大一微积分练习题及答案
大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8—1 多元函数的基本概念1。
填空题:(1)若yx xy y x y x f tan ),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________y f f x-== (3)若)0()(22 y yy x x y f +=,则__________)(=x f (4)若22),(y x x yy x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xy z arcsin =的定义域是________________ (8)函数xy x y z 2222-+=的间断点是_______________ 2。
求下列极限:(1)xy xy y x 42lim0+-→→班级: 姓名: 学号:(2) x xy y x sin lim0→→(3) 22222200)()cos(1lim y x y x y x y x ++-→→微积分练习册[第八章] 多元函数微分学3.证明0lim 22)0,0(),(=+→y x xy y x4。
证明:极限0lim 242)0,0(),(=+→y x y x y x 不存在班级: 姓名: 学号:5。
函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么?微积分练习册[第八章] 多元函数微分学习题 8—2偏导数及其在经济分析中的应用1.填空题(1)设y x z tan ln =,则__________________,=∂∂=∂∂yz x z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂y z x z ; (3)设zy x u =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ;(4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x z yz x z (5)设z yx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x 2。
大一微积分期末试卷及答案

微积分期末试卷选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。
2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)紺勺()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)nB X n si n -n n 21 1C X n-(a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。
)o Bf /(X。
)oCf /(X。
)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、4)6、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD一、填空题1、d ) = -^― dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。
这条直线方程为:x2x3、函数y=二一的反函数及其定义域与值域分别是:2x+14、y=匹的拐点为:2 ,5、若lim X2a2,则a,b的值分别为:1 x+ 2x-3x1 In x 1 ;2 y x3 2x 2x;3 y也厂,©1)^ 4©0)lim (x 1)(x m) 5 解:原式=x 1 (x 1)(x 3) m 7 b limU 」2 x 1 x 3 4 7,a 6 1、 2、 、判断题 无穷多个无穷小的和是无穷小 lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、若f(X)在X o 处取得极值,则必有 f(x)在X 0处连续不可导( )5、 (x) 在 0,1 f '(x) 0令 A f'(0) f'(1),C f(1) f (0),则必有 A>B>C()1~5 FFFFT 二、计算题 1用洛必达法则求极限 x im 01e x2解:原式=lim x 0 1 x lime x2( 2x x 0J 2x 31 lim e xx 02 若 f (x)(x 3 10)4,求f ''(0) 解: 4( x 3 24x f'(x) f ''(x) f ''(x) 0 3 2 2 , 3 10) 3x 12x (x.3 3 2 3(x 10) 12x 3 (x 10) 3x 10)33 . 3 34 , 3 224x (x 10)108x (x 10)4I o 2 3 求极限 lim(cos x)xx 04 ,2I ncosx解:原式=lim e xx 05 tan3xdx2=sec x tan xdx tan xdx6 求xarctanxdxQ lim p Incosxx 0x2原式e2I>解:In y5ln3x11 Jx 1cosxI>yy1 5 3 11y 2 x 212(x 1)12(x 2)1cosx(sin x)tanxlim lim xx x 0 x x 0 x2224Incosxlim / e x 0解:原式=tan2xtanxdx2(sec x 1)tanxdx=tan xd tan x=tan xd tan xsin x , dxcosx1 . dcosxcosx= -ta n2x In cosx c解:原式=1 arcta nxd(x 2)1(x 2 arcta nx2 22arcta nx四、证明题。
大一上学期微积分练习题带答案

(A)连续;(B)可导;(C)可微;(D)连续、不可导.
20.若在 内 ,在 内, 且 ,则在 内有()
(A) 且 ;(B) 且 ;
(C) 且 ;(D) 且 .答案C
21.若周期为4的函数 在 内可导且 ,则曲线
在点 处的切线斜率是()
(A) ;(B)0;(C) ;(D) .答案(D)
11.当 时,若 ,则 之值一定为( ).
(A) ;( B ) 为任意常数;
( C ) 为任意常数;( D ) 为任意常数.答案:(B)
12.当 时,若 ,则 之值一定为().
(A) ;( B ) 为任意常数;
( C ) 为任意常数;( D ) 为任意常数.答案 (C)
13.设 在 上定义,在点 连续, ,则 是函数
(A) (B) (C) (D) 答案B
5.设函数 , ,则 ()
(A) 0;(B) 1;(C) ;(D) 2.答案A
6.设 是偶函数, 是奇函数,则 是().
(A)奇函数 (B) 偶函数 (C)非奇非偶函数(D)不能确定答案B
7.若 ,则 ( ).
(A) ;(B) ;(C) ;(D) .答案(A).
32.设 ,下列命题中正确的是().
(A) 是极大值, 是极小值;(B) 是极小值, 是极大值;
(C) 是极大值, 也是极大值;(D) 是极小值, 也是极小值.答案:(B)
33.下列结论不正确的是()
(A) ;(B) ;(C) ;(D) .答案:(C)
34.设 二阶可导, ,则 ().
(A) ;(B) ;(C) ;(D) .答(D).
答案: 在 上增,在 上减.
21.设某厂每月生产产品的总成本 是产量 的函数且 (元),若每单位
微积分一练习题及答案

