半导体光电效应及其应用
光电效应对半导体器件性能的影响分析

光电效应对半导体器件性能的影响分析引言:光电效应是指在光照条件下,物质吸收光能后,产生电子束的现象。
在半导体器件中,光电效应是一项至关重要的物理现象,对其性能产生重大影响。
本文将探讨光电效应对半导体器件性能的影响,并分析其中的机制、类型和应用。
第一部分:光电效应的机制和原理光电效应是基于光子的量子行为,当光子与物质相互作用时,能量和动量的转移会导致电子的激发和发射。
光电效应的机制主要包括光吸收、电子激发和电子释放三个过程。
首先,光吸收是光电效应的起始步骤。
来自光源的光子能量可以被半导体吸收,使得物质内部的电子从基态跃迁到激发态。
接下来,电子激发是指吸收光射后,电子的能级跃迁。
在半导体中,电子激发可能会导致载流子生成以及电子和空穴的寿命延长。
最后,电子释放是指光吸收后,电子从高能级返回基态并重新辐射光子的过程。
通过这种方式,光电效应将电子能量转化为光能量。
第二部分:光电效应的类型和应用光电效应可以分为光电导效应、理研电效应和光电效应三种类型。
首先,光电导效应是指当光照射在半导体器件中时,光子能量激发了电子和空穴,形成电导效应。
这种效应常用于可见光传感器、光电导开关和光电传感器等器件中。
其次,理研电效应是指光照射后产生电场效应。
在半导体器件中,由于光激发电荷分离,会形成一个电场,从而影响器件的电学性能。
例如,太阳能电池就是通过理研电效应将光能转化为电能的。
最后,光电效应是指光子激发了光电子,将光能转化为电能。
这种效应广泛应用于半导体光电器件,如光电二极管、光电晶体管和光电场效应等。
第三部分:光电效应对半导体器件性能的影响光电效应对半导体器件性能产生了多重影响。
首先,光电效应可以增加半导体器件的灵敏度和响应速度。
当光照射到器件表面时,光子的能量可以激发更多的载流子,并加速其移动速度。
这样一来,器件可以提高其信号检测灵敏度,并提高其响应速度。
其次,光电效应可以影响器件的电学特性。
通过光电效应,电子和空穴会产生电场和电流,并改变器件的电子能带结构和电荷分布。
半导体材料的光电特性与光传感器应用

半导体材料的光电特性与光传感器应用随着科学技术的不断发展,半导体材料在光电领域的应用日趋广泛。
本文将着重探讨半导体材料的光电特性以及光传感器应用,并展示它们在现代社会中的重要性。
一、半导体材料的光电特性半导体材料是一种能够在特定条件下既表现出导电性又表现出绝缘性的材料。
其光电特性是指在光照射下发生的电学行为。
下面我们将从两个方面来讨论半导体材料的光电特性。
1. 光吸收与光电子激发当光照射到半导体材料上时,光子的能量被转化为电子能量。
这个过程被称为光吸收。
光子的能量必须与半导体的带隙能量相匹配,才能发生吸收。
当光子能量大于带隙能量时,超过带隙能量的部分被用于电子激发,产生与光子能量相等的自由电子。
2. 光电导与光电流光电导是指在光照射下,由于光电子的产生而导致的材料电导率的增加。
光电导可以通过外加电场来提高,从而增加电流的传导能力。
光电流是指在光照射下,由于光电子的产生而流过材料的电流。
二、光传感器的应用光传感器是一种能够将光信号转化为电信号的器件。
由于半导体材料的光电特性,在光传感器的设计与制造中发挥了重要作用。
下面我们将介绍两种光传感器的应用。
1. 光电二极管光电二极管是一种基于PN结构的光传感器。
当光照射到光电二极管上时,光子的能量被转化为电子能量,产生光电效应。
这些光电子在PN结的电场作用下,形成电流。
光电二极管广泛应用于光通信、光电测量、光电检测等领域。
2. 光敏电阻光敏电阻是一种能够通过改变电阻来感应光强的光传感器。
它由导电材料和光敏材料组成。
当光照射到光敏电阻上时,光敏材料的电导性会发生变化,进而引起整个电阻的变化。
光敏电阻常用于光照度检测、光电自动控制等场景。
三、光电特性与光传感器应用的重要性半导体材料的光电特性以及光传感器的应用在现代社会中具有重要的意义。
首先,光电特性的研究使得我们对半导体材料的电子行为有了更深入的了解,为材料的改进和优化提供了指导。
