15届成都一诊高三理科数学一诊考试试题和答案
2015级(2018届)高三第一次诊断性检测数学(理)

= (k2 +1)x1x2 +k(m -1)(x1 +x2)+ (m -1)2 =0,
������ ������ ������7 分 ������ ������ ������8 分
数学(理科)“一诊”考试题答案第 2 页(共4页)
∴(k2 +1)44mk22+-14+k(m -1)4-k8 2k+m1+ (m -1)2 =0.
������ ������ ������3 分
∴H
(x)的
极小
值
为
H
(-1)=
-
1 e.
∴k
-b
的
最
小值
为
-
1 e.
������ ������ ������5 分
(2)∵ m >2,x ≥0,由g′(x)=x(ex -2m)=0,解得x =0或x =ln2m .
当x >ln2m 时,g′(x)>0,∴g(x)在 (ln2m ,+ ∞)上单调递增;
y 轴,z 轴建立如图所示的空间直角坐标系 Oxyz .
则 B(4,0,0),C(0,3,0),P(0,0,4),A(0,-3,0).
设点 Q(x,y,z).
由
AQ→
=
1 3
AP→,得
Q(0,-2,4 3).
������ ������ ������6 分
∴ B→C =(-4,3,0),BQ→ =(-4,-2,4 3).
20.解:(1)∵c= 3,ba =2,a2 =b2 +c2,
∴a =2,b=1.
∴
椭
圆
的
标
准
方
程
为
x2 4
+y2
=1.
������ ������ ������5 分
2015成都一诊数学理科模拟1

成都一诊模拟题1理科数学试题第一部分(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分. 1.集合2{||3|4},{|20,},M x x N x x x x Z M N =-<=+-<∈则=A .{|11}x x -≤≤B .{|27}x x ≤≤C .{2}D .{0}2.复数143ii ++的虚部是 A .125i B .125C .125-D .—125i 3.已知平面向量(1,2)a =-,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是 A .c ∥b B .⊥a bC .对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b +cD .向量c 与向量-a b 的夹角为 45︒4..下列有关命题的叙述错误的是( )A .对于命题 p :∃x ∈R , 210x x ++<,则p ⌝为: ∀x ∈R ,210x x ++≥B .命题“若2x -3x + 2 = 0,则 x = 1”的逆否命题为“若 x ≠1,则2x -3x+2≠0”C .若 p ∧q 为假命题,则 p ,q 均为假命题D .“x > 2”是“ 2x -3x + 2 > 0”的充分不必要条件5.执行如图的程序框图,则输出的T 值等于 A .91 B . 55 C .54 D .306.某小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过l5m 3的住户的户数为 A .10 B .50 C .60 D .140 7.要得到函数y=3cos (2x 一4π)的图象,可以将函数3sin 2y x =的图象 A .沿x 轴向左平移8π个单位 B .沿x 向右平移8π个单位C .沿x 轴向左平移4π个单位D .沿x 向右平移4π个单位8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为 A .720 B .600 C .520 D .360 9. 已知存在正数,,a b c ,满足12,ln ln cc b a c c e a≤≤=+,则ln b a 的取值范围是A .[1,)+∞B .1[1,ln 2]2+ C .(,1]e -∞- D . [1,1]e - 10.若函数()y f x =,存在区间[],m n ,同时满足下列条件:①()[],f x m n 在内是单调的;②当[],x m n ∈时,()[][],,f x m n m n 的值域也是,则称是该函数的“和谐区间”.若函数()()110a f x a a x +=-> 有“和谐区间”,则函数()()32111532g x x ax a x =++-+的极值点12,x x 满足A. ()()120,1,1,x x ∈∈+∞B. ()()12,0,0,1x x ∈-∞∈C. ()()12,0,,0x x ∈-∞∈-∞D. ()()121,,1,x x ∈+∞∈+∞ 第二部分(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.函数y =的定义域为12.已知51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为_ .13.51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫-= ⎪⎝⎭_ .14.若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则132+++=x y x z 的取值范围是 _ .15.设V 是全体平面向量构成的集合,若映射R V :→ f 满足对任意向量,V ),(11∈=y x a,V ),(22 ∈=y x b 以及任意R ∈λ,均有)()1()())1((b f a f b a fλλλλ-+=-+.则称映射f 具有性质P .现给出如下映射:①V y x m y x m f R V f∈=-=→),(,)(,:11; ②V y x m y x m f R V f ∈=+=→),(,)(,:222;③V y x m y x m f R V f∈=++=→),(,1)(,:33其中,具有性质P 映射的序号为 .(写出所有具有性质P 映射的序号).三、解答题:共6小题,满分75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(本小题满分12分)在等比数列14{},2,16.n a a a ==中已知 (I )求数列{}n a 的通项公式;(II )若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n n a b ⋅的通项公式及.n n S 前项和 17.