完整版)完全平方公式变形公式专题

合集下载

(完整word版)完全平方公式变形的应用练习题2

(完整word版)完全平方公式变形的应用练习题2

乘法公式的拓展及常见题型整理一.公式拓展:拓展一:a 2 b 2 =(a b)2_2aba 2 1 = (a —)2- 2a a拓展二:(a b)2一(a _b)2=4ab(a b)2 = (a -b)24ab2 2 2a b =(a -b) 2ab a 2 4 = (a _丄)2 2 a a2 2 2 2 a b ]亠[a 「b 2a2b(a -b)2 = (a b)2 -4ab拓展三:a 2• b 2c 2=(a b c)2_2ab _2ac _2bc 拓展四:杨辉三角形(a b)‘ 二 a 3 3a 2b 3ab 2 b 3 (a b)4 二 a 4 4a 3b 6a 2b 2 4ab 3 b 4拓展五: 立方和与立方差(一) 公式倍比(1) ________________________________________________________ 如果 a - b=3, a - c = 1,那么 a - b i 亠 lb - c i 亠 i.c - a 的值是 __________________ — 1⑵ x y =1,则一 x 2 xy y 2=2 22 + 2⑶已知口 X(X_1) _(x 2_y) = -2,贝y -L _xy= __________2(二) 公式组合例题:已知(a+b) 2=7,(a-b) 2=3, 求值:(1)a 2+b 2(2)ab例题:已知a b =4,求ab 。

a 3b 3 = (a b)(a 2 _ab b 2) a 3 _b 3 二(a _b)(a 2 ab b 2).常见题型:⑴若(a —b)2=7, (a+b)2 =13,则a 2+b 2= ___________________ , ab = ________⑵设(5a + 3b ) 2= (5a — 3b ) 2+ A ,贝U A= __________ ⑶若(x _ y)2= (x • y)2a ,贝H a 为 __________⑷如果(x-y)2• M ^(x y)2,那么M 等于 ________________⑸已知(a+b) 2=m (a — b) 2=n ,贝U ab 等于 ________2 2⑹若(2a-3b) =(2a3b) N,则N 的代数式是 _________________⑺已知(a ,b)2=7,(a-b)2 =3,求 a 2 b 2 ab 的值为 _______________ 。

完全平方公式变形公式专题

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:拓展二:拓展三:拓展四:杨辉三角形拓展五: 立方与与立方差二.常见题型:(一)公式倍比例题:已知=4,求。

(1),则=(2)已知=(二)公式变形(1)设(5a +3b)2=(5a -3b)2+A,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果,那么M 等于(4)已知(a+b)2=m,(a —b)2=n,则ab 等于(5)若,则N 得代数式就是(三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 得值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 得值;(2)求x 2+3xy+y 2得值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b)2(2)a 2﹣6ab+b 2得值.(四)整体代入例1:,,求代数式得值。

例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值⑴若,则=⑵若,则= 若,则=⑶已知a2+b2=6ab且a>b>0,求得值为⑷已知,,,则代数式得值就是.(五)杨辉三角请瞧杨辉三角(1),并观察下列等式(2):根据前面各式得规律,则(a+b)6=.(六)首尾互倒1.已知m2﹣6m﹣1=0,求2m2﹣6m+=.2.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:得值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)得值;(2)得值.(七)数形结合1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)您认为图(2)中得阴影部分得正方形边长就是多少?(2)请用两种不同得方法求图(2)阴影部分得面积;(3)观察图(2),您能写出下列三个代数式之间得等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值.2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示.(1)请写出图3图形得面积表示得代数恒等式;(2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2.(八)规律探求15.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+ 1=292=(42+3×4+1)2…(1)根据您得观察、归纳、发现得规律,写出8×9×10×11+1得结果(2)试猜想n(n+1)(n+2)(n+3)+1就是哪一个数得平方,并予以证明.。

完全平方公式的变形及其应用专题练习(解析版)

完全平方公式的变形及其应用专题练习(解析版)

