的成分, 两者差值的大小随散射角的大小而改变, 其间有确定关系的这种波长改变的散射. 上述两种效应都牵涉到光子和个别电子的相互作用,用简单的波动理论是是很难解释这些微观世界的相互作用, 这必须用量子概念来解释. 还可以从光的粒子性出发, 谈谈对光电效应和康普顿效应的不同。所以科学家将光信号(或电能)转变成电信号(或电能)的器件叫光电器件。现已有光敏管、光敏电阻、光敏二极管、光敏三极管、光敏组件、色敏器件、光敏可控硅器件、光耦合器、光电池等光电器件。这些器件已被广泛应用于生产、生活、军事等领域。 二、本课题在国内外的研究现状 光电效应是当光照在金属中时,金属里的表面有电子逸出的现象。而康普顿效应是让光波射入石墨,石墨中的价电子对光进行散射,然而散射光比入射光波长略大,这是由于光子和电子碰撞时将一部分能量转移给电子。这样,光的能量减小,波长便增加。而且如果将光子当做实物粒子的话,计算结果与实验结果符合。这便证明了光子也具有动量。即证明了光的粒子性。两个实验都证明了光的粒子性,下面谈谈光电效应与康普顿效应的区别。 1、观察到的条件不同; 2、对光量子能量的吸收程度不同; 3、能量与动量守恒方式不同; 光不仅具有波动性, 也具有粒子性. 同时我们也可以发现, 质量守恒定律,动量守恒定律、能的转化和守恒定律同样适用于微观物质间的相互作用。 三、课题研究的内容及拟采取的方法 1,光电效应 (1)概念 (2)光电效应的实验规律 2,康普顿效应 (1)概念 (2)康普顿效应实验规律 3,光的波动性不能解释光电效应和康普顿效应 4,用光子理论可以完美的解释光电效应和康普顿效应的本质 (1)观察到的条件不同; (2)对光量子能量的吸收程度不同; (3)能量与动量守恒方式不同; 5,光电效应和康普顿效应的联系与区别 6,光电效应和康普顿效应中的能量守恒与动量守恒 7,发生光电效应与康普顿效应的概率 方法:实验,查书,找资料

LED照明技术及应用复习资料

一填空题 1、LED3528小功率灯珠额定电流为___20 mA,1W灯珠额定电流为____350____mA。 2、RGB三基色指___ 红___,_____绿___,____蓝__ 三种颜色。 3、灯具驱动方式分:恒_ 流 __驱动和恒_ 压__驱动,LED光源常用恒__流 ___驱动。 4、LED灯具一般是由___ 光源,____外壳_ , __驱动电源 _等几部分组 5、光源的光效(lm/W)指光源发出___光通量除以光源所耗费的__电功率 _,它是衡量光源节能的重要指标。 6、LED调光功能的实现方式可分为两种: PWM 方式和模拟方式。 7、色温越偏蓝,色温越高,偏红则色温越低。 8、590nm波长的光是黄光;380nm波长的光是紫光(填颜色),可见光的波长范 围是 380-780 nm。 9、LED TV背光源常用到的LED芯片型号为2310,其尺寸为23mil×10mil,即 584.2 um× 254 um。 1mil=25.4um 10、T10的LED日光灯管,其直径是: 31.75 mm 。 25.4* (10/8)=31.75mm 11、目前市场主流的白光LED产品是由 InGaN(蓝光) 芯片产生的蓝光与其激发YAG 荧光粉产生的黄光混合而成的,且该方面的专利技术主要掌握在日本日亚化学公司手中。 12、对于GaAs,SiC导电衬底,具有面电极的红、黄(单电极或L型) LED芯片,采 用银胶来固晶;对于蓝宝石绝缘衬底的蓝、绿(双电极或V型)LED 芯片,采用绝缘胶来固定芯片。 13、银胶的性能和作用主要体现在:固定芯片、导电性、导热性。 14、LED胶体包括A,B,C,D胶,它们分别指的是主剂、硬化剂、 色剂、扩散剂。 15、翻译以下行业术语: 示例:外延片 Wafer (1)发光二极管 Light emitting diode (2)芯片 chip (3)荧光粉 phosphor (4)直插式LED LED Lamp

