微积分下册期末试卷附答案
微积分下册期末试卷及答案

评 阅 人
13、由确定,求.
评 分
评 阅 人
14、用拉格朗日乘数法求 在条件下的极值.
评 分
评 阅 人
15、计算.
评 分
评 阅 人
16、计算二重积分 ,其中 是由 轴及圆周 所围成的在第一象限内的区域.
评 分
评 阅 人
17、解微分方程.
评 分
评 阅 人
18、判别级数的敛散性.
评 分
评
阅
二、选择题(每小题3分,共15分) 分
卷 人
6、
的值为( ).
(A) (B) (C) (D)不存在
7、和在存在且连续是函数在点可微的( ).
(A) 必要非充分的条件 (C) 充分且必要的条件
(B) 充分非必要的条件 (D) 即非充分又非必要的条件
8、由曲面和及柱面 所围的体积是( ). (A) (B) (C) (D)
, 于是
,所以是函数的极大值点,且
…(4分) 对
有
,
,
, 于是
,
不是函数的极值点。
…(6分)
5、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资
料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间
的关系有如下的经验公式: .若提供的广告费用为万元,求相应的最优广
告策略.
的反函数为
。且时,。于是
12、求二重极限 .
解:原式
(3分)
(6分)
13、由确定,求.
解:设
,则
, ,
, (3分)
(6分) 14、用拉格朗日乘数法求 在条件下的极值. 解:
令 ,得 , , 为极小值点. (3分)
微积分下册期末试卷及答案

中南民族大学06、07微积分(下)试卷及参考答案06年A 卷评分阅卷人1、已知22(,)yf x y x y x +=-,则=),(y x f _____________. 2、已知,则=⎰∞+--dx e x x21___________. 3、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)评分阅卷人6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A)1p >(B)1p <(C)12p <<(D)2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ). (A)在原点无定义(B)在原点二重极限不存在(C)在原点有二重极限,但无定义(D)在原点二重极限存在,但不等于函数值8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰,222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( ).(A)123I I I >>(B)213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A)b ax y +=(B)xe b ax y 3)(+=(C)x e bx ax y 32)(+=(D)xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ). (A)绝对收敛(B)条件收敛(C)发散(D)不定 三、计算题(每小题6分,共60分)评分评分评阅人11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.评分评阅人12、求二重极限11lim222200-+++→→y x y x y x .评分评阅人13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2. 评分评阅人14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 评分评阅人15、计算⎰⎰1 212dxe dy yyyx .评分评阅人16、计算二重积分22()Dxy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.评分评阅人17、解微分方程x y y +'=''.评分评阅人18、判别级数)11(133∑∞=--+n n n 的敛散性.评分评阅人19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.评分评阅人20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=, 求最优广告策略.四、证明题(每小题5分,共10分)评分评分评阅人21、设1133ln()z x y =+,证明:13z z xy xy ∂∂+=∂∂. 评分评阅人22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+.2、π.3、)32,31(-.4、1.5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C).7、(B).8、(A).9、(D).10、(D). 三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32yx =的反函数为23,0x y y =>。
微积分下册期末试卷及答案[1]
![微积分下册期末试卷及答案[1]](https://img.taocdn.com/s3/m/97f47598767f5acfa0c7cdbc.png)
1、已知22(,)f x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=. 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
微积分(下册)期末试卷与答案

