发光二极管的主要参数及测量方法

发光二极管的主要参数及测量方法
发光二极管的主要参数及测量方法

发光二极管参数的测量

一发光二极管的结构和基本原理

1 发光二极管的结构

发光二极管(light emission diode LED)图1显示了LED的结构截面图。要使LED 发光,有源层的半导体材料必须是直接带隙材料,越过带隙的电子和空穴能够直接复合发射

2 LED的基本工作原理

LED 是一种直接注入电流的发光器件,是半导体晶体内部受激电子从高能级回复到低能级时,发射出光子的结果,这就是通常所说的自发发射跃迁。当LED的PN结加上正向偏压,注入的少数载流子和多数载流子(电子和空穴)复合而发光。值得注意的是,对于大量处于高能级的粒子各自分别自发发射一列一列角频率为ν=E g/h的光波,但各列光波之间没有固定的相位关系,可以有不同的偏振方向,并且每个粒子所发射的光沿所有可能的方向传播,这个过程称为自发发射。其发射波长可用下式来表示:

λ(μm)=E g(eV)

二发光二极管的特性及测试方法

1 LED的光谱特性及测试方法

由于LED没有光学谐振腔选择波长,所以它的光谱是以自发发射为主的光谱,图2显示出了LED的典型光谱曲线。发光光谱曲线上发光强度最大时所对应的波长称为发光峰值波长,光谱曲线上两个半光强点所对应的波长差称为谱线宽度(简称线宽),其典型值在30-40nm之间。峰值波长和谱线宽度的测试方法如图3所示,当被测器件的正向工作电流达到规定值时,旋转单色仪波鼓,使指示器达到最大值,读出波长峰值,此即为该器件的发光峰值波长。在旋转单色仪波鼓(朝相反方向各转一次),使指示器读数为最大值的一半时,读出两个等于最大值一半的数值,两者之差即为光谱谱线宽度。

波长

图2 LED的光谱曲线

图3 LED的峰值波长和线宽测试方框图

由图2可以看出,当器件温度升高时,光谱曲线随之向右移动,从峰值波长的变化可以求出LED的波长温度系数。

2 LED 的伏安特性及测试方式

LED 通常都具有图4所示的较好的伏安特性。当LED 管芯通过正向电流为规定的值时,正、负极之间产生的电压降,即为正向压降(以V F 表示,单位为V ),由于正向电阻比较小,故V F 一般都较低,图5示出了V F 的测试原理图

3 LED 的电光转换特性及测试方法

电光转换特性是LED 的光输出功率与注入电流的关系曲线,即P -I 曲线,因为是自发

辐射光,所以P -I 曲线的线性范围比较大如图6所示。LED 的输出光功率是LED 重要参数之一,分为直流输出功率P o 和脉冲输出功率。所谓直流输出功率是指在规定的正向直流工作电流下,LED 所发出的光功率,图7是测试原理图。测试时,把LED 和接受器置于同一暗盒中,使发光面和接受面相互平行且尽量靠近。调解恒流源,使其正向电流I F 位规定值,指示器上的读数即为被测LED 的直流输出光功率。所谓脉冲输出光功率是指在规定的幅度、频率和占空比的矩形脉冲电流作业下,LED 发光面所发射出的光功率。测试时把LED 和接收器置于同一暗盒中,使发光面和接受面互相平行且靠近。调节脉冲源,使其峰值电流I P 为规定值时,指示器上的读数即为被测LED 的脉冲输出光功率值,图8是测试原理图,图中R L 为取样电阻。脉冲峰值输出光功率和平均输出光功率的关系为:

R

AV

P D P P

式中,P P 为脉冲输出光功率,P AV 为脉冲平均输出光功率,D R 为脉冲波占空比。

图5 LED 的正向压降测试原理

图7直流输出功率测试原理图

图8 脉冲输出光功率的测试原理图

4 LED的辐射强度空间分别和半角值θ1/2θ1/2

辐射强度空间分布是指LED在规定的正向工作电流下垂直和平行于PN结方向强度随空间角度的分布图,它的分别影响到与光纤之间的耦合效率。测试时把LED置于预定的位置上,