(本小题满分12分)已知函数2()2sin cos .f x x x x x R =+∈ (I )求函数f (x )的周期和最小值(II )在锐角△ABC 中,若()1,2f A AB AC =⋅=,求△ABC 的面积.18.(本小题满分12分)公安部最新修订的《机动车驾驶证申领和使用规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二).只有三个科目都过关后才能拿到驾驶证.某驾校现有100(Ⅰ)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;(Ⅱ)第一批参加考试的20人中某一学员已经通过科目一的考试,求他能通过科目二却不能通过科目三的概率;(Ⅲ)驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元.现从这20人中随机抽取1人,记X 为学校因为该学员而奖励教官的金额数,求X 的数学期望.19.(本小题满分12分)已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c .(Ⅰ)若a 、b 、c 依次成等差数列,且公差为2.求c 的值;(Ⅱ)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.20.(本小题满分13分)已知函数321()(0)3F x ax bx cx d a =-++≠的图像过原点, ()(),()(),(1)0f x F x g x f x f ''===,函数()()y f x y g x ==与的图像交于不同的两点A 、B .(I )()1y F x x ==-在处取得极大值2,求函数()y F x =的单调区间;(II )若使11()0[,]22g x x x =∈-的值满足,求线段AB 在x 轴上的射影长的取值范围. 21.(本小题满分14分) 已知函数(1)()x a x f x e e λλλ+-=-,其中,a λ是常数,且01λ<<.(I )求函数()f x 的极值;(II )对任意给定的正实数a ,是否存在正数x ,使不等式11x e a x--<成立?若存在,求出x ,若不存在,说明理由;(III )设12,(0,)λλ∈+∞,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ. .成都一诊模拟题1理科数学试题参考答案一、选择题(每小题5分 共50分) DBCCB CABDB 二、填空题:(本大题共5小题,每小题5分,共25分) 11. (0,3] 12. 1013. 14.]11,23[; 15.①③.三、解答题:共6个题,共75分。
2015成都一诊数学理科模拟2

成都一诊模拟题2理科数学试题第I卷一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1、设全集U R =,{,A x y =={}2,x B y y x R ==∈,则()R C A B =( ▲ )A 、{}0x x < B 、{}01x x <≤ C 、{}12x x ≤< D 、{}2x x >2、定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则函数2)2(2)(-⊗⊕=x xx f 为( ▲ )A 、奇函数B 、偶函数C 、既奇且偶函数D 、非奇非偶函数3、对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的( ▲)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要4、下列4个命题:(1)若a b <,则22am bm <;(2) “2a ≤”是“对任意的实数x ,11x x a ++-≥成立”的充要条件;(3)命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02<-x x ”;(4)函数21()21x x f x -=+的值域为[1,1]-。
其中正确的命题个数是( ▲ )A 、1B 、2C 、3D 、05、定义在实数集R 上的函数()f x ,对一切实数x 都有)()(x f x f -=+21成立,若()f x =0仅有101个不同的实数根,那么所有实数根的和为( ▲ ) A .101 B .151 C .303 D .23036、方程083492sin sin =-+⋅+⋅a a a x x有解,则a 的取值范围( ▲ )A 、0>a 或8-≤aB 、0>aC 、3180≤<aD 、2372318≤≤a7、方程1log )11(2+=+-x xx的实根0x 在以下那个选项所在的区间范围内(▲)A.)21,85(--B.)83,21(--C.)41,83(--D.)81,41(--8、已知函数1()()2(),f x f x f x x=∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax=-与x 轴有3个不同的交点,则实数a 的取值范围是(▲)A 、1(0,)eB 、1(0,)2eC 、ln 31[,)3e D 、ln 31[,)32e9、设1>a ,若仅有一个常数c 使得对于任意的]2,[a a y ∈,都有],[2a a x ∈满足方程c y x a a =+log log ,这时c a +的取值为( ▲ ) A .3 B .4 C .5 D .610、定义][x 表示不超过x 的最大整数,记{}][x x x -=,其中对于3160≤≤x 时,函数1}{sin ][sin )(22-+=x x x f 和函数{}13][)(--⋅=xx x x g 的零点个数分别为.,n m 则(▲) A .313,101==n m B .314,101==n m C .313,100==n m D .314,100==n m第Ⅱ卷二.填空题(本大题3个小题,每题5分,共15分,请把答案填在答题卡上)11、已知函数0≤x 时,xx f 2)(=,0>x 时,13()log f x x =,则函数1)]([-=x f f y 的零点个数有▲个.12、给定方程:1()sin 102xx +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解; ④若0x 是该方程的实数解,则0x >–1。