【免费下载】常用半导体器件及应用单元测验附答案

项目六 常用半导体器件及应用 班级 姓名 成绩 一、填空题:(35分) 1.制作半导体器件时,使用最多的半导体材料是 硅 和 锗 。 2.根据载流子数目的不同,可以将半导体分为 本征半导体 、 P 型半导体 和 N 型半导体 三种。 3.PN 结的单向导电性是指:加正向电压 导通 ,加反向电压 截止 。PN 结正偏是指P 区接电源 正 极,N 区接电源 负 极。 4.半导体二极管由一个 PN 结构成,它具有 单向导电 特性。 5.硅二极管的门坎电压是 0.5V ,正向导通压降是 0.7V ;锗二极管的门坎电压是 0.2V ,正向导通压降是 0.3V 。 6.半导体稳压二极管都是 硅 材料制成的。它工作在 反向击穿 状态时,才呈现稳压状态。 7.晶体三极管是由三层半导体、两个PN 结构成的一种半导体器件,两个PN 结分别为 发射结 和 集电结 ;对应的三个极分别是 发射极e 、 基极b 、 集电极c 。 8.半导体三极管中,PNP 的符号是 ,NPN 的符号是 。9.若晶体三极管集电极输出电流I C =9 mA ,该管的电流放大系数为β=50,则其输入电流I B =_0.18_mA 。10.三极管具有电流放大作用的实际是:利用 基极 电流实现对 集电极 电流的控制。因此三极管是 电流 控制型器件。11.三极管的输出特性曲线可分为三个区域,即_放大_区,__饱和_区和_截止_区。12.放大电路静态工作点随 温度 变化而变化, 分压式 偏置电路可较好解决此问题。13.对于一个晶体管放大器来说,一般希望其输入电阻要 大 些,以减轻信号源的负担,提高抗干扰能力;输出电阻要 小 些,以增大带动负载的能力。二、判断题:(10分,将答案填在下面的表格内) 题号12345678910答案××√××√√×√× 1.P 型半导体带正电,N 型半导体带负电。( ) 2.半导体器件一经击穿便即失效,因为击穿是不可逆的。( ) 3.桥式整流电路中,若有一只二极管开路,则输出电压为原先的一半。( ) 4.用两个PN 结就能构成三极管,它就具有放大作用。( ) 5.β越大的三极管,放大电流的能力越强,管子的性能越好。 6.三极管和二极管都是非线性器件。( ) 7.三极管每一个基极电流都有一条输出特性曲线与之对应。( )等多项对全系统启备高中免不

光电效应与康普顿效应

光电效应与康普顿效应 专业:机械设计制造及其自动化学号:5901108267 姓名:李庆 摘要 本文对光电效应和康普顿效应进行了简单介绍,分别对光电效应和日康普顿效应的基本原理和其实验类推法进行了简单的概述,介绍了爱因斯坦光电方程和用X 射线投射石墨实验。同时本文对光电效应和康普顿效应的相同之处和不同之处进行了分析。两者的物理本质相同,但是两者观测的条件和对光量子能量的吸收程度不同,两者在过程中产生的粒子也不同。 关键词:光电效应;康普顿效应;爱因斯坦光电方程;光电子;散射 Photoelectric effect and Compton effect Abstract This article has carried on the simple introduction to the photoelectric effect and the Compton effect respectively, of the photoelectric effect and Compton effect on the basic principles and its experimental analogy method a simple overview describes the Einstein photoelectric equation and use X-ray projection of graphite experiments. And on the photoelectric effect and Compton effect of the similarities and differences were analyzed. The physical nature of both the same, but the two observation conditions and the optical absorption of quantum energy in varying degrees, both in the process produced particles are also different. Keyword:photoelectric effect; Compton effect; Einstein's photoelectric equation; optoelectronics; scattering