完全平方公式的变形及其应用专题练习一、选择题1、若a +b =7,ab =5,则(a -b )2=( ).A. 27B. 29C. 30D. 32答案:B解答:(a -b )2=a 2-2ab +b 2=(a +b )2-4ab将a +b =7,ab =5代入可得:原式=29.选B.2、设(5a +3b )2=(5a -3b )2+A ,则A =( ).A. 30abB. 60abC. 15abD. 12ab答案:B解答:A =(5a +3b )2-(5a -3b )2=(5a +3b +5a -3b )(5a +3b -5a +3b )=10a ·6b=60ab .选B.3、已知x +1x =3,则下列三个等式:①x 2+21x =7②x -1x 2x 2-6x =-2中,正确的有().A. ①②B. ①③C. ②③D. ①②③答案:B解答:①∵x +1x =3,∴(x +1x )2=32,∴x 2+2+21x =9,∴x 2+21x =7.∴①正确.②∵(x -1x )2=x 2-2+21x =7-2=5,∴x -1x =②错误③∵x+1x=3,∴x2+1=3x,∴x2-3x=-1,∴2x2-6-=-2.③正确4、若实数n满足(n-2015)2+(2014-n)2=1,则代数式(n-2015)(2014-n)的值为().A. 1B. 0C. 12D. -1答案:B解答:设n-2015=a,2014-n=b,∴a2+b2=(a+b)2-2ab=12-2ab,∴1-2ab=1ab=0,∴(n-2015)(2014-n)=0.二、填空题5、已知(x+y)2=32,xy=4,则(x-y)2=______.答案:16解答:(x-y)2=(x+y)2-4xy=32-4×4=16.6、a2+b2=17,ab=4,则a+b=______.答案:±5解答:∵a2+b2=17,ab=4,∴(a+b)2=a2+2ab+b2=17+8=25,∴a+b=±5.7、已知a>b,ab=2且a2+b2=5,则a-b=______.答案:1解答:∵a>b,即a-b>0,ab=2且a2+b2=5,∴(a-b)2=a2+b2-2ab=5-4=1,则a -b =1,故答案为:1.8、已知a +b =5,ab =3,则a 2+b 2=______.答案:19解答:把知a +b =5两边平方,可得:a 2+2ab +b 2=25,把ab =3代入得:a 2+b 2=25-6=19,故答案为:19.9、已知(m -n )2=8,mn =2,则m 2+n 2=______.答案:12解答:m 2+n 2=(m -n )2+2mn=8+2×2=12.10、如果m 2+3m -1=0,则m 2+21m =______. 答案:11解答:由已知,m ≠0, ∴213m m m+-=0, 即:m -=-3,m 2+21m =(m -1m)2+2=(-3)2+2=11. 11、已知长为a ,宽为b 的长方形的周长为14,面积为10,则a 2+b 2=______. 答案:29解答:∵周长为14,∴2(a +b )=14,即a +b =7,∵面积为10,∴ab =10,a 2+b 2=(a +b )2-2ab ,=49-20,=29.12、已知实数a 、b 满足ab =2,a +b =3,则代数式a 2+b 2的值等于______. 答案:5解答:a 2+b 2=(a +b )2-2ab =32-2×2=9-4=5故答案为:5.13、已知a +b =2,ab =-1,则3a +ab +3b =______;a 2+b 2=______. 答案:5;6解答:∵a +b =2,ab =-1,∴3a +ab +3b =3(a +b )+ab =3×2+(-1)=5,a 2+b 2=(a +b )2-2ab =22-2×(-1)=4+2=6.14、已知a -b =3,ab =-1,则a 2+b 2=______,(a +b )2=______. 答案:7;5解答:∵a -b =3,∴(a -b )×(a -b )=3×3=9,∴a 2-ab -ab +b 2=9,即a 2+b 2=9+2ab , 又∵ab =-1,∴a 2+b 2=9+2×(-1)=9-2=7;原式=(a -b )2+4ab ,( )=9+(-4),=5.故答案为:7;5.15、已知x +1x =5,那么x 2+21x=______. 答案:23 解答:∵x +1x=5, ∴x 2+21x =(x +1x )2-2=25-2=23. 16、已知xy +x +y =5,x 2y +xy 2=7,则x 2y 2+2xy +1+x 2+y 2的值为______. 答案:12解答:令xy =a ,x +y =b ,则xy +x +y =a +b =5,x 2y +xy 2=xy (x +y )=ab =7.