其次,光传感器的应用使得光信号的精确测量和控制成为可能,促进了光学领域的发展。
光电效应及其应用

光电效应及其应用光电效应是指当光照射到金属或半导体表面时,电子受到光能的激发而从材料中释放出来的一种现象。
这一效应的发现和研究对于揭示光的本质和推动光电子学的发展具有重要意义。
本文将介绍光电效应的原理和应用领域。
一、光电效应的原理光电效应是在20世纪初由爱因斯坦解释和阐述的。
根据爱因斯坦的理论,光视为光子粒子流,其能量和频率与光子的粒子数和频率成正比。
当光照射到金属表面时,光子会与金属表面的电子发生碰撞,使得某些电子具有足够的能量逃离金属表面,并形成自由电子。
这个过程涉及到光子的能量吸收和电子的能级结构,而光电效应的发生与光的强度、频率和金属的材料属性有关。
二、光电效应的应用1. 光电池光电效应产生的自由电子可以通过合适的电路进行收集和利用。
利用半导体材料和光电效应原理制造的光电池,可以将光能直接转化为电能。
光电池广泛应用于太阳能电池板、光电传感器等领域,为可再生能源的开发和利用提供了重要的技术支持。
2. 光电子器件光电效应在光电子器件中的应用也非常广泛。
例如,光电二极管是一种能够将光信号转化为电信号的装置,常用于光通信、光计量等领域。
光电效应还可以用于制造光电倍增管、光电子显像管等光电子器件,广泛应用于光学测量、成像等技术领域。
3. 光电子学研究光电效应也为光电子学研究提供了实验基础和理论依据。
研究光电效应可以揭示光的粒子性质和光与物质相互作用的机制,为开发新的光电子器件和技术提供了指导。
同时,通过研究和改进光电效应,人们也可以探索新的光学现象和应用,推动光电子学的发展。
4. 光电效应的科学研究光电效应是研究电磁辐射与物质相互作用的重要现象之一。
科学家通过研究光电效应,深入探讨了光的粒子性质、波动性质和电子结构等问题,对于量子力学和光学等学科的发展起到了重要的推动作用。
总结:光电效应作为一项重要的光学现象和物理现象,具有广泛的应用和科研价值。
通过光电效应的研究和应用,可以实现光能到电能的转换,广泛应用于能源、通信、测量、成像等领域。
半导体光电效应及其应用

半导体光电效应及其应用量子力学无疑是20世纪最伟大的科学成就之一,它的诞生是人类对自然界,尤其对微观世界的认识有了质的飞跃,对许多造福人类的高新技术的发展起了奠基、催生和巨大的推动作用。
自20世纪中期开始,电子工业取得了长足的进步,目前已成为世界上最大的产业,而其基础为半导体材料。
为了适应电子工业的巨大需求,从第一代半导体材料:硅、锗(1822年,瑞典化学家白则里用金属钾还原氟化硅得到了单质硅。
)发展到第二代半导体材料:Ⅲ——Ⅴ族化合物,再到现在的第三代半导体材料:宽带隙半导体。
半导体领域取得了突飞猛进的发展。
一、光电效应光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。
这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。
这一现象是1887年赫兹在实验研究麦克斯韦电磁理论时偶然发现的。
1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。
1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论。
光电效应分为光电子发射、光电导效应和光生伏特效应。
前一种现象发生在物体表面,物体在光的照射下光电子飞到物体外部的现象,又称外光电效应。
后两种现象发生在物体内部,物体受光照射后,其内部的原子释放出电子并不溢出物体表面,而是仍留在内部,称为内光电效应。
内、外光电效应在光电器件和光电子技术中具有重要的作用,根据这些效应可制成不同的光电转换器件(光敏器件)。
通过大量的实验总结出光电效应具有如下实验规律:1、每一种金属在产生光电效应是都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。
