九下第三章 圆的复习课

合集下载

华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(基础)

华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(基础)

《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;2.探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;6.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.两圆的五种位置关系可以概括为三类:要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°,∴ 112EF OE ==,∴ 223OF OE EF =-=. 在Rt △DFO 中,OF =3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.(2017•曲靖一模)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 和∠BOC 互补,则弦BC 的长度为.【思路点拨】首先过点O 作OD ⊥BC 于D ,由垂径定理可得BC=2BD ,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC 的度数,利用余弦函数,即可求得答案. 【答案】4.【解析】解:过点O 作OD ⊥BC 于D , 则BC=2BD ,∵△ABC 内接于⊙O ,∠BAC 与∠BOC 互补, ∴∠BOC=2∠A ,∠BOC+∠A=180°, ∴∠BOC=120°, ∵OB=OC ,∴∠OBC=∠OCB=(180°﹣∠BOC )=30°, ∵⊙O 的半径为4, ∴BD=OB•cos∠OBC=4×=2,∴BC=4.故答案为:4.【总结升华】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用. 举一反三:【变式】如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是( )N MO C BAA.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD ,∴∠ABC=∠ODB , ∵AB=AC ,∴∠ABC=∠ACB , ∴∠ODB=∠ACB , ∴OD ∥AC ,∵DF 是⊙O 的切线, ∴DF ⊥OD , ∴DF ⊥AC .(2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°, ∴∠ABC=∠ACB=67.5°, ∴∠BAC=45°, ∵OA=OE ,∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以AB 为底面的圆柱的侧面积.根据题意,应先求出AB 所对的圆心角度数以及所在圆的半径,才能求AB 的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是AB 的中点,∴ 12AE AB ==EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)R R =-+. 解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°.∴AB的长为120481803ππ⨯=(m).∴帆布的面积为8601603ππ⨯=(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.。

九年级下学期数学教案

九年级下学期数学教案

九年级下学期数学教案九年级下学期数学教案(篇1)本学期担任初三的数学教学工作,工作中有得也有失,现反思如下:一、教育教学中的得:1、能制定正确教学目标:平时教学中,不仅根据教学大纲的要求更注重多数学生的学习基础、水平来制定教学目标。

根据班级实际情况,我把平时的教学目标要求定在中等偏下水平,重点内容适当提高,使素质高的学生能取得较好成绩,对于基础太差的学生,对他们的复习目标只要求达到教学大纲的最基本的要求,强调熟记重要的概念、定理、公式等基础知识,并能掌握基础题的基本解法。

通过努力,使全班学生的数学成绩均有所提高。

2、寓复习于平时教学过程中:为了完成复习任务,又要减轻学生在集中复习时间的负担,我把复习内容有计划地分散在平时学习中。

从初三开始教学就有目的地回顾总结。

复习了与初三知识相关联的初一、初二年级的重要数学知识,结合教材,因势利导进行复习,平时在课堂复习、提问、小测验、有目的的检查复习初一、初二等知识点。

这样做能使初一、初二等已学过的重要知识反复在学生头脑中出现,可以减少遗忘率。

3、编写切合学生实际的训练题:目前初三学生每人手中均有学习资料,这些资料中基础知识偏少,较难的题目偏多,解题方法着重技巧性而不突出基本思路和方法,总的情况是要求偏高、偏深,脱离我校学生的实际,也不符合我校的学习要求。

因此平时在备课中我注意重点备好学生的练习及复习训练题。

布置作业做到了有布置就一定有批改,提高了学生的作业质量.自编习题要求中等偏下,多数题目是基本训练,重点题型反复训练,逐步提高,达到了预期的教学效果。

4、注重课堂教学信息的及时反馈和矫正:由于学生之间思维的差异及基础知识掌握的差异特别大,给课堂教学带来了很大的难度,因此课堂教学必须从学生实际水平出发,分层次、有针对性地进行复习指导,最终使不同层次的学生通过复习学习达到不同水平。

因此我在课堂教学中,注重了解学生的思维过程,对于学生回答的问题要进一步追问,对学生做的选择题和填空题的答案要进一步追问为什么。

人教版九年级化学第三章复习《物质构成的奥秘》(共21张PPT)

人教版九年级化学第三章复习《物质构成的奥秘》(共21张PPT)