调节恒流源,使工作电流为规定值,从0到90度转动发光器件,读取不同角度下指示器上的辐射强度值,然后在极坐标或直角坐标上分别作出相应点的角度与辐射强度关系图,即为辐射强度空间分布图。在分布图上读取半强度值点的角度θ1和θ2,则半角值

//1//2//2/1122/1)(,)(θθθθθθ-=-=⊥⊥⊥

其中⊥)(2/1θ为垂直与PN 结方向的半角值,//2/1)(θ为平行于PN 结方向的半角。图9出示了半角值的测量原理,图中:L 为LED 发光面于接收面的距离,O 1O 2为主光轴。调节时,LED 的出光面和接收器的光敏面应垂直于主光轴,L 于接收光敏面直径之比至少应为10:1。

5 LED 的调制特性

当在规定的直流正向工作电流下,对LED 进行数字脉冲或模拟信号电流调制,便可实现对输出光功率的调制。LED 有两种调制方式,即数字调制和模拟调制,图10示出这两种调制方式。调制频率或调制带宽是光通信用LED 的重要参数之一,它关系到LED 在光通信中的传输速度大小,LED 因受有源区内少子寿命的限制,其调制的最高频率通常只有几十兆赫兹,从而限制了LED 在高比特速率系统中的应用,但是,通过合理的设计和优化的驱动电路,LED 也有可能用于高速光纤通信系统。调制带宽是衡量LED 的调制能力,其定义是在保证调制度不变的情况下,当LED 输出的交流光功率下降到某一低频参考频率值的一半时(-3dB )的频率就是LED 的调制带宽,图11示出了调制带宽的测试原理图。图中L 为频扼线圈,C 为隔直流电容,R C 为负载匹配电阻。测量的方式是调节恒流源,使电流表读数为规定值,从选定的低频开始,调节信号源输出,把输出的正弦调制光对准探测器的光敏面,改变信号源

图9 LED 的半角测试原理图

的频率,并保证调制度不变,当指示器上指示的光功率下降到选定的低频参考频率值的-3dB 时,信号源的频率即为光的带宽。测量要求是:选择R c 使LED 回路与信号源输出阻抗匹配光电探测器(包括输出回路)的频率响应比被测LED 至少高5倍;指示器应能对光功率或电功率的交流成分相对值进行直接指示。

三 实验内容和步骤

1 测量LED 的峰值波长和线宽

2 测量LED 的伏安特性

3 测量LED 的P -I 曲线(直流和交流)

光输出

4 测量LED的半值角

5 测量LED的调制特性并指出其调制带宽(数字和模拟)

四实验仪器

发光二极管2支、恒流源、电流表、电压表、激光二极管自动测试系统、单色仪、脉冲信号发生器、正弦信号发生器、示波器、电阻

肖特基二极管常用参数大全分析

肖特基(势垒)二极管(简称SBD)整流二极管的基本原理?FCH10A15型号简称:10A15 ?主要参数:IF(AV)=10A, VRRM=150V ?产品封装:TO-220F ?脚位长度:6-12mm ?可测试参数:耐压VRRM 正向压降(正向直流电压)VF 漏电IR ?型号全名:FCH20A15 ?型号简称:20A15 ?主要参数:20A 150V ?产品封装:TO-220F ?可测试参数:耐压VRRM 正向压降(正向直流电压)VF 漏电IR ?在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。 其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极和低压大电流整流二极管。 肖特基整流二极管的主要参数 ?以下是部分常用肖特基二极管型号,以及耐压和整流电流值:

肖特基二极管 肖特基二极管常用参数大全 型号制造商封 装 If/A Vrrm/V 最大Vf/V 1SS294 TOS SC-59 0.1 40 0.60 BAT15-099 INF SOT143 0.11 4 0.32 BAT54A PS SOT23 0.20 30 0.50 10MQ060N IR SMA 0.77 90 0 .65 10MQ100N IR SMA 0.77 100 0.9 6