相应的波长被称做极限波长(或称红限波长)。
当入射光的频率低于极限频率时,无论多强的光都无光电子逸出。
2、光电效应中产生的光电子的速度与光的频率有关,而与光强无关。
3、光电效应的瞬时性。
光电效应的原理及其在电子学中的应用

光电效应的原理及其在电子学中的应用光电效应是近代物理学的重要发现之一,它揭示了光与物质之间的基本相互作用方式。
光电效应的观察者能够吸收光子能量,从而释放出电子,这为电子学领域的研究和应用提供了重要的基础。
一、光电效应的基本原理光电效应的基本原理可以概括为:当金属或半导体受到光照射时,高能量的光子会与金属表面的电子碰撞,使得电子从金属中解离出来。
根据光电效应的经典理论,光子能量与光电子的动能之间存在简单的线性关系,即E = hν - φ,其中E为电子的动能,h为普朗克常数,ν为光子的频率,φ为金属的逸出功。
这一原理的实验观测最早由爱因斯坦进行,并且其结果与经典物理的预言不一致,从而推翻了当时对于光子的理解。
爱因斯坦提出了光子的粒子性质,并通过解释光电效应的非连续特性,为量子物理理论奠定了基础。
二、光电效应的应用光电效应的应用广泛存在于电子学领域,以下分别介绍其在光电二极管、太阳能电池和雾霾监测中的应用。
1. 光电二极管光电二极管是一种利用光电效应的器件,能够将光信号转化为电信号。
当光照射到光电二极管的p-n结区域时,根据光电效应,一部分光子将被吸收并释放出电子。
这些电子在外加电压的作用下,便能够形成电流,并通过外部电路传递出来。
光电二极管广泛应用于光通信、遥感测量和光电转换等领域。
例如,在光通信中,光电二极管可以将光信号转换成电信号,实现信息的传输和接收。
2. 太阳能电池太阳能电池利用光电效应将太阳辐射能转化为电能。
太阳能电池一般由多个p-n结组成,形成电荷分离区。
当光照射到太阳能电池上时,光子将激发电子从p区跃迁到n区,形成产生电流的电势差。
太阳能电池的应用领域包括太阳能发电、太阳能电源等。
随着环境保护意识的增强和可再生能源的重要性的凸显,太阳能电池得到了广泛的关注和应用。
3. 雾霾监测光电效应在雾霾监测中也发挥着重要的作用。
随着城市化进程的加速,大气污染日益严重。
通过利用光电效应,可以设计并制造出一系列能够检测和测量大气中各种污染物的传感器。
光电效应及其在现代科技中的应用

光电效应及其在现代科技中的应用光电效应是指光子照射到物质表面时,由于光子的能量被物质吸收,从而使得物质中的电子获得足够能量逃离原子束缚,使其成为自由电子的过程。
这种现象在19世纪末被德国物理学家汉斯·赫兹首次观测到,并为之后量子力学的发展打下了基础。
光电效应的发现不仅在理论物理学领域具有重要意义,而且在现代科技中也有广泛的应用。
首先,光电效应在太阳能电池中的应用是最为突出的。
太阳能电池利用光电效应将太阳光直接转化为电能。
当光子照射到半导体材料表面时,光子的能量被电子吸收,使得电子获得足够的能量跃迁到导带中,形成一个电子空穴对。
通过导电材料中的电子流动,太阳能被转换为电能。
这种转换原理使得太阳能电池成为一种可再生的绿色能源,并且在各种应用场景中广泛使用,例如航天器、家庭光伏发电系统等。
其次,光电效应在数字摄像技术中的应用也是不可忽视的。
数码相机的成像过程就是基于光电效应的原理。
光线通过镜头,聚焦在光敏元件(如CMOS或CCD芯片)上,光子的能量被光敏元件吸收后,电子从价带跃迁至导带中,形成电子空穴对。
然后,通过传感器将这些光电信号转化为电信号,再经过数模转换器转化为数字信号,最终生成图像。
保持了物体原有的形状和颜色。
光电效应的应用使得摄影成为了人们生活中不可或缺的一部分,促进了数字图像技术的迅速发展。
此外,光电效应在激光技术中的应用也是非常重要的。
激光是通过光电效应产生的高强度、高相干度的激光束。
当光子照射到激光器材料时,光子的能量使得该材料中的电子跃迁到激发态,形成多个处于激发态的电子,即处于寿命较长的亚稳态。
然后通过光学谐振腔逐渐放大得到强光束。