2015年四川省成都七中高考一模数学试卷(理科)【解析版】

2015年四川省成都七中高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,474.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.25.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.46.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln28.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x2﹣)6展开式中的常数项为.(用数字作答)12.(5分)在如图所示的程序框图中,若输出S=,则判断框内实数p的取值范围是.13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是.14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x )=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.2015年四川省成都七中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]【解答】解:由B中不等式变形得:log2x≥1=log22,得到x≥2,即B=[2,+∞),∵A=[﹣3,4],∴A∩B=[2,4],故选:D.2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)【解答】解:由复数=.∴复数在复平面上对应的点的坐标为().故选:B.3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,47【解答】解:由题意可知茎叶图共有30个数值,所以中位数为:=46.出现次数最多的数是45,故众数是45.故选:B.4.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.2【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱柱的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.故选:B.5.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.4【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选:B.6.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【解答】解:由已知中函数f(x)=A sin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选:A.7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln2【解答】解:作出不等式组所对应的可行域(如图),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A(,﹣ln2)时,截距最大,z取最小值,故目标函数z=2x﹣y的最小值为1+ln2故选:D8.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)【解答】解:对于a与b各有6中情形,故总数为36种设两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b =6,故概率为P==设两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合即可,∵当直线l1、l2相交时b≠2a,图中满足b=2a的有(1,2)、(2,4)、(3,6)共三种,∴满足b≠2a的有36﹣3=33种,∴直线l1、l2相交的概率P==,∵点(P1,P2)在圆(x﹣m)2+y2=的内部,∴(﹣m)2+()2<,解得﹣<m<故选:D.9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)【解答】解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g(2014)<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f(2014)<e2014f(0).故选:D.10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3【解答】解:∵整数a,b,c,t满足:2a+2b=2c,t=,∴t=≤=当且仅当a=b时,取最大值,∴当a=b>0时,t max==,c=a+1,∵a,b,c,t是整数,∴a=1,t=1,∴log 2t 的最大值为log 21=0. 当a =b =﹣2时,c =﹣1,t ==4,∴log 2t 的最大值为log 24=2. 综上所述,log 2t 的最大值是2. 故选:C .二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x 2﹣)6展开式中的常数项为 15 .(用数字作答) 【解答】解:展开式的通项公式为T r +1=(﹣1)r C 6r x 12﹣3r 令12﹣3r =0得r =4∴展开式中的常数项为C 64=15 故答案为1512.(5分)在如图所示的程序框图中,若输出S =,则判断框内实数p 的取值范围是 (5,6] .【解答】解:S =++…=(1﹣﹣)=(1﹣),令S =得n =5,所以实数p的取值范围是(5,6].故答案为:(5,6].13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是[0,]∪[,2π].