0.34 SS12 GS DO214 1.00 20 0.50 MBRS130LT3 ON - 1.00 30 0 .39 10BQ040 IR SMB 1.00 40 0 .53 RB060L-40 ROHM PMDS 1.00 40 0.55 RB160L-40 ROHM PMDS 1.00 40 0.55 SS14 GS DO214 1.00 40 0.50 MBRS140T3 ON - 1.00 40 0 .60 10BQ060 IR SMB 1.00 60 0 .57 SS16 GS DO214 1.00 60 0.75 10BQ100 IR SMB 1.00 100 0.7 8 MBRS1100T3 ON - 1.00 100 0.7 5 10MQ040N IR SMA 1.10 40 0 .51 15MQ040N IR SMA 1.70 40 0 .55 PBYR245CT PS SOT223 2.00 45 0.45

1.5KE160A,TVS瞬变二极管中文资料

POWER: 1500Wa t VOLTAGE RANGE: 6.8 - 440 V AXIAL LEADED TRANSIENT VOLTAGE SUPPRESS DIODE 1.5KE6.8A(CA) - 1.5KE440A(CA) 6.8V – 440V Standoff Voltage Case: JEDEC DO-201AD Molded Plastic Features Glass Passivated Die Construction Uni- and Bi-Directional Versions Available Excellent Clamping Capability Fast Response Time Plastic Case Material has UL Flammability Mechanical Data Terminals: Axial Leads, Solderable per MIL-STD-202, Method 208 Polarity: Cathode Band or Cathode Notch Marking: Unidirectional – Device Code and Cathode Band Bidirectional – Device Code Only Maximum Ratings and Electrical Characteristics @T A =25°C unless otherwise specified Characteristic Symbol Value Unit Peak Pulse Power Dissipation at T A = 25°C (Note 1, 2, 5) Figure 3P PPM 1500 Minimum W Peak Forward Surge Current (Note 3) I FSM 200A Peak Pulse Current on 10/1000μS Waveform (Note 1) Figure 1I PPM See Table 1 A Steady State Power Dissipation (Note 2, 4)P M(AV) 5.0W Operating and Storage Temperature Range T j , T STG -65 to +175 °C Note: 1. Non-repetitive current pulse, per Figure 1 and derated above T A = 25°C per Figure 4. 2. Mounted on 40mm 2 copper pad. 3. 8.3ms single half sine-wave duty cycle = 4 pulses per minutes maximum. 4. Lead temperature at 75°C = T L . 5. Peak pulse power waveform is 10/1000μS. !!!!!!!Weight: 1.20 grams (approx.)!

晶体二极管的主要参数

晶体二极管的主要参数: 1 电阻 ⑴直流电阻 在晶体二极管上加上一定的直流电压V,就有一对那个的直流电流I,直流电压V与直流电流I的比值,就是晶体二极管的等效直流电流。 ⑵动态电流 在晶体二极管上加一定的直流电压V的基础上,再加上一个增量电压,则晶体二极管也有一个增量电流△I。增量电压△V与增量电流△I的比值,就是晶体二极管的动态电阻,即动态电阻为晶体二极管两端电压变化与电流变化的比值。 二极管的正向直流电阻和动态电阻都是随工作点的不同而发生变化的。 普通晶体二极管反响运动时,其直流电阻和动态电阻都很大,通常可以尽是为无穷大。 2 额定电流 晶体二极管的额定电流是指晶体二极管长时间连续工作时,允许通过的最大正向平均电流。在二极管连续工作时,为使PN结的温度不超过某一极限值,整流电流不应超过标准规定的允许值。 例如:2AP1 的额定电流为12mA; 2AP5为16mA;2AP9为5mA。 对于大功率晶体二极管,为了降低它的温度,增大电流,必须加装散热片。 3 反向击穿电压 反向击穿电压是指二极管在工作中能承受的最大反向电压,它也是使二极管不致反响击穿的电压极限值。在一般情况下,最大反向工作电压应小于反向击穿电压。选用晶体二极管时,还要以最大反向工作电压为准,并留有适当余地,以保证二极管不致损坏。 例如:2AP21型二极管的反向击穿电压为15V最大反向工作电压小于10V;2AP26的反向