激光的应用非常广泛,例如在激光切割、激光打码、激光医疗设备以及激光测量设备等领域都有重要贡献。
光电效应的理论基础为激光技术的发展提供了坚实的基础。
最后,光电效应还在光通信技术中发挥着重要作用。
光通信是一种利用光电效应将信息转换为光信号进行传输的技术。
半导体材料有哪些特性及应用

半导体材料特性及应用半导体材料是一种介于导体和绝缘体之间的材料,具有特殊的电子结构和导电性质。
半导体材料具有多种独特的特性,使其在电子、光电子、光伏和光通信等领域有广泛的应用。
半导体材料的主要特性1. 能带结构:半导体材料的电子能隙较窄,介于导体和绝缘体之间,使其在一定条件下可导电。
2. 斯特克斯位:半导体材料中的离子实栅靠近导带边缘,使电子在能带中具有很大的有效质量,有利于电子迁移。
3. 自由载流子浓度调控:通过施加外电场或调控杂质,可以有效调控半导体中的自由载流子浓度,实现半导体材料的导电性能调节。
4. 温度特性:半导体材料的电导率和载流子浓度都会随温度的变化而变化,通常表现为负温度系数。
5. 光电效应:半导体材料对光具有敏感性,可以通过光照射产生电子空穴对,实现光电转换及光电控制。
半导体材料的应用电子领域应用•集成电路(IC):半导体材料在微电子领域中广泛应用,作为IC芯片的基础材料,实现电子元器件、逻辑电路等功能。
•太阳能电池:半导体材料通过光电效应转化光能为电能,广泛应用于太阳能电池板制造。
光电子领域应用•激光器:利用半导体材料的光电效应和电子受激辐射特性,制作激光器用于光通信、医疗等领域。
•LED:利用半导体材料的电子激发辐射特性制造发光二极管,广泛应用于照明、显示等领域。
光伏领域应用•光伏电池:利用半导体材料的光电转换特性,制造光伏电池转化光能为电能,应用于太阳能发电系统。
光通信领域应用•光纤通信:利用半导体激光器和探测器构成的光通信系统,提供高速、远距离的光通信服务。
综上所述,半导体材料由于其特殊的电子结构和性质,在电子、光电子、光伏和光通信领域有着重要而广泛的应用。
随着科学技术的不断发展,半导体材料的应用前景将更为广阔。
光电效应的应用

光电效应的应用光电效应是指当光线照射到金属或半导体的表面时,会引发电子的释放并形成电流的现象。
这一现象广泛应用于多个领域,包括科学研究、能源产业和信息技术等。
以下是一些光电效应在不同领域中的应用:光电池光电池是利用光电效应将光能转化为电能的设备。
光电池已经成为可再生能源领域的重要组成部分,被广泛应用于太阳能电池板、户外照明和移动电源等场景。
光电池的应用有助于减少对传统化石能源的依赖,降低能源消耗和环境污染。
光电探测器光电探测器利用光电效应来检测和测量光线的特性。
例如,光电探测器可用于光谱分析、线性测量和红外探测等应用中。
光电探测器的高灵敏度和快速响应特性使其在科学研究和医学诊断领域得到广泛应用。
光电二极管光电二极管是一种利用光电效应将光能转化为电能的电子器件。
它主要应用于光通信、光电转换和光控制等领域。
光电二极管的快速响应、高效能和可靠性使其成为现代通信和信息技术中不可或缺的组成部分。
光电倍增管光电倍增管是一种利用光电效应将光信号放大的装置。
它常用于低光级信号的放大和检测,例如光子计数、天文观测和核物理实验等。
光电倍增管的高增益和低噪声特性使其在科学研究和粒子探测领域具有重要作用。
光电传感器光电传感器利用光电效应来实现物体检测和测距功能。
它广泛应用于自动化控制、机器人技术和智能手机等设备中。
光电传感器的高灵敏度、快速反应和可靠性使其在现代工业和消费电子领域发挥着重要作用。
综上所述,光电效应在光电池、光电探测器、光电二极管、光电倍增管和光电传感器等领域的应用,对于推动科技进步、能源转型和信息技术的发展具有重要意义。
通过进一步研究和创新,我们可以探索更多基于光电效应的应用,为人类社会的可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体光电效应及其应用