原式=x 2y 2+1+(x +y )2=a 2+b 2+1=(a +b )2-2ab +1=52-14+1=12. 故答案为:12.17、已知实数a 、b 满足(a +b )2=1,(a -b )2=25,求a 2+b 2+ab =______.答案:7解答:a 2+b 2=()()222a b a b -++=13,ab =()()224a b a b -+-=-6,a 2+b 2+ab =718、已知(200-a )(198-a )=999,那么(200-a )2+(198-a )2=______. 答案:2002解答:∵(200-a )(198-a )=999,(200-a )-(198-a )=2,∴(200-a )2+(198-a )2=[(200-a )-(198-a )]2+2(200-a )(198-a )=2002.19、已知:a -1a =2,则a 2+21a =______,a 4+41a =______. 答案:6;34解答:∵a 2+21a =(a -1a )2+2×a ×1a , ∴a 2+21a=4+2=6, ∵a 4+41a =(a 2+21a )2-2×a 2×21a, ∴a 4+41a=36-2=34. 三、解答题20、已知a +b =3,ab =-10.求:(1)a 2+b 2的值.(2)(a -b )2的值.答案:(1)29(2)49.解答:(1)∵a +b =3,ab =-10,a 2+b 2=(a +b )2-2ab =9+20=29. (2)∵a +b =3,ab =-10,∴(a -b )2=(a +b )2-4ab =9-4×(-10)=49.21、已知x2+y2=25,x+y=7,求x-y的值.答案:x-y=±1.解答:∵x+y=7,∴(x+y)2=x2+2xy+y2=49,∵x2+y2=25,∴2xy=24,∴(x-y)2=x2+y2-2xy=25-24=1.∴x-y=±1.22、已知x+y=5,xy=3,求x2+y2,x3+y3,x4+y4,x6+y6的值.答案:19;80;343;6346.解答:x2+y2=(x+y)2-2xy=19;x3+y3=(x+y)(x2-xy+y2)=80;x4+y4=(x2+y2)2-2x2y2=192-2×9=343;x6+y6=(x3+y3)2-2x3y3=6346.23、已知x+y=3,(x+3)(y+3)=20.(1)求xy的值.(2)求x2+y2+4xy的值.答案:(1)2.(2)13.解答:(1)∵(x+3)(y+3)=20,∴(x+3)(y+3)=xy+3(x+y)+9=20,∵x+y=3,∴xy=20-9-3×3=2.(2)∵x+y=3,∴(x+y)2=x2+y2+2xy=9,∴x2+y2+4xy=x2+y2+2xy+2xy=9+4=13.24、已知a+b=5,ab=3.(1)求a2b+ab2的值.(2)求a2+b2的值.(3)求(a2-b2)2的值.答案:(1)15.(2)19.(3)325.解答:(1)原式=ab (a +b )=3×5=15. (2)原式=(a +b )2-2ab =52-2×3=25-6=19. (3)原式=(a 2-b 2)2=(a -b )2(a +b )2=25(a -b )2=25[(a +b )2-4ab ]=25×(25-4×3)=25×13=325.25、已知x -1x =32,x >0,求: (1)x 2+21x . (2)x +1x. (3)x 3-31x的值. 答案:(1)174(2)52(3)638解答:(1)x 2+21x=(x -1x )2+2=(32)2+2=174. (2)(x +1x )2=x 2+21x +2=174+2=254,解得x +1x =±52, 又因x >0,可知x +1x >0,故x +1x =52. (3)x 3-31x =(x -1x )3+3(x -1x )=(32)3+3×32=638, 或x 3-31x =(x -1x )(x 2+21x +1)=32×(174+1)=638. 26、两个不相等的实数a ,b 满足a 2+b 2=5. (1)若ab =2,求a +b 的值.(2)若a2-2a=m,b2-2b=m,求a+b和m的值.答案:(1)a+b=±3.(2)a+b=2,m=.解答:(1)∵a2+b2=5,ab=2,∴(a+b)2=a2+2ab+b2=5+2×2=9,∴a+b=±3.(2)∵a2-2a=m,b2-2b=m,∴a2-2a=b2-2b,a2-2a+b2-2b=2m,∴a2-b2-2(a-b)=0,∴(a-b)(a+b-2)=0,∵a≠b,∴a+b-2=0,∴a+b=2,∵a2-2a+b2-2b=2m,∴a2+b2-2(a+b)=2m,∵a2+b2=5,∴5-2×2=2m,解得:m=12,即a+b=2,m=12.。