击穿电压为150V,最大反向工作电流小于100V。 4 最高工作频率 最高工作频率是指晶体二极管能正常工作的最高频率。选用二极管时,必须使它的工作频率低于最高工作频率。 例如:2AP8BD 最高工作频率为150MHz;2CZ12的最高工作频率为3kHz;2AP16的最高工作频率为40MHz。 晶体二极管的分类: 按用途分: 检波二极管

肖特基二极管特性详解(经典资料)

肖特基二极管特性详解 我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路

图2 导通压降与导通电流关系 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

常用变容二极管

常用变容二极管 变容二极管(Varactors ),又称为电压调谐电容(Voltage variable Capactors ,VVC )或调谐二极管(Tuning Diodes ),当在二极管两端加上反向偏压时,会产生电容效应,通常变容二极管的电容量,随反向偏压增大而减小。变容二极管优点主要表现在:(1)体型小巧易于安装;(2)易于实现自动电子调谐(Auto Electronic Tuning ),方便遥控的电子调谐器的设计。如今的电视系统或通信系统中的频道选择及呼叫等电路,基本上都由变容二极管完成。 1、 变容二极管工作原理 变容二极管的等效电路如图1(a )所示。 图1 (a )变容二极管的等效电路 (b )变容二极管的简化等效电路 其中,R p ——反向偏压的结电阻(Junction Resistance ); 's L ——外部引线电感; s L ——内部引线电感; c C ——封装电容; s R ——二极管体电阻; j C ——结电容。 通常,等效电路中的电感与封装电容等都可略去不计,简化后的等效电路如图1(b )所示。一般地,变容二极管与外加电压的关系可表示为 (1) j j D C C v V γ = - (1) j C 为变容二极管的结电容,0j C 为变容管加零偏压时的结电容;V D 为变容管PN 结内建 电位差(硅管V D =0.7V ,锗管V D =0.3V );γ为变容二极管的电容变化指数,与频偏的大小有关;v 为变容管两端所加的反向电压。在小频偏情况下,选γ=1的变容二极管可近似实现线性调频;在大频偏情况下,必须选γ=2的超突变结变容二极管,才能实现较好的线性调频。 变容二极管的j C v - 特性曲线如图2所示。当加入的反向电压为 cos Q Q m v V v V V t ΩΩ=+=+Ω时,设电路工作在线性调制状态,在静态工作点Q 处,可得曲线的斜率为/c k C V =??。

MHCHXM肖特基二极管MBR20100CT

◆Half Bridge Rectified、Common Cathode Structure.◆Multilayer Metal -Silicon Potential Structure.◆Low Power Waste,High Efficiency.◆Low Voltage High Frequency Switching Power Supply.◆Low Voltage High Frequency Invers Circuit. ◆Low Voltage Continued Circuit and Protection Circuit. Summarize Absolute Maximum Ratings Symbol Data Unit VRRM 100 V VDC 100 V IFAV 2010 IFSM 150A TJ -40-+170℃ TSTG -40-+170 ℃ Electricity Character Item Minimum representative Maximum Value Unit TJ =25℃ 100 uA TJ =125℃ 10mA VF TJ =25℃IF=10A 0.82 v Forward Peak Surge Current(Rated Load 8.3Half Mssine Wave-According to JEDEC Method)Operating Junction Temperature Storage Temperature Test Condition IR VR=VRRM Item Maximal Inverted Repetitive Peak Voltage Average Rectified Forward Current TC=150℃Whole Device A unilateral maximal DC interdiction voltage MBR20100Schottky diode,in the manufacture uses the main process technology includes:Silicon epitaxial substrate,P+loop technology,The potential metal and the silicon alloy technology,the device uses the two chip,the common cathode,the plastic half package structure. ◆ RoHs Product. Productor Character ◆Beautiful High Temperature Character. ◆Have Over Voltage protect loop,high reliability.Primary Use Package ITO-220AB TO-220AB Typical Reference Data Internal Equivalent Principle MBR20100CT