中南民族大学06、07微积分(下)试卷及参考答案06年A 卷1、已知22(,)y f x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x 0 21 ___________.π=⎰∞+∞--dx e x 2 3、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-ep x x dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >>(C) 123I I I << (D) 213I I I <<9、方程x e x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n n a 收敛,则∑∞=-1)1(n nn a ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限11lim222200-+++→→y x y x y x .13、),(y x z z =由xy e z z =+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1212dxedy yyyx.16、计算二重积分22()Dx y dxdy+⎰⎰,其中D是由y轴及圆周221x y+=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x 31展开成x 的幂级数,并求展开式成立的区间..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z zx y x y ∂∂+=∂∂.22、若∑=12n n u 与∑∞=12n n v 都收敛,则∑∞=+12)(n n n v u 收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 2 3、)32,31(-. 4、1. 5、"6'0y y y -+=.二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
微积分下册期末试卷及答案剖析

1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x0 21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I>>(C) 123I I I << (D) 213I I I<<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1 212dxe dy yyyx .16、计算二重积分22()D xy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=, 求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z xy x y ∂∂+=∂∂.22、若∑=12nnu与∑∞=12nnv都收敛,则∑∞=+12)(nnnvu收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x yy-+. 23、)32,31(-. 4、1. 5、"6'0y y y-+=.二、选择题(每小题3分,共15分)6、(C ).7、(B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
微积分下册期末试卷及答案[1]
![微积分下册期末试卷及答案[1]](https://img.taocdn.com/s3/m/015e81076137ee06eef91816.png)
、已知22(,)yf x y x y x +=- 则=),(y x f、已知 则=⎰∞+--dx e x x21π=⎰∞+∞--dx ex 2、函数22(,)1f x y x xy y y =++-+在__________点取得极值 、已知y y x x y x f arctan )arctan (),(++= 则=')0,1(x f、以xe x C C y 321)(+= 21,C C 为任意常数 为通解的微分方程是知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛 则常数p 的取值范围是1p > 1p < 12p << 2p >数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断 是因为该函数在原点无定义 在原点二重极限不存在 在原点有二重极限 但无定义 在原点二重极限存在 但不等于函数值、若2211x y I +≤=⎰⎰22212x y I ≤+≤=⎰⎰22324x y I ≤+≤=⎰⎰则下列关系式成立的是123I I I >> 213I I I >> 123I I I << 213I I I <<、方程xe x y y y 3)1(596+=+'-''具有特解b ax y += xe b ax y 3)(+= x e bx ax y 32)(+= x e bx ax y 323)(+=、设∑∞=12n na收敛,则∑∞=-1)1(n nna绝对收敛 条件收敛 发散 不定 一、填空题 每小题 分 共 分、2(1)1x y y -+、)32,31(- 、 、"6'0y y y -+= 、求由23x y = 4=x 0=y 所围图形绕y 轴旋转的旋转体的体积 解:32y x=的函数为23,0x y y =>。
《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
微积分(下)期末复习试题完整版

期末复习题一、填空题1、=⎰→xt t xx 020d cos lim.2、若)(x f 在],[b a 上连续, 则=⎰bxx x f x 2d )(d d .3、已知)(x F 是)(x f 的原函数,则⎰>+x x t a t f t)0( d )(1等于 . 4、若2e x -是)(xf 的一个原函数,则='⎰10d )(x x f .5、=++⎰-112d 1||x x x x .6、已知21)(xxx f +=,则)(x f 在]2,0[上的平均值为 .7、设⎰=+π0),(sin d )(x f x x x f 且)(x f 连续, 则=)(x f .8、设曲线kx y =<0,0>>x k >与直线1=y 及y 轴围成的图形面积为31,则=k . 9、设yx y y x y x f arcsin)1()2(),(22---=,则=∂∂)1,0(y f .10、设yx z 2e =,则=∂∂∂yx z2. 11、交换积分次序 =⎰⎰x y y x f x ln 0e 1d ),(d . 12、交换积分次序 =⎰⎰---xx y y x f x 11122d ),(d .13、交换积分次序⎰⎰-2210d ),(d y yx y x f y =.