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

(完整版)平方差公式与完全平方公式知识点总结

(完整版)平方差公式与完全平方公式知识点总结

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。

这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。

例 1.已知a b 2 , ab 1,求a2b2的值。

例 2.已知a b 8, ab2,求 (a b)2的值。

解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。

解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。

完全平方公式的变形及其应用

完全平方公式的变形及其应用

完全平方公式的变形及其应用完全平方公式的变形及其应用多项式乘法的完全平方公式的变形形式很多,且应用广泛。

下面结合例题,介绍完全平方公式的变形及其应用。

一、变式1:$a^2+b^2=(a+b)^2-2ab$这是因为:由$(a+b)=a^2+b^2+2ab$,移项,得$a^2+b^2=(a+b)^2-2ab$。

例1:已知$x+y=5$,$xy=2$,求下列各式的值:(1)$x^2+y^2$;(2)$x^4+y^4$。

解:由变式1,得(1)$x^2+y^2=(x+y)^2-2xy=5^2-2\times2=21$;(2)$x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=21^2-2\times4=433$。

二、变式2:$a^2+b^2=(a-b)^2+2ab$这是因为:由$(a-b)=a^2-2ab+b^2$,移项,得$a^2+b^2=(a-b)^2+2ab$。

例2:已知$a-\sqrt{11}=5$,求$a^2+11$的值。

解:由变式2,得$a^2+11=\left(a-\sqrt{11}\right)^2+2\sqrt{11}=5^2+2\sqrt{11}=27$。

三、变式3:$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$这是因为:由$(a+b)=a^2+b^2+2ab$,得$2ab=(a+b)-\left(a^2+b^2\right)$,两边同除以2,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$。

例3:已知$a+b=7$,$a^2+b^2=29$,求$ab$的值。

解:由变式3,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)=\dfrac{1}{2}\left(2a+b-\sqrt{7^2-29}\right)=10$。

(完整版)完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+2)1(1222-+=+a a a a 2)1(1222+-=+aa a a 拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形3223333)(b ab b a a b a +++=+4322344464)(b ab b a b a a b a ++++=+拓展五: 立方和与立方差))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-二.常见题型:(一)公式倍比 例题:已知b a +=4,求ab b a ++222。

(1)1=+y x ,则222121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式变形(1)设(5a +3b )2=(5a -3b )2+A ,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果22)()(y x M y x +=+-,那么M 等于(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于(5)若N b a b a ++=-22)32()32(,则N 的代数式是(三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 的值;(2)求x 2+3xy+y 2的值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。

完全平方公式变形公式及常见题型

完全平方公式变形公式及常见题型
完全平方公式变形及常见题型是数学学习中最基本的内容,在考试中也是经常出现的题型。

完全平方公式的变形和常见的题型可以大大提高学生在数学考试中的表现,也可以帮助学生更好地理解这些概念。

本文将对完全平方公式变形公式及常见题型进行讨论,包括它们的定义、变形公式以及常见题型。

完全平方公式是一类特殊的二次公式,其标准形式为:
ax2+bx+c=0
其中a、b和c分别为系数,可以为整数、分数或者其他数学表
示形式。

在完全平方公式中,b=0,a和c为正数或者负数,此时x2
的系数为a,而常数项的系数为c。

完全平方公式的一般形式为:
ax2+c=0
要将完全平方公式一般形式变形为标准形式,可以使用变形公式,其中b系数的变形公式为:
b=±√(ac)
通过使用变形公式,可以在给定的条件下变形完全平方公式,使其达到标准形式。

完全平方公式变形后常常会出现一些常见的题型,这些题型包括: 1.全平方公式求解题:此类题型一般要求学生使用完全平方公式求解某类问题,例如求解一元二次方程;
2.全平方公式变形题:此类题型要求学生运用变形公式将完全平方公式从一般形式变换到标准形式;
3.全平方公式的图像分析题:此类题型要求学生分析完全平方公式的图像特征,如顶点、极值、开口方向等;
4.全平方公式在实际问题中的应用题:此类题型要求学生将完全平方公式运用到实际问题中,如几何问题或投资问题,求解问题的最佳解。

以上就是完全平方公式变形公式及常见题型的基本内容,下面我们将对它们进行更深入的介绍。

七下完全平方公式变形

完全平方公式是初中数学中的一个重要概念,它描述了一个二项式的平方的展开形式。

在七年级下册的数学学习中,我们通常会接触到完全平方公式的变形和应用。

下面,我将就完全平方公式的变形进行详细的阐述。

首先,我们来回顾一下完全平方公式的基本形式。

对于一个二项式a+b或a-b的平方,其展开形式分别为(a+b)²=a²+2ab+b²和(a-b)²=a²-2ab+b²。

这两个公式揭示了二项式平方后各项系数之间的关系。

接着,我们来探讨完全平方公式的变形。

变形通常涉及到对公式中的各项进行重新组合或调整,以适应不同的解题需求。

例如,我们可以将公式中的2ab项拆分为两个相等的部分,得到(a+b)²=a²+b²+2ab。

这样的变形有助于我们更直观地理解公式中各项之间的关系,并方便我们在解题时进行运用。

除了对公式本身的变形外,我们还需要关注完全平方公式在实际问题中的应用。

在实际问题中,我们往往需要根据题目的要求,对公式进行适当的变形和调整。

例如,在求解某个代数式的值时,我们可能需要将给定的代数式转化为完全平方的形式,然后利用完全平方公式进行计算。

在变形和应用完全平方公式的过程中,我们需要注意以下几点:首先,要熟练掌握公式的基本形式;其次,要理解公式中各项的意义和作用;最后,要根据题目的要求灵活运用公式进行变形和计算。