瞬态抑制二极管工作原理及选型应用

瞬态抑制二极管工作原理及选型应用 Socay (Sylvia) 1、产品简述 瞬态电压抑制器(TransientVoltageSuppressor)简称TVS管,TVS管的电气特性是由P-N结面积、掺杂浓度及晶片阻质决定的。其耐突波电流的能力与其P-N结面积成正比。TVS广泛应用于半导体及敏感器件的保护,通常用于二级电源和信号电路的保护,以及防静电等。其特点为反应速度快(为ps级),体积小,脉冲功率较大,箝位电压低等。其10/1000μs波脉冲功率从400W~30KW,脉冲峰值电流从0.52A~544A;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。 2、工作原理 器件并联于电路中,当电路正常工作时,它处于截止状态(高阻态),不影响线路正常工作,当电路出现异常过压并达到其击穿电压时,它迅速由高阻态变为低阻态,给瞬间电流提供低阻抗导通路径,同时把异常高压箝制在一个安全水平之内,从而保护被保护IC或线路;当异常过压消失,其恢复至高阻态,电路正常工作。 3、特性曲线

4、主要特性参数 ①反向断态电压(截止电压)VRWM与反向漏电流IR:反向断态电压(截止电压)VRWM 表示TVS管不导通的最高电压,在这个电压下只有很小的反向漏电流IR。 ②击穿电压VBR:TVS管通过规定的测试电流IT时的电压,这是表示TVS管导通的标志电压(P4SMA、P6SMB、1.5SMC、P4KE、P6KE、1.5KE系列型号中的数字就是击穿电压的标称值,其它系列的数字是反向断态电压值)。TVS管的击穿电压有±5%的误差范围(不带“A”的为±10%)。 ③脉冲峰值电流IPP:TVS管允许通过的10/1000μs波的最大峰值电流(8/20μs 波的峰值电流约为其5倍左右),超过这个电流值就可能造成永久性损坏。在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小。 ④最大箝位电压VC:TVS管流过脉冲峰值电流IPP时两端所呈现的电压。 ⑤脉冲峰值功率Pm:脉冲峰值功率Pm是指10/1000μs波的脉冲峰值电流IPP 与最大箝位电压VC的乘积,即Pm=IPP*VC。 5、命名规则

常见二极管参数大全

1N系列稳压管

快恢复整流二极管

常用整流二极管型号和参数 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW, 05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V,Pzm=500mW, 05Z13X硅稳压二极管 Vz=12.4~13.1V,Pzm=500mW, 05Z15Y硅稳压二极管 Vz=14.4~15.15V,Pzm=500mW, 05Z18Y硅稳压二极管 Vz=17.55~18.45V,Pzm=500mW, 1N4001硅整流二极管 50V, 1A,(Ir=5uA,Vf=1V,Ifs=50A) 1N4002硅整流二极管 100V, 1A, 1N4003硅整流二极管 200V, 1A, 1N4004硅整流二极管 400V, 1A, 1N4005硅整流二极管 600V, 1A, 1N4006硅整流二极管 800V, 1A, 1N4007硅整流二极管 1000V, 1A, 1N4148二极管 75V, 4PF,Ir=25nA,Vf=1V, 1N5391硅整流二极管 50V, 1.5A,(Ir=10uA,Vf=1.4V,Ifs=50A) 1N5392硅整流二极管 100V,1.5A, 1N5393硅整流二极管 200V,1.5A, 1N5394硅整流二极管 300V,1.5A, 1N5395硅整流二极管 400V,1.5A, 1N5396硅整流二极管 500V,1.5A, 1N5397硅整流二极管 600V,1.5A, 1N5398硅整流二极管 800V,1.5A, 1N5399硅整流二极管 1000V,1.5A, 1N5400硅整流二极管 50V, 3A,(Ir=5uA,Vf=1V,Ifs=150A) 1N5401硅整流二极管 100V,3A, 1N5402硅整流二极管 200V,3A, 1N5403硅整流二极管 300V,3A, 1N5404硅整流二极管 400V,3A,