【解答】解:∵{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,∴a n+1≥a n,对任意的n∈N*都成立,∴(n+1)2+2sinθ•(n+1)﹣n2﹣2sinθ•n,∴2n+1+2sinθ≥0,转化为2sinθ≥﹣2n﹣1,恒成立,因为n≥1,n∈N*,∴﹣2n﹣1≥﹣3,∴2sinθ≥﹣3,解得sinθ≥﹣,∵θ∈[0,2π]解得0≤θ≤,或≤θ≤2π,故答案为:[0,]∪[,2π];14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于3:2:1.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE;则+2=+=,∵+2+3=,∴﹣=3,又∵==2,∴=2,∴=,∴S△ABC =2S△AOB;同理:S△ABC =3S△AOC,S△ABC=6S△BOC;∴△AOB,△AOC,△BOC的面积比=3:2:1.故答案为:3:2:1.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是④.(写出所有真命题的序号)【解答】解:由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根.①函数y=(x﹣2)2+lnx,则(x>0),方程,即2x2﹣(4+a)x+1=0,当a=﹣4+时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,=,由,得,∴x>1,则m=1.故要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故答案为:④.三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.【解答】解:(Ⅰ)设{a n}的公差为d,依题意,有a2=a1+d=﹣5,S5=5a1+10d=﹣20,联立得解得,所以a n=﹣6+(n﹣1)•1=n﹣7.(Ⅱ)因为a n=n﹣7,所以,令,即n2﹣15n+14>0,解得n<1或n>14,又n∈N*,所以n>14,所以n的最小值为15.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.【解答】解:(Ⅰ)∵a sin A=(a﹣b)sin B+c sin C,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得cos C=,结合0<C<π,得C=.…(6分)(Ⅱ)由C=π﹣(A+B),得sin C=sin(B+A)=sin B cos A+cos B sin A,∵sin C+sin(B﹣A)=3sin2A,∴sin B cos A+cos B sin A+sin B cos A﹣cos B sin A=6sin A cos A,整理得sin B cos A=3sin A cos A.…(8分)若cos A=0,即A=时,△ABC是直角三角形,且B=,=bc=.…(10分)于是b=c tan B=2tan=,∴S△ABC若cos A≠0,则sin B=3sin A,由正弦定理得b=3a.②联立①②,结合c=2,解得a=,b=,=ab sin C=×××=.∴S△ABC综上,△ABC的面积为或.…(12分)18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)【解答】(1)证明:连接AC交BE于点M,连接FM.由EM∥CD,∴===,∴FM∥AP,又∵FM⊂平面BEF,P A⊄平面BEF,∴P A∥平面BEF;(2)以E为坐标原点,EB,EA,EP所在直线为x,y,z轴,建立空间直角坐标系,则设P(0,0,t),由于PE⊥平面ABCD,则向量=(0,0,﹣t)即为平面BEC的法向量,由于AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,则四边形BCDE为矩形,B(3,0,0),C(3,﹣2,0),由于F为PC上一点,且CF=2FP,则有F(1,,t),则=(1,,t),=(3,0,0),设平面BEF的法向量为=(x,y,z),则即有=0,即x﹣y=0,又=0,即3x=0,则可取=(0,1,),由二面角F﹣BE﹣C为60°,则与的夹角为120°,即有cos120°===﹣,解得,t=.即P(0,0,).PB==2,由于PE⊥平面ABCD,则∠PBE即为直线PB与平面ABCD所成角.在直角三角形PBE中,cos∠PBE===.故直线PB与平面ABCD所成角为arccos=.19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.【解答】解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P(X=2)=+,.∴随机变量X的分布列为∴E(X)==1.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.【解答】解:(Ⅰ)由已知得,又a2=b2+c2,解得a=2,b=1,c=,∴椭圆C的方程为.(Ⅱ)证明:设A(x1,y1),B(x2,y2),①当直线AB的斜率不存在时,则由椭圆的对称性知x1=x2,y1=﹣y2,∵以AB为直线的圆经过坐标原点,∴=0,∴x1x2+y1y2=0,∴,又点A在椭圆C上,∴=1,解得|x1|=|y1|=.此时点O到直线AB的距离.(2)当直线AB的斜率存在时,设AB的方程为y=kx+m,联立,得(1+4k2)x2+8kmx+4m2﹣4=0,∴,,∵以AB为直径的圆过坐标原点O,∴OA⊥OB,∴=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,∴(1+k2)•,整理,得5m2=4(k2+1),∴点O到直线AB的距离=,综上所述,点O到直线AB的距离为定值.(3)设直线OA的斜率为k0,当k0≠0时,OA的方程为y=k0x,OB的方程为y=﹣,联立,得,同理,得,∴△AOB的面积S==2,令1+=t,t>1,则S=2=2,令g(t)=﹣++4=﹣9()2+,(t>1)∴4<g(t),∴,当k0=0时,解得S=1,∴,∴S的最小值为.