总之,完全平方公式的变形是七年级下册数学学习的重要内容之一。

通过掌握公式的基本形式和变形方法,我们可以更好地理解和应用完全平方公式,提高解题能力。

同时,我们也需要不断练习和巩固所学知识,以便在实际问题中能够灵活运用完全平方公式进行解题。

完全平方公式(二)公式变形试题讲解


1 1 2 3ab 2 (5) a +______+9b =( a+3b)2 2 4
你会吗?
选择题 (1)如果x2+mx+4是一个完全平方公式, 那么m的值是(c)
A .4
B.-4
C.±4
D.±8
(2)将正方形的边长由acm增加6cm,则 正方形的面积增加了( c ) A.36cm2 B.12acm2
达标检测 反思目标
1.( )2=x2+6xy+_____ 2.a2-kab+9b2是完全平方式,则k= _____. 3.计算(-a-b)2结果是( ) A. a2-2ab+b2 B. a2+2ab+b2 C. a2+b2 D. a2-b2 4运用乘法公式计算 1 (1) ( x 1) 2 (2) 1052 (3) (a b 3)(a b 3)
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
(1) (3a+__ )2=9a2- ___ +16 D (2)代数式2xy-x2-y2= ( A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2 )
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
2
5. x y 8, x y 4, 求xy. xy 12
完全平方式. 4 k
4k
k 4
是 4 2
拓展:
思考题:
1 已知: x 3 x 1 2 1 2 求: x 和 (x ) 2 x x
的值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整版)完全平方公式变形公式专题半期复(3)——完全平方公式变形公式及常见题型一、公式拓展:
拓展一:$a+b=(a+b)^2-2ab$
a-b=(a-b)^2-2ab$
拓展二:$(a+b)-(a-b)=4ab$
a+b)=(a-b)+4ab$
拓展三:$a+b+c=(a+b+c)-2ab-2ac-2bc$
拓展四:杨辉三角形
a+b)^2=a^2+2ab+b^2$
a+b)^3=a^3+3a^2b+3ab^2+b^3$
拓展五:立方和与立方差
a^3+b^3=(a+b)(a^2-ab+b^2)$
a^3-b^3=(a-b)(a^2+ab+b^2)$
二、常见题型:
一)公式倍比
已知$a+b=4$,求$\frac{a^2+b^2}{2ab}$ 1)$x+y=1$,求$x^2+xy+y^2$
2)已知$x(x-1)-(x-y)=-2$,求$x^2-y^2$ 二)公式变形
1)设$(5a+3b)^2=(5a-3b)^2+A$,求$A$
2)若$(2a-3b)=(2a+3b)+N$,求$N$
3)如果$(x-y)+M=(x+y)$,求$M$
4)已知$(a+b)=m$,$(a-b)=n$,求$ab$
5)若$(2a-3b)=(2a+3b)+N$,求$N$的代数式
三)“知二求一”
1.已知$x-y=1$,$x^2+y^2=25$,求$xy$的值
2.若$x+y=3$,$(x+2)(y+2)=12$,求$xy$和
$x^2+3xy+y^2$的值
3.已知$x+y=3$,$xy=-8$,求$x^2+y^2$和$(x^2-1)(y^2-1)$的值
4.已知$a-b=3$,$ab=2$,求$(a+b)^2$和$a^2-6ab+b^2$的值
四)整体代入
例1:已知$x-y=24$,$x+y=6$,求$5x+3y$的值
例2:已知$a=x+20$,$b=x+19$,$c=x+21$,求
$a^2+b^2+c^2-ab-bc-ac$的值
⑴若$x-3y=7$,$x-9y=49$,求$x+3y$的值
⑵若$a+b=2$,求$a-4b$的值
⑶已知$a^2+b^2=6ab$且$a>b$,求$a+b$的值
已知$a=2005x+2004$,$b=2005x+2006$,
$c=2005x+2008$,则代数式$a^2+b^2+c^2-ab-bc-ca$的值为:
begin{aligned}
a^2+b^2+c^2-ab-bc-
ca&=(2005x+2004)^2+(2005x+2006)^2+(2005x+2008)^2\\ quad-(2005x+2004)(2005x+2006)-
(2005x+2006)(2005x+2008)-(2005x+2008)(2005x+2004)\\ 3\cdot(2005x)^2+3\cdot2\cdot2005x+3\cdot(2004^2+2006^2 +2008^2)-
3\cdot(2004\cdot2006+2006\cdot2008+2008\cdot2004)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-
3\cdot(2004+2006+2008)^2+3\cdot(2004^2+2006^2+2008^2)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot2018^2+6\cdot(2004^2+2006^2+2008^2)\\
10\cdot(2005^2x^2+2005)+10\cdot(2004^2+2006^2+2008^2) -3\cdot2018^2\\
10\cdot(2005^2x^2+2005)+10\cdot(2005^2-1)-
3\cdot2018^2\\
10\cdot2005^2x^2+10\cdot2005^2-
10\cdot2005+10\cdot2005^2-10-3\cdot2018^2\\
10\cdot2005^2x^2+20\cdot2005^2-10\cdot2005-
3\cdot2018^2-10\\
end{aligned}
五)杨辉三角
观察杨辉三角(1),发现每个数都是上面两个数之和,可以得到如下规律:
a+b)^1=a+b$$
a+b)^2=a^2+2ab+b^2$$
a+b)^3=a^3+3a^2b+3ab^2+b^3$$
a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$$
a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$$
根据规律,
$(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6 $。