C.50
D.272
16 3 2、某原子结构示意图如右,该原子的核电荷数为_____,核外有______ 8 6 个电子层,第二层上有______个电子,最外层上有______个电子。该
原子在化学变化中容易_得___到__(“得到”或“失去”)电子。
+16 28 6
四.离子的形成 钠 + 氯气 Na Cl2
课题3元素
一、元素
质子数相同的一类原子的总称元素是宏观概念,只 概念: 讲种类,不讲个数。
金属元素:Fe、Cu、Al、Au…… 分类: 非金属元素:O、H、N、Cl……
意义:
稀有气体元素;He、Ne、Ar…… 宏观: 表示一种元素或一种物质 微观: 表示该元素的一个原子
符号: 用元素拉丁文名称的第一个大写字母来表示,若几种元素的 第一个字母相同时,就附加一个小写字母来区别,这样的符 号叫元素符号。第一个字母必须大写,第二个字母必须小写。
钠原子Na +11 2 8 1
失 电 子 钠离子Na+ +11 2 8
点燃 氯化钠 NaCl
氯原子Cl
+17 2 8 7
得 电 子
+17 2 8 8 氯离子Cl-
Na+Cl- 氯化钠
Na Cl
四.离子的形成
概念:带电荷的原子(或原子团) 带负电荷的原子叫做阴离子。如:O2- 、S2-、 F-
分类: 带正电荷的原子叫做阳离子。如:H+ 、Na+、Mg2+、Al3+
芦老师的课堂
复习课
第三单元
物质构成的奥秘
课题1分子和原子
一.分子
概念:分子是保持物质化学性质的一种粒子。

九年级数学上册-第3章 对圆的进一步认识 复习课件-青岛版

九年级数学上册-第3章  对圆的进一步认识  复习课件-青岛版


l 2πR
=
n 360
,
S扇形 πR2
=
n 360
,
∴l
=
nπR 180
, S扇形
=
n 360
πR2
这样就不至于因死记硬背而出错。
将弧长公式代入扇形面积公式中,立即得到用弧长
和半径表示的扇形面积公式:
S扇形
=
1 2
lR
这一公式与三角形面积公式酷似。为了便于记忆, 只要把扇形看成一个曲边三角形,把弧长l看成底、R看
• 3、熟练掌握弧长和扇形面积公式及其它们的应用; 理解圆锥的侧面展开图并熟练掌握圆锥的侧面积 和全面积的计算。
【重难点】
重点
1、垂径定理; 2、与圆有关的位置关系; 3、弧长公式和扇形面积公式的应用。
难点
1、垂径定理; 2、切线的性质与判定。
【知识网络】
圆的基本性质
圆的对称性
轴对称 中心对称
与圆有关的角的性质
(2)若⊙O的半径为 3,DE 3,求AE。
A
23
O
E
B
D
6
方法总结: 1、如果已知直线与圆有 交点,常连接圆心与交 点,再证明连线垂直于 半径即可;
2、如果不明确直线 与圆的交点,往往要作 出圆心到直线的垂线段,
C 再证明这条垂线段等于
半径即可。
【巩固练习】
1、如图,AB是⊙O的直径,AB⊥CD于点E,则 在不添加辅助线的情况下,求出图中与∠CDB相 等的角 ∠CAB ∠BAD ∠BCD
B
O
A
【布置作业】
1、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则
⊙O的半径等于( B)
A.8