1N系列常用整流二极管的主要参数

1N 系列常用整流二极管的主要参数
反向工作 峰值电压 URM/V 额定正向 整流电流 整流电流 IF/A 正向不重 复浪涌峰 值电流 IFSM/A 正向 压降 UF/V 反向 电流 IR/uA 工作 频率 f/KHZ 外形 封装
型 号
1N4000 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5108 1N5200 1N5201 1N5202 1N5203 1N5204 1N5205 1N5206 1N5207 1N5208 1N5400 1N5401 1N5402 1N5403 1N5404 1N5405 1N5406 1N5407 1N5408
25 50 100 200 400 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000
1
30
≤1
<5
3
DO-41
1.5
75
≤1
<5
3
DO-15
2
100
≤1
<10
3
3
150
≤0.8
<10
3
DO-27
常用二极管参数: 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

二极管的符号、判别、参数和分类

二极管符号 二极管(国标) 2.半导体二极管的极性判别及选用 (1) 半导体二极管的极性判别

一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP1 7等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。塑封二极管有圆环标志的是负极,如IN4000系列。 无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。 根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R ×100或R×1k挡。不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极相接,测出两个阻值。在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。在这两种情况下,管子就不能使用了。 (2) 半导体二极管的选用 通常小功率锗二极管的正向电阻值为300~500?,硅管为1k?或更大些。锗管反向电阻为几十千欧,硅管反向电阻在500k?以上(大功率二极管的数值要大得多)。正反向电阻差值越大越好。 点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。 选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

肖特基(Schottky)二极管

肖特基(Schottky)二极管 肖特基(Schottky)二极管,又称肖特基势垒二极管(简称 SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。 一个典型的应用,是在双极型晶体管 BJT 的开关电路里面, 通过在 BJT 上连接 Shockley 二极管来箝位,使得晶体管在导通状态时其实处于很接近截止状态,从而提高晶体管的开关速度。这种方法是 74LS,74ALS,74AS 等典型数字 IC 的 TTL内部电路中使用的技术。 肖特基(Schottky)二极管的最大特点是正向压降 VF 比较小。在同样电流的情况下,它的正向压降要小许多。另外它的恢复时间短。它也有一些缺点:耐压比较低,漏电流稍大些。选用时要全面考虑。 三、晶体二极管 晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小; 而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常 把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。 电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如 1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用 一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。 3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极 管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好 相反。 4、常用的1N4000系列二极管耐压比较如下: 型号 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 耐压(V) 50 100 200 400 600 800 1000 电流(A)均为1 四、稳压二极管 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。 这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电 压变动时,负载两端的电压将基本保持不变。 2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中, 前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V 肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、

瞬态抑制二极管的特点和应用

瞬态抑制二极管TVS的特点与应用 一、什么是瞬态抑制二极管 瞬态二极管(Transient Voltage Suppressor)简称TVS,是一种二极管形式的高效能保护器件。当TVS 二极管的两极受到反向瞬态高能量冲击时,它能以10的负12次方秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件,免受各种浪涌脉冲的损坏。 硅瞬变吸收二极管的工作有点像普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。 TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。 TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。 二、TVS的特性 TVS的电路符号和普通的稳压管相同。其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。 在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压VBR,而被击穿。随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。 其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。

(整理)常用变容二极管

常用变容二极管变容二极管(Varactors ),又称为电压调谐电容(Voltage variable Capactors ,VVC )或调谐二极管(Tuning Diodes ),当在二极管两端加上反向偏压时,会产生电容效应,通常变容二极管的电容量,随反向偏压增大而减小。变容二极管优点主要表现在:(1)体型小巧易于安装;(2)易于实现自动电子调谐(Auto Electronic Tuning ),方便遥控的电子调谐器的设计。如今的电视系统或通信系统中的频道选择及呼叫等电路,基本上都由变容二极管完成。 1、 变容二极管工作原理 变容二极管的等效电路如图1(a )所示。 图1 (a )变容二极管的等效电路 (b )变容二极管的简化等效电路 其中,R p ——反向偏压的结电阻(Junction Resistance ); 's L ——外部引线电感; s L ——内部引线电感; c C ——封装电容; s R ——二极管体电阻; j C ——结电容。 通常,等效电路中的电感与封装电容等都可略去不计,简化后的等效电路如图1(b )所示。一般地,变容二极管与外加电压的关系可表示为 (1) j j D C C v V γ = - (1) j C 为变容二极管的结电容,0j C 为变容管加零偏压时的结电容;V D 为变容管PN 结内建 电位差(硅管V D =0.7V ,锗管V D =0.3V );γ为变容二极管的电容变化指数,与频偏的大小有关;v 为变容管两端所加的反向电压。在小频偏情况下,选γ=1的变容二极管可近似实现线性调频;在大频偏情况下,必须选γ=2的超突变结变容二极管,才能实现较好的线性调频。 变容二极管的j C v - 特性曲线如图2所示。当加入的反向电压为 cos Q Q m v V v V V t ΩΩ=+=+Ω时,设电路工作在线性调制状态,在静态工作点Q 处,可得曲线的斜率为/c k C V =??。