A . x a 是f x 的极小值点;B . x a 是f x 的极大值点;《微积分(1)》练习题一.单项选择题1 •设f X 。
存在,则下列等式成立的有( )3 .设f (x )的一个原函数是e 2x ,则f (x )(A . 当f a f b 0时,至少存在一点 a,b ,使 f0 ;B . 对任何a,b ,有lim f x fx0 ;C. 当fa f b 时,至少存在一点 a,b ,使 f 0;D. 至少存在一点 a, b ,使f b fa fba;6.已知f x 的导数在x a 处连续,f x右lim1,则下列结论成立的有x0x0-Tolimx0-Tx0olimx0x0-T叫Hhx0x0叫Hh).limx 22xxx 123.lim3x 1x2x 6x2.下列极限不存在的有(1A . lim xsin 2B1C. lim e xx 0DA .2e 2xB2x4e 2xD2xe2x2、x, 0 x 14.函数 f(x) 1, x 1 在 0,1 x, x 1上的间断点x 1为( )间断点A .跳跃间断点;B •无穷间断点; C.可去间断点;D.振荡间断点5.设函数f x 在a,b 上有定义,在a,b 内可导,则下列结论成立的有(x0C. a, f a 是曲线y f x 的拐点;D. x a 不是f x 的极值点,a, f a 也不是曲线y f x 的拐点;填空: 山i1 .设 y f arcsin, f 可微,贝U y x ________________________________x2 .若 y 3x 52x 2 x 3,贝卩 y 6______________________3.过原点0,1作曲线y e 2x 的切线,则切线方程为 _________________________________4 x 14 .曲线y——2— 2的水平渐近线方程为 ________________________________________x铅垂渐近线方程为 __________________________________5 .设 f (ln x) 1 x ,贝卩 f x _____________________ f x __________________________计算题:于零,求证F x 在a, 内单调递增(1)x 2 1x 2 2x 3(2) limx(3)ln(1 x ) lim(4)yln 1x 0 xs in 3x(5)e xy y 3 5x求 dy x 0dx四.试确定a , b , 使函数 f xb 1 si nxax1,a 2, xex 五.试证明不等 式: 当x1时, xe x e1 xe x e2六. 设F x 丄x f ax a,其中fx 在 a,上连续, x 在a, 内存在且大x a在x 0处连续且可导。
微积分练习100题及其解答

2
1
x2
.
1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim
2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2
大一微积分试题及答案详解

大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。
由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。
2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。
选项B是偶函数,选项C和D不满足奇函数的性质。
3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。
答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。
2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。
答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。
3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。
微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
微积分考试题目及答案