(说课稿)确定圆的条件

(说课稿)确定圆的条件

(说课稿)确定圆的条件今天我要为大伙儿说课的课题是《确定圆的条件》,我将从教材分析、学情分析、教学目标、教学重、难点、教学过程这五个方面进行课时说课,第一,我对本课教材进行简单分析.一、教材分析本课内容位于(北师版)初中数学九年级下册第三章第五节,是学过的《圆的初步认识》和刚学过的《圆的对称性》相关知识的连续学习,同时也为后面深入学习圆的内接四边形等圆的相关知识奠定基础.本课要紧研究内容是“过不在同一直线上三个点作圆”,其广泛用于数学作图,图案设计,建筑造型,工艺品制作等众多领域,关于培养学生作图技能和探究问题能力也具有不可替代的作用.依照以上我对教材的明白得我确定了本课的重点为:把握过不在同一条直线上的三个点作圆的方法,这也是本课的要紧学习目标之一.二、学情分析学生前面差不多学习了圆的相关概念,明白确定圆的两个要素是圆心和半径.另外学生还学习了线段的垂直平分线的性质、判定及画法,这些知识储备都为本课的顺利学习奠定了良好的基础. 我们明白作一个符合规定的圆需要找到圆心和半径,而圆心的分布规律是隐藏的,学生可能会产生一定的思维障碍;另一方面,圆心是在两点连线的垂直平分线上,学生有可能建立不了圆与垂直平分线两者之间的联系,依照以上分析我确定本课的难点为:确定圆的条件的思维过程.三、教学目标:基于以上我对教材和学生的认识,我从知识、技能、情感三方面设定了本课的教学目标.1.知识目标经历不在同一条直线上的三个点确定一个圆的探究过程;了解三角形的外接圆、三角形的外心等概念.[来源:Z.xx.k ]2.技能目标把握过不在同一条直线上的三个点作圆的方法.3.情感目标树立探究数学问题的意识,敢于发表自己的观点,从问题的解决中获得成功的体验,学会与他人合作,并能交流思维的过程和结果.四、教学重、难点重点:把握过不在同一条直线上的三个点作圆的方法.难点:确定圆的条件的思维过程.下面介绍我在教学中如何突出重点、突破难点的?我在教学内容的设计上采纳由生活中问题导入,由浅入深、层层递进的方式;在活动方式上采纳自主探究、合作交流、集中展现、归纳总结来关心学生明白得;在能力培养上,充分以学生为主体,给学生充分的探究时刻和空间,引导学生反思,以上三点三管齐下,力求突出本节课的重点.关于难点的突破,我采取如下措施:1、利用学案提早设计好复习题,力争课前扫清与本课相关的知识障碍;2、设计好探究问题,调动学生学习积极性,使学生从上课开始到终止思维一直处于亢奋状态,有利于灵活、高效的解决问题;3、多让学生动手操作和展现,动手操作会更有利于发觉规律;展现过程中,学生会在思维碰撞中找到问题的正确解决方法;4、降低思维门槛,要解决过三个点作圆的问题,先解决过一个点、过两个点作圆的问题,引导学生循序渐进的探究确定圆的条件,最终落脚点是三个点作圆问题.五、教学过程我的教学过程共设计了如下十一个环节.环节一:创设情境教师:同学们!我们都有爱美之心,都喜爱照镜子,老师也爱美,每次出门前都要照照镜子,一天我的圆形镜子碎成四块,我想带其中一块到玻璃店修复它,应该带那一块去呢?课件演示:破镜如何重圆?有一天家里的圆形玻璃镜子打碎了,其中四块碎片如图所示,为配到与原先大小一样的圆形镜片,带到商店去的一块镜子碎片应该是哪一块?设计说明:我的设计意图是利用生活实际问题引发学生摸索,激发学生求知欲,又为新知识的应用埋下伏笔,能专门自然的引出课题,并板书课题.环节二:认定目标课件展现:学习目标:[来源:学_科_网Z_X_X_K][来源:学,科,网Z,X, X,K]1.经历探究过程,明白得“不在同一直线上的三个点确定一个圆”.2.了解三角形的外接圆、三角形的外心、圆的内接三角形的概念.3.会过不在同一直线上的三个点作圆.设计说明:学习目标是给学生看的,本着简洁、通俗易明白的目的设计本课学习目标.让学生一起读一读,让学生对本课学什么有一个大致的了解,真正落实目标在教学过程中,真正回扣目标是在课堂小结处.环节三:复习巩固课件演示:课前延伸1.线段垂直平分线的相关知识(1)线段垂直平分线的性质:.(2)线段垂直平分线的判定:.