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.【解答】解:(Ⅰ)∵(a为常数),∴f(x)lnx=x(1﹣alnx),∴f(x)=.(x>1).f′(x)=﹣a(x>1),∵函数f(x)在(1,+∞)上是减函数,∴f′(x)≤0在(1,+∞)上恒成立,∴a≥的最大值,x∈(1,+∞).令g(x)==+≤,当lnx=2,即x=e2时取得最大值.∴,∴实数a的最小值是.(Ⅱ)f(x)=.f′(x)=﹣a.存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f(x)max+a =,①当a ≥时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=f(e2)=≤,解得a ≥﹣.②当a <时,由f′(x)=+﹣a,在[e,e2]上的值域为[﹣a ,].(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,∴f(x)min=f(e)=e﹣ae≥e>,不和题意,舍去.(ii)当﹣a<0时,即0<a <时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0≤,x0∈(e,e2).∴a ≥﹣>﹣>,与0<a <矛盾.综上可得:a 的取值范围是:.第21页(共21页)。
成都七中2015届高三一诊模拟考试数学答案(理,word版)

成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题5分,共25分.11.15; 12.[)5,7; 13.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,; 14.3:2:1; 15.②④. 提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a bc ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然12x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)xf x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-==. 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . (8)分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .② 联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分18.(Ⅰ)证明:连接AC 交BE 于点M ,连接FM .由//EM CD12AM AE PFMC ED FC∴===. //FM AP ∴. ………………4分 FM BEF PA BEF ⊂⊄面,面, //PA BEF ∴面.………………6分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE ==PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =,tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n nn ⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan 3PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 直线的参数方程也可以做,更简洁。
2015年3月2015届高三第一次全国大联考(四川版)理数卷(正式考试版)

第1页 共2页 ◎第2页 共2页 【2015年第一次全国大联考【四川卷】理科数学试卷考试时间:120分钟;满分150分 命题人:学科网大联考命题中心第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |ln 12x +<1},N 是自然数集,则A ∩N =( )A .{1,2,3,4}B .{0,1,2,3,4,5}C .{1,2,3,4,5}D .{0,1,2,3,4} 2.已知i 是虚数单位,则复数z =2ii+的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知命题p :∀x ∈R ,x 2-2x +1≥0.则⌝p 是( ) A .∃x ∈R ,x 2-2x +1≤0 B .∃x ∈R ,x 2-2x +1<0 C .∀x ∈R ,x 2-2x +1<0D .∀x ∈R ,x 2-2x +1≥04.十字路口的信号灯计时器是由7根发光灯管构成(如图),每根灯管的功率为50瓦,为节约能源,交管部门决定将其更换为节能发光管,每根灯管的功率仅为10瓦, 如果一天内这个计时器都是从9秒倒计时到0秒,并循环往复,那么,经过更换, 这个计时器每天(24小时)可以节约的电量约为( )A .4.3千瓦时B .4.5千瓦时 .4.7千瓦时 D .5.0千瓦时 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,现需要用一个球装下这个几何体,则该球的体积最小为( ). ABCD6.已知函数的部分图象如右图所示,则Φ=( ) A .π6- B .π6 C .π3- D .π37.已知实数x y 、满足约束条件22,24,4 1.x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩若()(),,3,1a x y b ==-,设z 表示向量a 在向量b方向上射影的数量,则z 的取值范围是( )A .3,62⎡⎤-⎢⎥⎣⎦ B .[]1,6- C.⎡⎢⎣ D.⎡⎢⎣ 8.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若l ⊥α,α⊥β,则l ∥β B .若l ∥α,l ∥β,则α∥βC .若l ⊥α,l ⊥β,则α∥βD .若l ∥α,α⊥β,则l ⊥β9.