常用肖特基二极管型号

常用肖特基二极管型号: 常用的有引线式肖特基二极管有D80-004、B82-004、MBR1545、MBR2535等型号,各管的主要参数见表4-43。

常用的表面封装肖特基二极管有FB系列,其主要参数见表4-44。 特基二极管F5KQ100 F5KQ100 肖特基二极管30CPQ140 30CPQ140 肖特基二极管30CPQ100 30CPQ100 肖特基二极管30CPQ090 30CPQ090 肖特基二极管30CPQ060

30CPQ060 肖特基二极管30CPQ045 30CPQ045 肖特基二极管MBRS260T3G MBRS260T3G 肖特基二极管MBRS130T3G MBRS130T3G 肖特基二极管MBRS320T3G MBRS320T3G 肖特基二极管MBRS340T3G MBRS340T3G 肖特基二极管MBRS140T3G MBRS140T3G 肖特基二极管MBRS240LT3 MBRS240LT3 肖特基二极管MBRS230LT3 MBRS230LT3 肖特基二极管MBRS2040LT MBRS2040LT 肖特基二极管MBR20100 MBR20100 肖特基二极管MBR3045 MBR3045 肖特基二极管MBR2545 MBR2545 肖特基二极管MBR2045 MBR2045 肖特基二极管MBR1545 MBR1545 肖特基二极管MBR1045

MBR1045 肖特基二极管MBR745 MBR745 肖特基二极管MBR3100 MBR3100 肖特基二极管MBR360 MBR360 肖特基二极管DSC01232 DSC01232 肖特基二极管SB3040 SB3040 肖特基二极管IN5817 IN5817 肖特基二极管IN5819 IN5819 肖特基二极管IN5818 IN5818 肖特基二极管IN5822 IN5822 肖特基二极管HER107 HER107 肖特基二极管HER207 HER207 肖特基二极管HER307 HER307 肖特基二极管FR105 FR105 肖特基二极管FR2050

瞬变抑制二极管的主要参数

瞬变抑制二极管的主要参数 ?1、击穿电压V(BR) :器件在发生击穿的区域内,在规定的试验电流I(BR) 下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。 2、最大反向脉冲峰值电流IPP :在反向工作时,在规定的脉冲条件下,器 件允许通过的最大脉冲峰值电流。IPP 和最大箝位电压Vc(MAX) 的乘积,就是瞬态脉冲功率的最大值。使用时应正确选取瞬变抑制二极管,使额定瞬态脉冲功率PPR 大于被保护器件或线路可能出现的最大瞬态浪涌功率。 3、最大反向工作电压VRWM(或变位电压):器件反向工作时,在规定的 IR 下,器件两端的电压值称为最大反向工作电压VRWM。通常VRWM =(0. 8~0. 9)V (BR) 。在这个电压下,器件的功率消耗很小。 4、最大箝位电压Vc(max ) :在脉冲峰值电流Ipp作用下器件两端的最 大电压值称为最大箝位电压。使用时,应使Vc(max ) 不高于被保护器件的最大允许安全电压。最大箝位电压和击穿电压之比称为箝为系数。 5、反向脉冲峰值功率PPR :瞬变抑制二极管的PPR 取决于脉冲峰值电 流IPP 和最大箝位电压Vc(max ) ,除此以外,还和脉冲波形、脉冲时间及环境温度有关。 6、电容CPP:瞬变抑制二极管的电容由硅片的面积和偏置电压来决定,电 容在零偏情况下,随偏置电压的增加,该电容值呈下降趋势。电容的大小会影响瞬变抑制二极管器件的响应时间。 7、漏电流IR:当最大反向工作电压施加到瞬变抑制二极管上时,瞬变抑制 二极管管有一个漏电流IR,当瞬变抑制二极管用于高阻抗电路时,这个漏电流是一个重要的参数。 瞬变抑制二极管的使用技巧 ?1、确定被保护电路的最大直流或连续工作电压、电路的额定标准电压和“高端”容限。 2、瞬变抑制二极管额定反向关断VWM 应大于或等于被保护电路的最大工 作电压。若选用的VWM 太低,器件可能进入雪崩或因反向漏电流太大影响电路的正常工作。串行连接分电压,并行连接分电流。 3、瞬变抑制二极管的最大箝位电压VC 应小于被保护电路的损坏电压。 4、在规定的脉冲持续时间内,瞬变抑制二极管的最大峰值脉冲功耗PM 必 须大于被保护电路内可能出现的峰值脉冲功率。在确定最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。