(3)作图:在图1中,作出线段AB的垂直平分线.2.圆的相关知识(1)平面内的点与圆有种位置关系.分别是.(2)确定一个圆的两个要素是和;它们分别决定圆的和.设计说明:第1题复习线段垂直平分线,因为作一个圆,必需先找到圆心,探究二、三都需要利用线段垂直平分线找圆心,没有那个知识储备,学生全然找不到圆心,本课也就无法顺利进行;第2题复习圆的相关知识,复习点与圆的位置关系为通过点作圆做好铺垫,因为通过点的意思确实是点在圆上.重点强调确定一个圆的两个要素是圆心和半径,作圆问题离不开这两个先决条件.[来源:1ZXXK]环节四:自主探究教师:本节课我们学习确定圆的条件,先从最简单条件开始研究,请看问题探究一.课件演示:探究一:如图2,通过一点A作圆,你能作出多少个圆?A A B图2 图3设计说明:我开门见山点明要研究目标,告诉学生从最简单的条件开始探究,为两个点及多个点探究埋下伏笔,也符合学生由简单到复杂循序渐进的学习规律.重点是让学生动手操作,在操作中学会画圆,明白圆心、半径都不确定,因此通过一点可作许多个圆,既不能确定一个圆.要求学生课前完成,统一答案后进入探究环节.教师:同学们!通过一点不能确定圆,通过两点能否确定一个圆呢?请看问题探究二.课件演示:探究二:如图3,通过两点A、B作圆,你能作出多少个圆?这些圆的圆心在哪里?设计说明:一个点不能确定圆,自然过渡到两个点问题,关键是是让学生在探究中发觉圆心分布规律,即在AB两点的垂直平分线上.我想放手学生先独立操作,遇到问题小组交流,最后让学生展现,在探究活动中悟出新知.教师:同学们!通过两点不能确定圆,通过三点能否确定一个圆呢?请看问题探究三.课件演示:探究三:通过任意三点A、B、C能做出一个圆吗?假如能,如何样作出过这三点的圆?通过这三点的圆的圆心在哪里?通过这三个点能够作出多少个圆?请在下面空白处作出图形.设计说明:由两个点过渡到三个点顺理成章,我改变课本原先设计,课本是直截了当提出过不在同一直线三个点作圆,我觉如此设计限制了学生思维,而我的设计是把“不在同一直线”那个条件去掉,假如学生没想到三点共线这种情形,再加以适当引导成效会更好.对那个问题的探究,我想给学生充分的时刻和空间,因为这是本课最重点内容,此处处理的是否得当关系到这节课的成败.学生展现时我还要适时追问,圆心如何找到的?过这三个点还能作一个不同的圆吗?过任意三个点能作一个圆?追问促使学生摸索,从而明确过不在同一直线三个点只能作一个圆,得出本课核心问题确定圆的条件,得出结论以后,留出时刻让学生记一记,对重点内容的强化经历,促进学生更好的学以致用.环节五:知识应用课件演示:破镜重圆:利用刚学过知识解决创设情境中提出的问题,带到商店去的一块镜子碎片应该是哪一块?尝试在这一块残缺镜片上破镜重圆.设计说明:此环节是对上课一开始设置悬念的回扣,也是对新学知识的即时应用,赶忙用有两个好处,一是检验学生学习状况,二是让学生产生一种利用新知解决问题的成就感,提升学生学习积极性.环节六:自学领会我会分析黑板上学生三个点作圆图形,并用不同颜色笔标记图中的三角形.教师:这三个点连起来之后就组成一个三角形,三角形和圆也有了专门的位置关系,它们又分别称作什么呢?请同学们自学课本117页,找出相应概念!设计说明:因为三角形和圆具备了新的位置关系,从而产生新的概念,概念相对简单,因此安排学生自学,这也是放手学生的的重要表达.学生自学完以后,要对学生学习情形及时反馈,追问“内”,“外”和“接”的含义,为进一步拓展圆内接四边形及圆内接多边形等内容做好铺垫.赶忙跟上练习反馈学习情形!请尝试做出以下练习.课件演示:跟踪练习:1.填空:(1)△ABC是⊙O的三角形;(2)⊙O 是△ABC的圆;(3)点O是△ABC的.2.知识拓展:摸索:什么是圆的内接四边形?设计说明:第1题专门简单,要紧是即时反馈学生对概念的明白得,另一方面看看学生能否学会知识迁移,把数学文字语言转化为符号语言.设计第2题要紧是拓展新学内容,让学生真正明确“内”,“外”和“接”的含义,也进一步为学生设置悬念,延伸本课与后续学习内容的联系.