量子力学无疑是20世纪最伟大的科学成就之一,它的诞生是人类对自然界,尤其对微观世界的认识有了质的飞跃,对许多造福人类的高新技术的发展起了奠基、催生和巨大的推动作用。
自20世纪中期开始,电子工业取得了长足的进步,目前已成为世界上最大的产业,而其基础为半导体材料。
为了适应电子工业的巨大需求,从第一代半导体材料:硅、锗(1822年,瑞典化学家白则里用金属钾还原氟化硅得到了单质硅。
)发展到第二代半导体材料:Ⅲ——Ⅴ族化合物,再到现在的第三代半导体材料:宽带隙半导体。
半导体领域取得了突飞猛进的发展。
一、光电效应
光照射到某些物质上,引起物质的电性
质发生变化,也就是光能量转换成电能。
这
类光致电变的现象被人们统称为光电效应
(Photoelectric effect)。
这一现象是
1887年赫兹在实验研究麦克斯韦电磁理论
时偶然发现的。
1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。
1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论。
光电效应分为光电子发射、光电导效应和光生伏特效应。
前一种现象发生在物体表面,物体在光的照射下光电子飞到物体外部的现象,又称外光电效应。
后两种现象发生在物体内部,物体受光照射后,其内部的原子释放出电子并不溢出物体表面,而是仍留在内部,称为内光电效应。
内、外光电效应在光电器件和光电子技术中具有重要的作用,根据这些效应可制成不同的光电转换器件(光敏器件)。
通过大量的实验总结出光电效应具有如下实验规律:
1、每一种金属在产生光电效应是都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。
相应的波长被称做极限波长
(或称红限波长)。
当入射光的频率低于极限频率时,无论多强的光都无光电子逸出。
2、光电效应中产生的光电子的速度与光的频率有关,而与光强无关。
3、光电效应的瞬时性。
实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,响应时间不超过十的负九次方秒(1ns)。
4、入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。
1、外光电效应
不言而喻,就是物体在光的照射下光电子飞到物体外部的现象,光电效应的发现与最初的研究就是主要通过外光电效应来进行的。
2.光电导效应
光吸收使半导体中形成非平衡载流子(光生载流子),载流子浓度的增大使其电导率σ增大,所引起的附加电导率称为光电导。
光电导效应是光电子器件的基础。
半导体材料对光的吸收系数随光的波长而变化,所以光电导具有一定的光谱分布。
3.光生伏特效应
如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。
界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。
非平衡的载流子从产生处向势垒区(结区)运动;非平衡的电子和空穴在结区势场的作用下向相反的方向运动而分离。
P区的非平衡电子穿过p-n结进入n区,而n区的非平衡空穴进入p区,从而在p型和n型区有电荷积累。
由于p区边界积累非平衡空穴,n区边界积累非平衡电子,产生一个与平衡p-n结内电场方向相反的光生电场,于是在p区和n区建立了光生电动势。
此时可在硅片的两边加上电极并接入电压表。
对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。
通过光照在界面层产生的电子-空
穴对越多,电流越大。
界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。
二、光电效应的应用
1.光电探测器
光电探测器是通过电过程探测光信号的半导体器件。