已知双曲线22221(00)x y a b a b-=>>,的中心为O ,左焦点为F ,P 是双曲线上的一点0OP PF ⋅=uu u r uu u r 且24OP OF OF ⋅=u u u r u u u r u u u r ,则该双曲线的离心率是( )ABCD10.已知定义在{|,}x x k k Z ≠∈上的奇函数()f x 对定义域内的任意实数x 满足:(2)()f x f x +=-,且1<x <2时,f (x )=x 2-x ,则下列结论错误..的是( ) A .函数f (x )的周期为4;B .y =f (x )在32x =处的切线的斜率为2; C .f (x )在(2014,2015)上单调递减;D .方程f (x )=log 2|x |的解的个数为6.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知直线3430x y +-=,6140x my ++=平行, 则它们之间的距离是___________ 12.设,则的值为_________.13.执行下列程序框图,则输出m 的的值为_______.14.若221a ab b -+=,a ,b 是实数,则a b +的最大值是 ______.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数Φ(x)组成的集合:对于函数Φ(x),存在一个正数M ,使得函数Φ(x)的值域包含于区间[],M M -.例如,当Φ1(x)=x 3,Φ2(x)=sinx 时,Φ1(x)∈A ,Φ2(x)∈B.现有如下命题:()10102210102xa x a x a a x+⋅⋅⋅+++=-()()293121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++第3页 共4页 ◎第4页 共4页 ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“(),,b R a D f a b ∀∈∃∈=”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()()()(),f x A g x B f x g x B ∈∈+∉,则; ④若函数()()()2ln 22,1xf x a x x a R x =++>-∈+有最大值,则()f x B ∈. 其中的真命题有_____________.(写出所有真命题的序号)三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)一次数学测验,某班50名的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五段:第一段[90,100),第二段[100,110),……,第五段[130,140].按上述分段方法得到 的频率分布直方图如图所示. (Ⅰ)若成绩大于或等于100分且小于120分认为是良 好的,求该校参赛学生在这次数学联赛中成绩良好的 人数; (Ⅱ)现将分数在[90,110)内同学分为第1组,在[110, 120)内的分为第2组,在[120,140)内的分为第3组, 然后从中随机抽取2人,用ξ表示这2人所在组数之 差的绝对值,求ξ的分布列和期望.17.(本小题满分12分)已知函数)22,0()sin()(πϕπωϕω<<->++=b x x f ,其中ω是使得函数图象相邻两对称轴间的距离不超过23π的最小正整数,若将)(x f 的图象先向左平移12π个单位,再向下平移1个单位,所得的函数)(x g 为奇函数. (Ⅰ)求)(x f 的解析式,并求)(x f 的对称中心; (Ⅱ)△ABC 中,如果f (26B π+)=1,b =且asinA -bsinB =sinC (c),求△ABC 的面积.18.(本小题满分12分)已知∠ABC =45°,B 、C 为 定点且BC =3,A 为动点,作AD ⊥BC ,垂足 D 在线段BC 上且异于点B ,如图1。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
2015成都一诊数学理科模拟2

成都一诊模拟题2理科数学试题第I卷一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1、设全集,,则(▲ )A、B、C、D、2、定义两种运算:,,则函数为(▲ )A、奇函数B、偶函数C、既奇且偶函数D、非奇非偶函数3、对于函数,“的图象关于y轴对称”是“=是奇函数”的(▲)A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要4、下列4个命题:(1)若,则;(2)“”是“对任意的实数,成立”的充要条件;(3)命题“,”的否定是:“,”;(4)函数的值域为。
其中正确的命题个数是(▲ )A、1B、2C、3 D、05、定义在实数集R上的函数,对一切实数x都有成立,若=0仅有101个不同的实数根,那么所有实数根的和为(▲ )A.101 B.151 C.303D.6、方程有解,则的取值范围(▲ )A、或B、C、D、7、方程的实根在以下那个选项所在的区间范围内(▲)A.B.C.D.8、已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是(▲)A、B、C、D、9、设,若仅有一个常数使得对于任意的,都有满足方程,这时的取值为(▲ )A.B.C.D.10、定义表示不超过的最大整数,记,其中对于时,函数和函数的零点个数分别为则(▲)A.B.C.D.第Ⅱ卷二.填空题(本大题3个小题,每题5分,共15分,请把答案填在答题卡上)11、已知函数时,,时,,则函数的零点个数有▲个.12、给定方程:,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若是该方程的实数解,则–1。
则正确命题是▲.13、下列命题是真命题的序号为:▲定义域为R的函数,对都有,则为偶函数定义在R上的函数,若对,都有,则函数的图像关于中心对称函数的定义域为R,若与都是奇函数,则是奇函数函数的图形一定是对称中心在图像上的中心对称图形。
若函数有两不同极值点,若,且,则关于的方程的不同实根个数必有三个三.解答题:(本大题共4小题,共50分。