教师:今后学习中,除了学习圆内接四边形,还要学习圆内接五边形、多边形等内容,请看大屏幕!课件演示:[来源:学§科§网]设计说明:通过课件展现几个圆内接多边形,利用图形的形象直观性,让学生深刻明确所学概念.学案上没有设计这组图形,要紧缘故是文字叙述更容易引导学生摸索,直截了当出示图形反而让学生对知识学习停留在表面想象,不利于认识问题的本质.环节七:学以致用课件演示:已知:△ABC,求作⊙O,使它通过A、B、C三点,并观看外心与三角形位置.(注:小组分工,每人选一种类型的三角形作出图形,作完后小组交流分享!)交流发觉:(1)三角形外心与三角形位置关系是:.(2)三角形外心还有哪些性质:.设计说明:本设计抓住学生刚学会三角形外接圆概念想尽快应用的心理,顺理成章过渡,也进一步明确三角形形外接圆定义;另一方面,学生能利用本课学习的三点作圆来解决那个问题,因此本设计是对前面两块知识的巩固和应用,也含有反馈学生前段学习情形的意义.设计三种类型三角形,是为了让学生通过画图体会三角形外心与三角形的位置关系,让学生在操作展现中,学会分类分析问题,提炼数学观点,形成数学能力.环节八:课堂小结总结你的收成:知识……方法……感悟……设计说明:本设计引导学生从这三方面总结本课学习内容,改变原先学生只总结知识,而忽视能力和方法的学习适应.为了更好让学生明白这节课的知识结构,我还设计了规范的板书,板书实际是重要内容和思维主线的最好表达.环节九:当堂检测课件演示:自我检测1.判定:(1)三点确定一个圆.()(2)任意一个三角形一定有一个外接圆,同时只有一个外接圆. ()(3)任意一个圆一定有一个内接三角形,同时只有一个内接三角形. ()(4)三角形的外心是三角形三边中线的交点.()(5)三角形的外心到三角形各顶点距离相等.()2.Rt△ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为.设计说明:设计这组测验为了反馈学生学习情形,第1题较简单,也是为了让提高学生学习士气,体会到成功的欢乐;第2题略微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采纳抢答方式调动学生积极性,学生抢答,师生共同反馈答题情形,教师最后出示正确答案并做总结性评判.环节十:布置作业课件演示:拓展延伸1.摸索:通过4个(或4个以上的)点是不是一定能作圆?2.作业:设计说明:设计第1题的缘故保证了知识的完整性,学生在探究完三个点作圆以后,确信有一个思维连续,不在同一直线上三个点确定一个圆,四个点又会如何样?四个点又分共线和不共线两种情形,不共线的四点作圆问题又能用三点确定一个圆去说明,本题既应用了新学知识,又给学生提供了更广泛地摸索空间.第2题,要紧是让学生进一步巩固新学知识,规范解题步骤. 在作业设计时,既面向全体学生,又尊重学生的个体差异,以把握知识形成能力为要紧目的.环节十一:完美收官课件展现:教师:同学们!是圆让我们相识,一块共同学习是我们的缘分,愿我们的友谊源远流长,愿我们学过的知识象三角形一样的稳固,愿我的生活想圆一样的完美!设计说明:这是本课亮点之一,因为本课所学重点知识都凝聚在那个图形中,出示本图是对本课内容的进一步小结,又是对学生情绪的调动和鼓舞,让学生在激情与诗意中满载而归!以上教学过程在内容出现上采纳了“创设情境——提出问题——自主探究——合作交流——应用拓展的模式”,也是我校235高效课堂教学模式延伸和应用.整体设计思路是:在学生熟悉的实际背景中创设情境,激发学生的求知欲,让学生在积极的思维状态下进入探究活动.以“作出符合条件的圆”为主线,设置三个探究活动,让学生经历不在同一条直线上的三个点确定一个圆的探究过程,三个问题由易到难、层层递进,引导学生积极参与探究从而让其发觉结论,并过渡到三角形外接圆、外心等概念的学习.学了新知识赶忙解决开始提出的“破镜重圆”问题,然后进一步应用新知解决其它相关问题,让学生在做中学,进而学以致用,体会到应用数学知识解决问题的成就感,提高学好数学的信心和积极性.以上是我对本节课教学的一些设想,不当之处,敬请各位专家批判指正!感谢大伙儿!。