常用肖特基二极管参数

常用肖特基二极管参数 型号制造商封 装 If/A Vrrm/V 最大Vf/V 1SS294 TOS SC-59 0.1 40 0.60 BAT15-099 INF SOT143 0.11 4 0.32 BAT54A PS SOT23 0.20 30 0.50 10MQ060N IR SMA 0.77 90 0.65 10MQ100N IR SMA 0.77 100 0.96 10BQ015 IR SMB 1.00 15 0.34 SS12 GS DO214 1.00 20 0.50 MBRS130LT3 ON - 1.00

30 0.39 10BQ040 IR SMB 1.00 40 0.53 RB060L-40 ROHM PMDS 1.00 40 0 RB160L-40 ROHM PMDS 1.00 40 0.55 SS14 GS DO214 1.00 40 0.5 MBRS140T3 ON - 1.00 40 0. 10BQ060 IR SMB 1.00 60 0.57

SS16 GS DO214 1.00 60 0.75 10BQ100 IR SMB 1.00 100 0.78 MBRS1100T3 ON - 1.00 100 0.75 10MQ040N IR SMA 1.10 40 0.51 15MQ040N IR SMA 1.70 40 0.55 PBYR245CT PS SOT223 2.00 45 0.45 30BQ015 IR SMC 3.00 15 0.35 30BQ040 IR SMC 3.00 40 0.51 30BQ060 IR SMC 3.00 60 0.58 30BQ100 IR SMC 3.00 100 0.79 STPS340U STM SOD6 3.00 4

SOCAY瞬变二极管SMCJ36CA型号

SOCAY瞬变二极管SMCJ36CA型号 硕凯电子(Sylvia) 一、产品图应用 TVS devices are ideal for the protection of I/O interfaces,VCC bus and other vulnerable circuits used in Telecom,Computer,Industrial and Consumer electronic applications. 二、产品系列说明 The SMCJ series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage events. 三、特性 1、为表面安装应用优化电路板空间 2、低泄漏

4、玻璃钝化结 5、低电感 6、优良的钳位能力 7、1500W的峰值功率能力在10×1000μ波形重复率(占空比):0.01% 8、快速响应时间:从0伏特到最小击穿电压通常小于1.0ps 9、典型的,在电压高于12V时,反向漏电流小于5μA 10、高温焊接:终端260°C/40秒 11、典型的最大温度系数△Vbr=0.1%x Vbr@25°C x△T 12、塑料包装有保险商实验室可燃性94V-0 13、无铅镀雾锡 14、无卤化,符合RoHS 15、典型失效模式是在指定的电压或电流下出现 16、晶须测试是基于JEDEC JESD201A每个表4a及4c进行的 17、IEC-61000-4-2ESD15kV(空气),8kV(接触) 18、数据线的ESD保护符合IEC61000-4-2(IEC801-2) 19、数据线的EFT保护符合IEC61000-4-4(IEC801-4) 四、UL认证编号

相关文档
最新文档