六)首尾互倒
1.已知$m^2-6m-1=0$,求$2m^2-6m+2$。

解答过程:
已知:$x\neq0$,且满足$x^2-3x=1$。

求:
解:因为$x^2-3x=1$,所以$x^2-3x-1=0$。

因此,$x=\frac{3\pm\sqrt{13}}{2}$。

所以,$x+\frac{1}{x}=\frac{3+\sqrt{13}}{2}+\frac{3-
\sqrt{13}}{2}=3$。

所以,$\left(x+\frac{1}{x}\right)^2=9$。

因此,$x^2+\frac{1}{x^2}+2=9$,即
$x^2+\frac{1}{x^2}=7$。

七)数形结合
1.如图(1)是一个长为$2m$,宽为$2n$的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。

1)观察图(2)中的阴影部分,可以发现它是由两个边长为$m-n$的正方形和两个边长为$n$的矩形组成的。

因此,阴影部分的正方形边长为$m-n$。

2)方法一:正方形的面积为$(m-n)^2$,而阴影部分的面积为$2n(m-n)$,因此:
m-n)^2=2n(m-n)$$
解得$m=3n$,因此阴影部分的面积为$(2n)^2=4n^2$。

方法二:将长方形按照虚线剪开后,可以得到四个三角形,它们的面积分别为$mn$,$(m-n)n$,$(m-n)n$,$(m-n)^2$。

因此,阴影部分的面积为$2(m-n)n+mn-(m-n)^2=4n^2$。

3)根据图(2),可以得到:
m-n)^2+2n(m-n)+n^2=m^2$$
即$(m+n)^2=m^2$,因此$(m+n)^2-(m-n)^2=4mn$。

4)已知$a+b=7$,$ab=5$,求$(a-b)^2$的值。

因为$(a+b)^2=a^2+2ab+b^2=49$,$ab=5$,所以
$a^2+b^2=(a+b)^2-2ab=39$。

因此,$(a-b)^2=a^2+b^2-2ab=39-2\cdot5=29$。

八)规律探求
15.有一系列等式:
1\times2\times3\times4+1=5^2=(1+2\cdot1+1)^2$$
2\times3\times4\times5+1=11^2=(2+2\cdot2+1)^2$$
3\times4\times5\times6+1=19^2=(3+2\cdot3+1)^2$$
4\times5\times6\times7+1=29^2=(4+2\cdot4+1)^2$$
根据观察,可以发现:
n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2$$
现在,我们来证明这个猜想。

根据展开式,可以得到:begin{aligned}
n^2+3n+1)^2\\
n^4+6n^3+13n^2+10n+1\\
n(n+1)(n+2)(n+3)+1
end{aligned}$$
因此,猜想成立。

根据猜想,
$8\times9\times10\times11+1=101^2$。

相关文档
最新文档