人教新目标九年级英语全册素材:Unit 3 复习课 教材分析

人教新目标九年级英语全册素材:Unit 3 复习课 教材分析

教材分析Unit 3 Could you please tell me where the restrooms are?一、相关教学内容在整个课程教材体系中的地位本单元以“Getting around”为话题,以“Ask for information politely”和“Follow directions”为功能,以宾语从句为主要语法内容,设计了以下内容:Section A该部分有4个模块:第一模块以“places”和相对应的“activities”为话题展开思维(1a)、听力(1b)、口语(1c)训练;第二模块围绕“directions”进行听力(2a-2b)和口语(2c-2d)训练;第三模块要求学生就一些活动场所的优点与缺点阐述自己的观点,并展开训练,训练形式为阅读、问答问题(3a)和(3b);第四模块以语法总结为主,然后是改写练习(4a),并以小组活动形式展开练习,联系生活实际角色表演(4c)。

Section B该部分有4个模块:第一模块是对一些描述性词汇的学习(1a)和运用所提供的词汇以pairwork的形式进行讨论(1b);第二模块以三个对话为载体,对“places”和“directions”进行听力(1c-1d)及口语(1e)训练;第三模块是一个有关“suitable language”的阅读材料,训练形式为填表(2c-2d)和写作训练(3a-3b);第四模块Self Check主要通过习题巩固本单元所学内容。

本单元的话题、功能、语法内容在整个初中阶段的英语教学中占有重要位置,尤其是宾语从句,每年中考都会涉及到。

二、不同教材版本对相关教学内容的处理本单元是人教版九年级英语Unit 3 Could you please tell me where the restrooms are?,和鲁教版Unit12教学内容及处理方式方法相同。

三、课程教材内容的整合本单元教材内容可以和七年级英语下册Unit 8 Is there a post office near here? 和八年级英语下册Unit 3 Could you please clean your room? 进行整合复习。

九年级数学初三下册:3.7 切线长定理 教案


A P
O B
A O.
B
直径所 P 直角.
讲授新课
切线长的定义
1.切线长的定义:
经过圆外一点作圆的切线,这点和
A
切点之间的线段的长叫作切线长.
O
2.切线长与切线的区别在哪里? ①切线是直线,不能度量. ②切线长是线段的长,这条线段的两个端点分别是圆外 可以度量.
切线长定理
合作探究
问题 在透明纸上画出下图,设PA,PB是圆O的两条切线 ,沿直线OP对折图形,你能猜测一下PA与PB,∠APO与 什么关系吗?
A
E O
C
D
A
由 BD+CD=BC,可得 (13-x)+(9-x)=14,
解得 x=4.
E O
C
D
∴ AF=4cm,BD=9cm,CE=5cm.
方法小结:关键是熟练运用切线长定理, 将相等线段转化集中到某条边上,从而建立方程.
例3 如图,Rt△ABC中,∠C=90°,BC=a,AC=b, AB= Rt△ABC的内切圆. 求:Rt△ABC的内切圆的半径 r.
如图,已知AF=3,BD+CE=12,则△ABC的周长是 30
AFBiblioteka EOBDC
第3题
拓展提升: 6.直角三角形的两直角边分别是3cm ,4cm,试问: (1)它的外接圆半径是 5 cm;内切圆半径是 1 cm? (2)若移动点O的位置,使☉O保持与△ABC的边AC、BC都 求☉O的半径r的取值范围.
l△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.
∵OA=OC,OD=OD,∴△AOD≌△COD,
∴∠DOC=∠DOA= 1 ∠AOC.

九年级中考一轮复习导学案:32课时圆的有关计算

九年级中考⼀轮复习导学案:32课时圆的有关计算第34课时圆的有关计算【基础知识梳理】1.正多边形的概念:2.⼀般地,若相等,各也相等的多边形叫做正多边形,如果⼀个多边形有n 条边,那么这个正多边形叫做正n边形。

说明:(1)当n=3时,上述两个条件只满⾜⼀个条件就可以。

(2)当n>3时,多边形必须同时满⾜上述条件的每⼀个条件,才能判定是正多边形。

2、正多边形的对称性(1)、正多边形的轴对称性正多边形都是轴对称图形。

⼀个正n边形共有n条对称轴,每条对称轴都通过正n边形的中⼼。

(2)、正多边形的中⼼对称性边数为偶数的正多边形是中⼼对称图形,它的对称中⼼是正多边形的中⼼。

(3)、正多边形的画法先⽤量⾓器或尺规等分圆,再做正多边形3、正多边形的外接圆与内切圆正多边形的外接圆(或内切圆)的圆⼼叫做正多边形的中⼼,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边⼼距,正多边形每⼀边所对的外接圆的圆⼼⾓叫做正多边形的中⼼⾓。