二、选择题1、极限xtt x x cos 1d )1ln(lim2sin 0-+⎰→等于〔 〔A1〔B2〔C4〔D82、设x x t t f xe d )(d d e 0=⎰-,则=)(xf 〔 <A>21x<B> 21x - <C> x 2e - <D> x2e -- 3、设)(x f 是连续函数,且C x F x x f +=⎰)(d )(,则必有〔 B〔A )(d )(x F t t f x a =⎰ 〔B )(]d )([x F t t F x a ='⎰ 〔C)(d )(x f t t F x a='⎰〔D )()(]d )([a f x f t t F xa-=''⎰4、设)(x f 在],[b a 上连续,则)(x f 在],[b a 上的平均值是〔〔A2)()(b f a f + 〔B ⎰b a x x f d )(〔C ⎰-b a x x f a b d )(1 〔D ⎰-b a x x f ba d )(15、积分⎰=t sx x t f tI 0d )(与〔 有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南民族大学06、07微积分(下)试卷及参考答案06年A 卷评分阅卷人1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x0 21___________.π=⎰∞+∞--dx ex 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分) 评分阅卷人6 知dx e x p ⎰∞+- 0 )1(与⎰-e p x x dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰,222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >>(C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)评分评分评阅人11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.评分评阅人12、求二重极限 11lim222200-+++→→y x y x y x .评分评阅人13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.评分评阅人14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.评分评阅人15、计算⎰⎰1 212dxe dy yyyx .评分评阅人16、计算二重积分22()D xy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.评分评阅人17、解微分方程x y y +'=''.评分评阅人18、判别级数)11(133∑∞=--+n n n 的敛散性.评分评阅人19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.评分评阅人20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=, 求最优广告策略.四、证明题(每小题5分,共10分) 评分评分评阅人21、设1133ln()z x y =+,证明:13z z xy xy ∂∂+=∂∂.评分评阅人22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.06年B 卷一、填空题(每小题3分,共15分)评分阅卷人1、设22(,)yf x y x y x -=-,则=),(y x f _____________.2、已1()2πΓ=知,则5()2Γ=___________.3、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值,则常数 ________a = .4、已知)arctan 4(),(y x y x y x f +++=,则=')0,1(x f ________.5、以xx e C e C y 321+=(21,C C 为任意常数)为通解的微分方程是__________________.二、选择题(每小题3分,共15分) 评分阅卷人6、已知dx e px⎰∞+- 0 与⎰e px x dx 1 ln 均收敛,则常数p 的取值范围是( ).(A) 0>p (B) 0<p (C) 1<p (D) 10<<p7、对于函数22(,)f x y x y =-,点(0,0)( ).(A) 不是驻点 (B) 是驻点而非极值点 (C) 是极大值点 (D) 是极小值点8、已知21()D I x y d σ=+⎰⎰,32()D I x y d σ=+⎰⎰,其中D 为22(2)(1)1x y -+-≤,则( ).(A) 12I I = (B) 12I I > (C) 12I I < (D) 2212I I =9、方程xxe y y y 265=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 2)(+=(C) x e bx ax y 22)(+= (D) xebx ax y 223)(+=10、级数∑∞=-12)1(n nnna 收敛,则级数∑∞=1n na( ).(A) 条件收敛 (B) 绝对收敛 (C) 发散 (D) 敛散性不定三、计算题(每小题6分,共60分)评分评分评阅人11、求3x y =,0=y ,2=x 所围图形绕x 轴旋转的旋转体的体积.评分评阅人12、求二重极限)1sin 1sin(lim 00xy y x y x +→→.评分评阅人13、设xy y x z -+=1arctan,求22x z ∂∂.评分评阅人14、用拉格朗日乘数法求(,)f x y xy =在满足条件1x y +=下的极值.评分评阅人15、计算⎰⎰11ded yxx xy.评分评阅人16、计算二重积分22Dx y dxdy+⎰⎰,其中D是由y轴及圆周22(1)1x y+-=所围成的在第一象限内的区域.评分评阅人17、解微分方程0='+''y y x .评分评阅人18、判别级数∑∞=⎪⎭⎫ ⎝⎛12!n nn n 的敛散性.评分评阅人19、将函数x x f 1)(=展开成)3(-x 的幂级数.评分评阅人20、某工厂生产甲、乙两种产品,单位售价分别为40元和60元,若生产x 单位甲产品,生产y 单位乙产品的总费用为2220300.1(223)100x y x xy y ++-++,试求出甲、乙两种产品各生产多少时该工厂取得最大利润.四、证明题(每小题5分,共10分) 评分评分评阅人21、设222ln z y x u ++=,证明222222z uy u x u ∂∂+∂∂+∂∂=2221x y z ++.07年A 卷一、填空题(每小题3分,共15分) 评分阅卷人1、设)(y x f y x z -++=,且当0=y 时,2x z=,则=z .2、计算广义积分⎰∞+ 13x dx= .3、设xye z =,则=)1,1(dz .4、微分方程xxe y y y 265=+'-''具有 形式的特解.5、设14n n u ∞==∑,则11122n n n u ∞=⎛⎫-= ⎪⎝⎭∑_________二、选择题(每小题3分,共15分)评分阅卷人6、2222003sin()lim x y x y x y →→++的值为( ).