半导体光电子学-考点

半导体光电子学 一、1.声子:晶格振动的能量量子,假想粒子,与晶格振动相联系,不能独立存在。 光子:传递电磁相互作用的规范粒子,无静止质量,具有能量和动量,能够独立存在。 2.量子阱:两种禁带宽度不同的但晶格匹配的单晶半导体薄膜以极薄的厚度交替生长,使得宽带隙材料中的电子和空穴进入两边窄带隙半导体材料的能带中,好像落入陷阱,这种限制电子和空穴的特殊能带结构被形象地称为量子阱。 超晶格:当量子阱结构中单晶薄层的厚度可与德布罗意波长或波尔半径相比拟时,由于量子尺寸效应,量子阱之间会发生很强耦合效应。 3.光子晶体:是指具有光子带隙特性的周期性电介质结构的人造晶体。 纳米线:一种具有在横向上被限制在100纳米以下,纵向无限制的一维结构材料。 4.施主杂质:半导体中掺杂的杂质能够提供电子载流子的特性。 受主杂质:半导体中掺杂的杂质能提供空穴载流子的特性。 杂质能级:半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。 5.激子复合:所谓激子是指处于束缚态的电子和空穴,激子复合的能量将以光的形式 释放。 俄歇复合:电子和空穴复合后将能量传递给另一个电子或空穴的现象。有 CHCC(复合后的能量给导带的电子并使其激发到导带更高能态)和 CHHS(复合后的能量给价带的空穴并使其激发到自旋-轨道裂带上)过 程。 二、采用能带图和文字描述导体,半导体和绝缘体的异同。 导体:价带全满,导带部分填充 半导体:价带全满,导带全空,但是禁带宽度较窄,电子易于激发到导带中去。 绝缘体:价带全满,导带全空,禁带宽度较大 三、光波导结构的实例,并进一步说明光波导在光电器件中的工作原理。 光波导主要有平面波导和条形波导,而条形波导又有增益波导,折射率波导,分布反馈波导实例: 如折射率波导:有源区和两侧限制区的折射率不同,有源区两侧解理面构成反射镜,在有源区电子受激发射出的光子由于有源区和限制区折射率的不同构成全反射,将光场限制在有源区内,光子只能在两侧解理面来回反射,激发出更多的光子,并在输出方向上传播。 四、双异质结未加偏压和加偏压的能带图 双异质结在激光器中的作用: (1)pn结处于正向电压时,异质结势垒降低,n区电子能够越过势垒和隧穿势垒而注入窄

LED半导体照明的发展与应用

LED半导体照明的发展与应用 者按:半导体技术在上个世纪下半叶引发的一场微电子革命,催生了微电子工业和高科技IT产业,改变了整个世界的面貌。今天,化合物半导体技术的迅猛发展和不断突破,正孕育着一场新的革命——照明革命。新一代照明光源半导体LED,以传统光源所没有的优点引发了照明产业技术和应用的革命。半导体LED固态光源替代传统照明光源是大势所趋。1、LED半导体照明的机遇 (1)全球性的能源短缺和环境污染在经济高速发展的中国表现得尤为突出,节能和环保是中国实现社会经济可持续发展所急需解决的问题。作为能源消耗大户的照明领域,必须寻找可以替代传统光源的新一代节能环保的绿色光源。 (2)半导体LED是当今世界上最有可能替代传统光源的新一代光源。 其具有如下优点: ①高效低耗,节能环保; ②低压驱动,响应速度快安全性高; ③固体化封装,耐振动,体积小,便于装配组合; ④可见光区内颜色全系列化,色温、色纯、显色性、光指向性良好,便于照明应用组合; ⑤直流驱动,无频闪,用于照明有利于保护人眼视力; ⑥使用寿命长。 (3)现阶段LED的发光效率偏低和光通量成本偏高是制约其大规模进入照明领域的两大瓶颈。目前LED的应用领域主要集中在信号指示、智能显示、汽车灯具、景观照明和特殊照明领域等。但是,化合物半导体技术的迅猛发展和关键技术的即将突破,使今天成为大力发展半导体照明产业的最佳时机。2003年我国人均GDP首次突破1000美元大关,经济实力得到了进一步的增强,市场上已经初步具备了接受较高光通量成本(初始成本)光

源的能力。在未来的10~20年内,用半导体LED作为光源的固态照明灯,将逐渐取代传统的照明灯。 (4)各国政府予以高度重视,相继推出半导体照明计划,已形成世界性的半导体照明技术合围突破的态势。 ①美国:“下一代照明计划”时间是2000~2010年投资5亿美元。美国半导体照明发展蓝图如表1所示; ②日本:“21世纪的照明计划”,将耗费60亿日元推行半导体照明目标是在2006年用白光LED替代50%的传统照明; ③欧盟:“彩虹计划”已在2000年7月启动通过欧共体的资助推广应用白光LED照明; ④中国:2003年6月17日,由科技部牵头成立了跨部门、跨地区、跨行业的“国家半导体照明工程协调领导小组”。从协调领导小组成立之日到2005年年底之前,将是半导体照明工程项目的紧急启动期。从2006年的“十一五”开始,国家将把半导体照明工程作为一个重大项目进行推动; (5)我国 的半导体LED产业链经过多年的发展已相对完善,具备了一定的发展基础。同时,我国又是照明灯具产业的大国,只要政府和业界协调整合好,发展半导体LED照明产业是大有可为的; 2LED的发展历程(如图1所示) 2.1LED技术突破的历程