伴随着相干和非相干光源相远红外波段及紫外波段的扩展,对高速、高灵敏光电探测器的需求迅速增加,通常来讲,光电探测器包括三个基本过程:1)入射光产生载流子;2)通过某种电流增益机制形成载流子的输入和倍增;3)载流子形成端电流,提供输出信号。
在红外波段(0.8~1.6um)的光纤通信系统中,光电探测器十分重要,它可对光信号进行解调,即将光的变化转化为电学量的变化,然后将电学量放大并进一步处理。
对于此类应用,光电探测器必须满足若干要求,例如在工作波段上要有高的灵敏度、快速的响应速度和低噪声。
另外,光电探测器的体积应该较小,工作偏置电压和电流低,并且在使用条件下可靠工作。
1983年至1985年间,人们首次研究了量子阱中导带内、价带内的非带间跃迁的红外吸收。
第一个基于束缚态到束缚态子带间跃迁的功能性异质结量子阱红外光电探测器有Levine等人在1987年实现。
本例中gaas为量子阱。
其厚度约为5nm,通常是掺杂浓度为10^17cm^(-3)量级的n型半导体。
势垒层不掺杂,其厚度约为30~50nm之间。
典型周期数在20~50之间。
对于由直接黛西材料形成的量子阱,因为子带间跃迁要求电磁波的电场有与量子阱的生长面垂直的分量,所以入射光垂直于表面时,吸收为零。
这种计划选择规则需要某种技术使光与光敏感区耦合。
Qwip基于由子带间激发产生的光电导。
跃迁的三种类型。
在束缚态到束缚态的跃迁中,两个量子化的能量状态是被限定的,并且低于势垒能量。
一个光子激发一个电子从基态跃迁到第一激发态上,随后电子隧穿出势阱;在束缚态到连续态(或束缚态到扩展态)激发中,基态上面的第一激发态能量高于势垒,受激电子可以更容易地逃离势阱,这种束缚态到连续态的激发对于具有高吸收、宽波长响应、低暗电流、高探测率和低压应用的探测器更有保障;对于束缚态到微带之间的跃迁,由于超晶格结构提出了微带的概念,基于此跃迁的qwip很适合于
焦点平面阵列成像传感器系统的应用。
Qwip的暗电流是由于越过量子阱势垒的热电子发射和势垒尖峰附近的热电子场发射造成的。
由于此类光探测器针对约3~20um的波长范围,因此形成量子阱的势垒必须小,约为0.2eV。
为了限制暗电流,qwip必须在4~77K的低温下工作。
Qwip对于用HgCdTe材料制作的波长光电探测器是一个具有吸引力的替代结构。
HgCdTe光电探测器的问题在于遂穿暗电流过大,以及需要准确的组分重复能力以获得精确的带隙。
Qwip与GaAs单片集成电路工艺兼容,可根据量子阱的厚度调整检测波长范围。
研究表明,已有接近20um的长波探测能力。
Qwip 可以用于两维成像的焦点平面阵列,其具体事例为热成像和陆地成像。
Qwip具有高速和响应快等特性,这是由于在量子阱中,本征载流子寿命较短(数量级为5ps)。
2.太阳能电池
太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。
这就是光电效应太阳能电池的工作原理。
太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。
当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。
太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。
从长远来看,随着太阳能电池制造技术的改进以及新的光—电转换装置的发明,各国对环境的保护和对再生清洁能源的巨大需求,太阳能电池仍将是利用太阳辐射能比较切实可行的方法,可为人类未来大规模地利用太阳能开辟广阔的前景。
太阳能光伏发电在不远的将来会占据世
界能源消费的重要席位,不但要替代部分常
规能源,而且将成为世界能源供应的主体。
预计到2030年,可再生能源在总能源结构
中将占到30%以上,而太阳能光伏发电在世
界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。
这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。
由此可以看出,太阳能电池市场前景广阔。