(A) 3 (B) 0 (C) 2 (D)不存在7、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的( ).(A) 必要非充分的条件 (B) 充分非必要的条件 (C) 充分且必要的条件 (D) 即非充分又非必要的条件8、由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是( ). (A) d d θπr r r420202-⎰⎰(B)12204d 4d r rπθ-⎰⎰(C) 212d 4d r rπθ-⎰⎰(D)442012d d θπr r r-⎰⎰9、设二阶常系数非齐次线性方程()y py qy f x '''++=有三个特解x y =1,xe y =2,x e y 23=,则其通解为( ).(A) xx e C e C x 221++ (B) x x e C e C x C 2321++(C) )()(221x x x e x C e e C x -+-+ (D))()(2221x e C e e C xx x -+-10、无穷级数∑∞=--11)1(n pn n (p 为任意实数) ( ).(A) 收敛 (B) 绝对收敛 (C) 发散 (D) 无法判断三、计算题(每小题6分,共60分) 评分评分评阅人11、求极限00lim11x y xy xy →→+-.评分评阅人12、求由x y =与直线1=x 、4=x 、0=y 所围图形绕x 轴旋转的旋转体的体积.评分评阅人13、求由xyz e z=所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂.评分评阅人14、求函数322(,)42f x y x x xy y =-+-的极值.评分评阅人15、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=.若提供的广告费用为5.1万元,求相应的最优广告策略.评分评阅人16、计算积分⎰⎰Dd x y σ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域.评分评阅人17、已知连续函数)(x f 满足⎰+=xx x xf dt t f 0)(2)(,且0)1(=f ,求)(x f .评分评阅人18、求解微分方程212y y y '-+''=0.评分评阅人19、求级数31(2)n n x n ∞=-∑的收敛区间.评分评阅人20、判定级数∑∞=⋅1!)2sin(n n n x 是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛.四、证明题(每小题5分,共10分) 评分评分评阅人21、设正项级数1nn u∞=∑收敛,证明级数11n n n u u ∞+=∑也收敛.评分评阅人22、设)(22y x f yz -=,其中)(u f 为可导函数, 证明211y zy z y x z x =∂∂+∂∂一、填空题(每小题3分,共15分)评分阅卷人1、设()z x y f y x =++-,且当0x =时,2z y =,则=z .2、计算广义积分=⎰∞+ 12x dx .3、设)1ln(22y x z ++=,则(1,2)dz = .4、微分方程xe x y y y 3)1(596+=+'-''具有 形式的特解.5、级数∑∞=+1913n nn 的和为 .二、选择题(每小题3分,共15分)评分阅卷人6、2222003sin()lim x y x y x y →→++的值为( ).(A) 0 (B) 3 (C) 2 (D)不存在7、),(y x f x 和),(y x f y 在),(00y x 存在且连续是函数),(y x f 在点),(00y x 可微的( ).(A) 必要非充分的条件 (B) 充分非必要的条件 (C) 充分且必要的条件 (D) 即非充分又非必要的条件8、由曲面z x y =--422和z =0及柱面224x y +=所围的体积是( ). (A)2420d 4d r r rπθ-⎰⎰ (B)222004d 4d r r rπθ-⎰⎰ (C)222d 4d r rπθ-⎰⎰(D)22204d 4d r rπθ-⎰⎰9、设二阶常系数非齐次微分方程()y py qy f x '''++=有三个特解21y x =,xe y =2,x e y 23=,则其通解为( ).(A) 22212()()x x x C e e C e x -+- (B) 22123x xC x C e C e ++ (C) 2212x x x C e C e ++ (D) )()(22212x x x e x C e e C x -+-+10、无穷级数121(1)n pn n -∞=-∑(p 为任意实数) ( ).(A) 无法判断 (B) 绝对收敛(C) 收敛(D) 发散三、计算题(每小题6分,共60分) 评分评分评阅人11、求极限24 limxyxyxy→→-+.评分评阅人12、求由在区间]2,0[π上,曲线xy sin=与直线2π=x、0=y所围图形绕x轴旋转的旋转体的体积.评分评阅人13、求由xy xyz z=-e 所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂.评分评阅人14、求函数33812),(y xy x y x f +-=的极值.评分评阅人15、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=. 若提供的广告费用为5.1万元,求相应的最优广告策略.评分评阅人16、计算二重积分⎰⎰+D d y x σ)2(,其中D 是由x y =,x y 1=及2=y 所围成的闭区域.评分评阅人17、已知连续函数)(x f 满足0)(2)(0=++⎰xx x f dt t f ,求)(x f .评分评阅人18、求微分方程02)1(2='-''+y x y x 的通解.评分评阅人19、求级数∑∞=-1)3(nnnx的收敛区间.评分评阅人20、判定级数1cos()!nn x n∞=⋅∑是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛.四、证明题(每小题5分,共10分) 评分评分评阅人21、设级数21nn a∞=∑收敛,证明1(0)nn n a a n ∞=>∑也收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+.2、π.3、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。