常用半导体器件习题考答案

第7章 常用半导体器件 习题参考答案 7-1 计算图所示电路的电位U Y (设D 为理想二极管)。 (1)U A =U B =0时; (2)U A =E ,U B =0时; (3)U A =U B =E 时。 解:此题所考查的是电位的概念以及二极管应用的有关知识。从图中可以看出A 、B 两点电位的相对高低影响了D A 和D B 两个二极管的导通与关断。 当A 、B 两点的电位同时为0时,D A 和D B 两个二极管的阳极和阴极(U Y )两端电位同时为0,因此均不能导通;当U A =E ,U B =0时,D A 的阳极电位为E ,阴极电位为0(接地),根据二极管的导通条件,D A 此时承受正压而导通,一旦D A 导通,则U Y >0,从而使D B 承受反压(U B =0)而截止;当U A =U B =E 时,即D A 和D B 的阳极电位为大小相同的高电位,所以两管同时导通,两个1k Ω的电阻为并联关系。本题解答如下: (1)由于U A =U B =0,D A 和D B 均处于截止状态,所以U Y =0; (2)由U A =E ,U B =0可知,D A 导通,D B 截止,所以U Y =E ? +9 19=109E ; (3)由于U A =U B =E ,D A 和D B 同时导通,因此U Y =E ?+5.099=1918E 。 7-2 在图所示电路中,设D 为理想二极管,已知输入电压u i 的波形。试画出输出电压u o 的波形图。 解:此题的考查点为二极管的伏安特性以及电路的基本知识。 首先从(b )图可以看出,当二极管D 导通时,电阻为零,所以u o =u i ;当D 截止时,电阻为无穷大,相当 于断路,因此u o =5V ,即是说,只要判断出D 导通与否, 就可以判断出输出电压的波形。要判断D 是否导通,可 以以接地为参考点(电位零点),判断出D 两端电位的高 低,从而得知是否导通。 u o 与u i 的波形对比如右图所示: 7-3 试比较硅稳压管与普通二极管在结构和运用上有 何异同 (参考答案:见教材) 7-4 某人检修电子设备时,用测电位的办法,测出管脚①对地电位为-;管脚②对地电位

半导体照明技术及其应用

《半导体照明技术及其应用》课程教学大纲 (秋季) 一、课程名称:半导体照明技术及其应用Semiconductor Lighting Technology and Applications 二、课程编码: 三、学时与学分:32/2 四、先修课程: 微积分、大学物理、固体物理、半导体物理、微电子器件与IC设计 五、课程教学目标: 半导体照明是指用全固态发光器件LED作为光源的照明,具有高效、节能、环保、寿命长、易维护等显著特点,是近年来全球最具发展前景的高新技术领域之一,是人类照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。本课程注重理论的系统性﹑结构的科学性和内容的实用性,在重点讲解发光二极管的材料、机理及其制造技术后,详细介绍器件的光电参数测试方法,器件的可靠性分析、驱动和控制方法,以及各种半导体照明的应用技术,使学生学完本课程以后,能对半导体照明有深入而全面的理解。 六﹑适用学科专业:电子科学与技术 七、基本教学内容与学时安排: 绪论(1学时) 半导体照明简介、学习本课程的目的及要求 第一章光视觉颜色(2学时) 1光的本质 2光的产生和传播 3人眼的光谱灵敏度 4光度学及其测量 5作为光学系统的人眼 6视觉的特征与功能 7颜色的性质 8国际照明委员会色度学系统 9色度学及其测量 第二章光源(1学时) 1太阳 2月亮和行星 3人工光源的发明与发展 4白炽灯 5卤钨灯 6荧光灯 7低压钠灯

8高压放电灯 9无电极放电灯 10发光二极管 11照明的经济核算 第三章半导体发光材料晶体导论(2学时) 1晶体结构 2能带结构 3半导体晶体材料的电学性质 4半导体发光材料的条件 第四章半导体的激发与发光(1学时) 1PN结及其特性 2注入载流子的复合 3辐射与非辐射复合之间的竞争 4异质结构和量子阱 第五章半导体发光材料体系(2学时) 1砷化镓 2磷化镓 3磷砷化镓 4镓铝砷 5铝镓铟磷 6铟镓氮 第六章半导体照明光源的发展和特征参量(1学时)1发光二极管的发展 2发光二极管材料生长方法 3高亮度发光二极管芯片结构 4照明用LED的特征参数和要求 第七章磷砷化镓、磷化镓、镓铝砷材料生长(3学时)1磷砷化镓氢化物气相外延生长(HVPE) 2氢化物外延体系的热力学分析 3液相外延原理 4磷化镓的液相外延 5镓铝砷的液相外延 第八章铝镓铟磷发光二极管(2学时) 1AlGaInP金属有机物化学气相沉积通论 2外延材料的规模生产问题 3电流扩展 4电流阻挡结构 5光的取出 6芯片制造技术