4、正n边形的有关计算公式正n边形的每个内⾓=。

每⼀个外⾓=5.圆的⾯积为,n°的圆⼼⾓所在的扇形⾯积的计算公式为S扇形=2Rπ?=.6.圆的周长为,n°的圆⼼⾓所对的弧长的计算公式为.7.圆锥的侧⾯积公式:S=rlπ.(其中r为的半径,为的长)圆锥的侧⾯积与之和称为圆锥的全⾯积.【基础诊断】1.(2014?⼴西⽟林市、防城港市,第11题3分)蜂巢的构造⾮常美丽、科学,如图是由7个形状、⼤⼩完全相同的正六边形组成的⽹络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所⽰,则△ABC是直⾓三⾓形的个数有()A.4个B.6个C.8个D.10个2、正六边形的两条平⾏边间距离是1,则边长是3 B.3 C.3D33.(2011⼭东聊城)在半径为6cm 的圆中,60o圆⼼⾓所对的弧长为cm.(结果保留π)4、(2012重庆)⼀个扇形的圆⼼⾓为120°,半径为3,(1)求这个扇形的⾯积为___________(结果保留π)(2)求⽤这个扇形围成的圆锥的底⾯半径。

9年级数学北师大版下 册教案第3章《 切线长定理》

教学设计切线长定理教材分析:这节课是北师大版九年级下册第三章第七节的内容,是直线与圆位置关系中重点内容,是在学习了切线的性质和判定的基础上,继续对切线性质的研究,是在垂径定理之后对圆的对称性又一次认识。

体现了图形的认识、图形的变换、图形的证明的有机结合,为我们证明线段、角、弧、垂直关系等提供了一个基本图形和证明依据,为进一步研究圆的数量关系做好了铺垫,起着承上启下的作用。

数学核心素养:主要体现在对学生直观想象、逻辑推理方面的培养数学思想或能力:转化思想、方程思想、数形结合思想、用代数方法解决几何问题的思想,合情推理能力和初步的演绎推理能力,有条理地、清晰地阐述自己的观点的能力。

教学目标:1、知识与技能目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。

2、过程与方法目标:经历添线、猜想、证明等数学活动过程,让学生体验到知识的生成、联系及转化过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。

在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。

3、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

教学重点:理解切线长定理教学难点:应用切线长定理解决问题教法:教学方法采用引导发现法,辅之以讨论法。

利用“大胆添线—提出猜想—推理验证—应用拓展”的模式进行教学。

本节课是概念、定理、解题的教学,因此,要把概念教学、定理教学、解题教学有机组合,完成本节课的教学。

学法:研究性学习,学生在教师引导下,去思考、猜想、探索、讨论。

教学流程:复习回顾总结方法,二、大胆添线猜想验证,三、学以致用自我检验,四、总结反思自我升华,五、完成作业自我巩固教学过程:。

37切线长定理教案20242025学年北师大版数学九年级下册

第三章 圆 7 切线长定理 一、教学目标 1.理解切线长的概念,掌握切线长定理; 2.学会运用切线长定理解有关问题. 二、教学重难点 重点:理解切线长的定义 难点:掌握切线长定理并能运用切线长定理解决问题 三、教学过程 【新课导入】 [提出问题]我们在开始今天的学习之前,先来复习下之前学过的知识.什么是切线的性质定理? [解答]圆的切线垂直于过切点的半径. [提出问题]什么叫切线的判定定理? [课件展示]过半径外端且垂直于这条半径的直线是圆的切线. [提出问题]复习过之前学过的内容,我们看下这张图片,当你把篮球夹在胳膊下或手臂中时,你能从中抽象出什么样数学图形?可抽象出如图所示图片. [课件展示]

【新知探究】 (一)切线长定理 [提出问题]过圆外一点画圆的切线,你能画出几条?试试看.(同学们尝试自己动手画图) [解答]同学们自己根据动手作图情况总结出两条,教师明确并展示课件. [课件展示]

[提出问题]来看课本中的一个问题,如图,PA,PB 是⊙O的两条切线,A,B 是切点.这个图形是轴对称图形吗?如果是,它的对称轴是什么? [解答]同学们自己作答后教师明确,是轴对称图形,对称轴是直线 OP . [提出问题]在这个图形中你能找到相等的线段吗?说说你的理由. [解答]相等的线段有OA=OB,PA=PB.利用的是对称性. [解答]通过刚才的问题,我们可以有以下定义:过圆外一点画圆的切线,这点和切点之间的线段长叫做这点到圆的切线长. [提出问题]接下来我们看课本中的一道问题,如图,PA,PB是⊙O的两条切线,A,B是切点,求证PA=PB. [课件展示]