微积分考试题目及答案一、选择题(每题5分,共30分)1. 函数f(x)=x^2+3x-4的导数是:A. 2x+3B. x^2+3C. 2x^2+3xD. x^2+6x-4答案:A2. 曲线y=x^3-2x+1在x=1处的切线斜率是:A. 1B. 2C. 3D. 4答案:B3. 微分方程dy/dx=2x的通解是:A. y=x^2+CB. y=2x+CC. y=x^2+2x+CD. y=2x^2+C答案:A4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/2C. 1D. 2答案:A5. 函数y=e^x的不定积分是:A. e^x+CB. e^xC. 1/e^x+CD. ln(e^x)+C答案:A6. 函数y=ln(x)的导数是:A. 1/xB. xC. ln(x)D. 1答案:A二、填空题(每题5分,共20分)1. 函数f(x)=sin(x)的原函数是_________。
答案:-cos(x)+C2. 曲线y=x^2在x=2处的切线方程是_________。
答案:y-4=4(x-2) 或 y=4x-43. 函数y=x^3的二阶导数是_________。
答案:6x4. 定积分∫(0,π) sin(x) dx的值是_________。
答案:2三、解答题(每题20分,共50分)1. 求函数f(x)=x^3-3x^2+2x的极值点。
答案:首先求导数f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1和x=2/3。
然后求二阶导数f''(x)=6x-6,代入x=1和x=2/3,得到f''(1)=0,f''(2/3)=-2,因此x=1是拐点,x=2/3是极大值点。
2. 求曲线y=x^2-4x+3与x轴的交点。
答案:令y=0,解方程x^2-4x+3=0,得到x=1和x=3,因此交点为(1,0)和(3,0)。
3. 求定积分∫(0,2) (x^2-2x+1) dx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分(1)》练习题
一.单项选择题
1.设()0x f '存在,则下列等式成立的有( ) A. ()()()0000
lim
x f x x f x x f x '=∆-∆-→∆ B.()()
()0000lim x f x
x f x x f x '-=∆-∆-→∆
C.()()()0000
2lim
x f h x f h x f h '=-+→ D.()()()00002
1
2lim x f h x f h x f h '=-+→
2.下列极限不存在的有( )
A.201
sin lim x
x x → B.12lim 2+-+∞→x x x x
C. x
x e
1
lim → D.()
x
x x
x +-∞
→6
3
2
21
3lim
3.设)(x f 的一个原函数就是x e 2-,则=)(x f ( )
A.x e 22--
B.x e 2-
C.x e 24-
D. x xe 22--
4.函数⎪⎩
⎪
⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。
A.跳跃间断点;
B.无穷间断点;
C.可去间断点;
D.振荡间断点
5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξ
f x f x ;
C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ; D.至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim
-=-'→a
x x f a
x ,则下列结论成立的有( )
A.a x =就是()x f 的极小值点;
B.a x =就是()x f 的极大值点;
C.()()a f a ,就是曲线()x f y =的拐点;
D.a x =不就是()x f 的极值点,()()a f a ,也不就是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭
⎫
⎝⎛=x f y 1arcsin
,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y
3.过原点()1,0作曲线x e y 2=的切线,则切线方程为
4.曲线()2142
-+=
x
x y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f
三.计算题:
(1)321lim 221-+-→x x x x (2)3
2lim +∞→⎪⎭
⎫
⎝⎛-x x x x
(3)x
x x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy (5)053=-+x y e
xy
求
=x dx
dy
四.试确定a ,b ,使函数()()⎩
⎨
⎧<-≥+++=0,10
,2sin 1x e x a x b x f ax
在0=x 处连续且可导。
五.试证明不等式:当1>x 时,()
e xe 2
1
e x e x x
+<<⋅ 六.设()()()()a x a
x a f x f x F >--=
,
,其中()x f 在[)+∞,a 上连续,()x f ''在()+∞,a 内存在
且大于零,求证()x F 在()+∞,a 内单调递增。
《微积分》练习题参考答案
七.单项选择题
1.( B )
2.( C )
3.( A )
4.( C )
5.( B )
6.( B ) 八.填空:(每小题3分,共15分) 1. ⎪⎭⎫ ⎝
⎛
'--
x f x x 1arcsin 11
2
2. ()06=y
3. 12+=x y
4. 2-=y , 0=x
5. ()x e x f +='1,()c e x x f x ++=
三,计算题:(1)321lim 221-+-→x x x x (2)3
2lim +∞→⎪⎭
⎫
⎝⎛-x x x x
2
1222lim 3
21lim
122
1=+=-+-→→x x x x x x x ()2
62lim 3223
)21(lim 2lim -+-
+⎪⎭
⎫
⎝⎛-•-∞→+∞→==-=⎪⎭
⎫ ⎝⎛-∞→e e x
x x x x x x x x x x x (3)x
x x x 3sin )1ln(lim 20+→ (4)()[]2
21ln x y -= 求dy 3
1
3lim 3sin )1ln(lim 2
020=
⋅=+→→x x x x x x x x ()[]()()[]dx x x dx x x dy 2121ln 4221121ln 2---=-⋅-⋅-= (5)053=-+x y e
xy
求
=x dx
dy
()xy
xy
xy xe y ye y y y y x y e +-='⇒=-'+'+2
235053
又10-=⇒
=y x
2351
02
=+-='-===y x xy
xy x xe y ye y
(
九.试确定a ,b ,使函数()()⎩
⎨
⎧<-≥+++=0,10
,2sin 1x e x a x b x f ax
在0=x 处连续且可导。
(8分)
解:()()[]22sin 1lim 000
++=+++=++→b a a x b f x
()[]
01lim 000
=-=--→ax x e f , 函数()x f 在0=x 处连续()()0000-=+f f
02=++b a , (1)
()()[][]b x
a b a x b f x =++-+++='+
→+22sin 1lim 00
()[]a x
e x b a e
f ax x ax x =-=++--='→→--1
lim 21lim 000
函数()x f 在0=x 处可导()()00-+'='f f ,故b a = (2) 由(1)(2)知1-==b a
十.试证明不等式:当1>x 时,()
e xe 2
1
e x e x x
+<
<⋅ (8分) 证:(法一)设()t
e t
f = []x t ,1∈ 则由拉格朗日中值定理有
()()()111-<-=-<-x e x e e e x e x x ξ ()x ,1∈ξ
整理得:()
e xe 2
1
e x e x x
+<
<⋅ 法二:设()ex e x f x
-=
()()10>>-='x e e x f x 故()ex e x f x -=在1>x 时,为增函数,
()()01=>-=f ex e x f x ,即ex e x >
设()()
e xe e x
f x
x
+-
=2
1 ()()
()()1012
1
21><-=+-
='x x e xe e e x f x x x x 故()()
e xe e x
f x
x
+-
=2
1在1>x 时,为减函数,
()()()0121=<+-=f xe e e x f x x x ,即()e xe 2
1
e x x +<
综上,()e xe 2
1e x e x
x +<<⋅
十一. 设()()()()a x a
x a f x f x F >--=
,其中()x f 在[)+∞,a 上连续,()x f ''在()+∞,a 内存在且大于零,求证()x F 在()+∞,a 内单调递增。
(5分) 证:()()()()()()2)(a x a f x f a x x f x F ----'=
'
()()()()()x a a x a x f a x x f <<--'--'=
ξξ2
)
( ()()a
x f x f -'-'=ξ
()()()x a
x x f <<>--''=
ηξξη0 故()x F 在()+∞,a 内单调递增。