常用半导体元件习题及答案

第5章常用半导体元件习题 5.1晶体二极管 一、填空题: 1.半导体材料的导电能力介于和之间,二极管是将 封装起来,并分别引出和两个极。 2.二极管按半导体材料可分为和,按内部结构可分为_和,按用途分类有、、四种。3.二极管有、、、四种状态,PN 结具有性,即。4.用万用表(R×1K档)测量二极管正向电阻时,指针偏转角度,测量反向电阻时,指针偏转角度。 5.使用二极管时,主要考虑的参数为和二极管的反向击穿是指。 6.二极管按PN结的结构特点可分为是型和型。 7.硅二极管的正向压降约为 V,锗二极管的正向压降约为 V;硅二极管的死区电压约为 V,锗二极管的死区电压约为 V。 8.当加到二极管上反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象。 9.利用万用表测量二极管PN结的电阻值,可以大致判别二极管的、和PN结的材料。 二、选择题: 1. 硅管和锗管正常工作时,两端的电压几乎恒定,分别分为( )。 A.0.2-0.3V 0.6-0.7V B. 0.2-0.7V 0.3-0.6V C.0.6-0.7V 0.2-0.3V D. 0.1-0.2V 0.6-0.7V 的大小为( )。 2.判断右面两图中,U AB A. 0.6V 0.3V B. 0.3V 0.6V C. 0.3V 0.3V D. 0.6V 0.6V 3.用万用表检测小功率二极管的好坏时,应将万用表欧姆档拨到() Ω档。 A.1×10 B. 1×1000 C. 1×102或1×103 D. 1×105 4. 如果二极管的正反向电阻都很大,说明 ( ) 。 A. 内部短路 B. 内部断路 C. 正常 D. 无法确定 5. 当硅二极管加0.3V正向电压时,该二极管相当于( ) 。 A. 很小电阻 B. 很大电阻 C.短路 D. 开路 6.二极管的正极电位是-20V,负极电位是-10V,则该二极管处于()。 A.反偏 B.正偏 C.不变D. 断路 7.当环境温度升高时,二极管的反向电流将() A.增大 B.减小 C.不变D. 不确定 8.PN结的P区接电源负极,N区接电源正极,称为()偏置接法。

2章 常用半导体器件及应用题解

第二章常用半导体器件及应用 一、习题 2.1填空 1. 半导材料有三个特性,它们是、、。 2. 在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。 3. 二极管的主要特性是。 4.在常温下,硅二极管的门限电压约为V,导通后的正向压降约为V;锗二极管的门限电压约为V,导通后的正向压降约为V。 5.在常温下,发光二极管的正向导通电压约为V,考虑发光二极管的发光亮度和寿命,其工作电流一般控制在mA。 6. 晶体管(BJT)是一种控制器件;场效应管是一种控制器件。 7. 晶体管按结构分有和两种类型。 8. 晶体管按材料分有和两种类型。 9. NPN和PNP晶体管的主要区别是电压和电流的不同。 10. 晶体管实现放大作用的外部条件是发射结、集电结。 11. 从晶体管的输出特性曲线来看,它的三个工作区域分别是、、。 12. 晶体管放大电路有三种组态、、。 13. 有两个放大倍数相同,输入电阻和输出电阻不同的放大电路A和B,对同一个具有内阻的信号源电压进行放大。在负载开路的条件下,测得A放大器的输出电压小,这说明A 的输入电阻。 14.三极管的交流等效输入电阻随变化。 15.共集电极放大电路的输入电阻很,输出电阻很。 16.射极跟随器的三个主要特点是、、。 17.放大器的静态工作点由它的决定,而放大器的增益、输入电阻、输出电阻等由它的决定。 18.图解法适合于,而等效电路法则适合于。 19.在单级共射极放大电路中,如果输入为正弦波,用示波器观察u o和u i的波形的相位关系为;当为共集电极电路时,则u o和u i的相位关系为。 20. 在NPN共射极放大电路中,其输出电压的波形底部被削掉,称为失真,原因是Q点(太高或太低),若输出电压的波形顶部被削掉,称为失真,原因是Q 点(太高或太低)。如果其输出电压的波形顶部底都被削掉,原因是。 21.某三极管处于放大状态,三个电极A、B、C的电位分别为9V、2V和1.4V,则该三极管属于型,由半导体材料制成。 22.在题图P2.1电路中,某一元件参数变化时,将U CEQ的变化情况(增加;减小;不变)填入相应的空格内。 (1) R b增加时,U CEQ将。 (2) R c减小时,U CEQ将。 (3) R c增加时,U CEQ将。 (4) R s增加时,U CEQ将。 (5) β增加时(换管子),U CEQ将。

相关文档
最新文档