[解答](学生自己作答,教师补充)通过刚才的习题和对切线长的学习,我们可以得到切线长定理,即过圆外一点画圆的两条切线,它们的切线长相等.我们也可以通过几何语言来描述,因为PA,PB分别切⊙O于点A,B,所以PA=PB , OP平分∠APB. [提出问题]那根据Rt△AOP与Rt△BOP全等,我们还可以得到其他哪些结论呢? [解答](学生得出答案,还可以得到∠OPA=∠OPB,∠POA=∠POB.)通过刚才大家的回答,切线长定理可拓展为:过圆外一点画圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. [提出问题]接下来我们趁热打铁,练习一道基础题.(由同学们自己完成,教师提问) [课件展示]

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九下第三章圆的复习课
一、字谜引入,激发兴致
师:同学们,能猜猜:贺回归,莫用口,请出力。

这是什么字吗?打一数学名词二、问题串串,层层递进
问题1:你会画圆吗?若知道这样的三个点(老师在黑板上标出不在同一直线上的3个点)如何画圆?通过学生描述,教师在黑板上画出△ACD的外接圆,并复习一下3个问题(1)三角形的外接圆,圆的内接三角形,外心
(2)点与直线的位置关系如何判定
(3)弧、弦、圆周角、圆心角的概念及圆心角定理及推论(可以通过
提问:在黑板上的图形当中你知道哪些关于圆的基本概念和定
理)
问题2:利用黑板上的圆,知道弦长CD=8,你能求出半径吗?
估计学生能快速地回答,不能.
追问:若要求其半径,你可以添加哪些条件?
学生可能会回答,弦心距,弓高,角度等(师准备:可添①△OCD
的面积②E是BD的中点③OE与OC的比为1:2等可进一步拓宽学生的思维)
利用学生不同的条件,总结了计算时用到共同特征:1基本图形(直角三角形)、2垂径定
理及逆定理,3解题时所渗透的数学思想——方程思想。

问题3
老师总结垂径定理是利用了圆的轴对称性得出的,而圆还具有旋转不变性
上,继而给出问题2:
旋转弦CD,得到弦AB,你能得到哪些相等的量?
学生可能会得到角等,弧等,线段等.学生的一题多解给予肯定和表扬后,
作出思想和方法的归纳和总结,让学生懂得择优而取。

再追问:(2)若AB⊥CD于E,则求∠BOD的度数(90度)。

由前面的
铺垫,学生能快速得出答案,
问题4:
在⊙O中,平移AB,使点B与点C重合,连结AD,你能得到什么结论?
问题5:已知,Rt△ACD内接于⊙O,其中∠ACD=90°,AC=6,DC=8. E
为劣弧CD上的一个动点,连接EO并延长交⊙O于点F,连接AF,CE得
四边形CEFA.
(1)若CE=AF,求CE的长.
(2)若四边形CEFA中有两条边相等,求此时CE的长.
(3)在点E运动时,四边形CEFA的面积会发生变化吗?若不变请求出该四
边形的面积;若发生变化,请求出四边形CEFA面积的最大值,并确定此时点E的位置。

设计思路:先通过学生讨论对存在的3中情况分类,再用几何画板演示,其中一个问题AF=CE 已解决,AC=CE=6很方便,只剩下一个重点,AC=AF,
2
答案:(1)CE=AF=5
(2)①AC=CE=6 ②AC=AF 时,CE=
5
4812 (3)作为备用题目
三、归纳总结,感受成功 让学生畅所欲言,谈谈这节课的得与失、感到困惑或疑难的地方等。

教师在学生发言的基础上进行提炼,以体现学生为主体,教师为主导的教学思想。

教师的板书设计就是一个很好的小结,一是知识点,二是数学思想,构建了一个简单明了的知识网络图。

【总体说明】:本课的设计有较强的整体感,让人有浑然一体的感觉,主线清晰、明暗相交。

本课设计也基于学生的学,从知识的网络构建、图形的动态生成、能力的锻炼提高,无不体现新教材的理念。

相关文档
最新文档