第十二章功能梯度材料
功能梯度材料组份

功能梯度材料组份功能梯度材料是一种特殊的材料,它在组成成分上呈现出梯度变化的特点。
这种材料的独特性质使其在许多领域具有广泛的应用前景。
本文将介绍功能梯度材料的组份以及其在不同领域中的应用。
一、功能梯度材料的组份功能梯度材料的组份主要包括两个或多个不同的材料。
这些材料在组份上呈现出梯度变化,即从一个材料逐渐过渡到另一个材料。
这种组份的变化可以是连续的,也可以是离散的。
例如,一种常见的功能梯度材料是由陶瓷和金属组成的。
陶瓷具有优异的耐磨性和耐高温性能,而金属则具有良好的导电性和可塑性。
将这两种材料组合在一起,可以得到既具有良好耐磨性又具有良好导电性的材料。
二、功能梯度材料的应用领域1. 功能梯度材料在航空航天领域中的应用航空航天领域对材料的要求非常高,需要具有轻质、高强度、高温耐受性等特点的材料。
功能梯度材料可以满足这些要求。
例如,在航空发动机中使用功能梯度陶瓷涂层,可以提高发动机的燃烧效率和耐久性。
2. 功能梯度材料在医疗领域中的应用医疗领域对材料的要求也非常严格,需要具有生物相容性、耐腐蚀性等特点的材料。
功能梯度材料可以满足这些要求。
例如,在人工关节中使用功能梯度金属材料,可以提高关节的生物相容性和耐磨性。
3. 功能梯度材料在能源领域中的应用能源领域对材料的要求包括高效转化能源、储能和传输等。
功能梯度材料可以满足这些要求。
例如,利用功能梯度材料制备高效的太阳能电池,可以提高太阳能的转化效率。
4. 功能梯度材料在电子领域中的应用电子领域对材料的要求包括高导电性、低电阻率等。
功能梯度材料可以满足这些要求。
例如,在集成电路中使用功能梯度材料,可以提高电路的性能和稳定性。
三、功能梯度材料的优势功能梯度材料具有以下几个优势:1. 梯度变化的组份可以使材料在不同区域具有不同的性能,从而满足多种需求。
2. 功能梯度材料可以减少不同材料之间的界面应力,提高材料的韧性和可靠性。
3. 功能梯度材料可以实现材料的轻量化,提高材料的性能和效率。
功能梯度材料

功能梯度材料功能梯度材料(FGM)是一种具有逐渐变化化学成分或结构的材料,其性能在空间上呈现出递增或递减的特点。
这种材料在工程领域中具有广泛的应用,可以有效地解决材料之间的界面问题,提高材料的性能和稳定性。
本文将介绍功能梯度材料的基本概念、制备方法和应用领域。
功能梯度材料的基本概念是指材料的成分或结构在空间上呈现出逐渐变化的特点。
这种逐渐变化可以是化学成分的递增或递减,也可以是结构特征的递增或递减。
通过这种逐渐变化,功能梯度材料可以在不同位置具有不同的性能,从而满足复杂工程环境的需求。
功能梯度材料的制备方法主要包括激光熔覆、沉积成形、化学气相沉积等技术。
其中,激光熔覆是一种常用的制备方法,通过控制激光熔覆过程中的参数,可以实现材料成分和结构的逐渐变化。
沉积成形技术则是利用3D打印等技术,将不同材料逐渐沉积在一起,形成功能梯度结构。
化学气相沉积则是通过控制反应条件和沉积速率,实现材料成分的逐渐变化。
这些制备方法可以灵活地调控功能梯度材料的性能和结构,满足不同工程应用的需求。
功能梯度材料在工程领域中具有广泛的应用。
例如,在航空航天领域,功能梯度材料可以用于制造航天器的热防护结构,提高其耐热性能和抗氧化性能。
在机械制造领域,功能梯度材料可以用于制造高强度、耐磨损的零部件,提高机械设备的使用寿命和稳定性。
在电子器件领域,功能梯度材料可以用于制造高效能、高稳定性的电子元件,提高电子设备的性能和可靠性。
这些应用领域都充分展示了功能梯度材料在工程领域中的重要作用。
总的来说,功能梯度材料是一种具有逐渐变化化学成分或结构的材料,其性能在空间上呈现出递增或递减的特点。
通过灵活的制备方法和广泛的应用领域,功能梯度材料可以有效地解决工程领域中的复杂问题,提高材料的性能和稳定性。
相信随着科学技术的不断进步,功能梯度材料将在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。
功能梯度材料组份

功能梯度材料组份功能梯度材料(Functionally Graded Materials,简称FGMs)是一类具有不同成分和性质的材料,其成分和性质随着空间位置的改变而逐渐变化。
这种材料在近年来得到了广泛的研究和应用,其独特的特性使其在多个领域有着重要的应用前景。
一、功能梯度材料的组份功能梯度材料的组份包括两个或多个不同的材料,这些材料在空间分布上呈现出一定的规律。
常见的功能梯度材料的组份有以下几种:1. 金属-陶瓷组份:金属和陶瓷是功能梯度材料中常见的组份。
金属具有良好的导电性和导热性,而陶瓷具有优异的抗磨损性和耐高温性。
将金属和陶瓷组合在一起,可以制造出具有导热性和抗磨损性的材料,广泛应用于航空航天、汽车制造等领域。
2. 陶瓷-陶瓷组份:陶瓷材料具有优异的绝缘性能和耐腐蚀性能,但其韧性较差。
通过将不同种类的陶瓷材料组合在一起,可以实现材料性能的优化。
例如,将高韧性的陶瓷材料与高强度的陶瓷材料组合,可以制造出具有较好韧性和强度的材料,被广泛应用于医疗领域。
3. 金属-高分子材料组份:金属和高分子材料具有不同的性质,通过将它们组合在一起,可以制造出具有金属的导电性和高分子材料的机械性能的材料。
这种材料在电子领域有着重要的应用,如柔性电子器件的制备。
4. 陶瓷-高分子材料组份:陶瓷和高分子材料组合在一起,可以实现材料性能的多样化。
陶瓷具有优异的耐磨损性和耐高温性,而高分子材料具有良好的可塑性和韧性。
将它们组合在一起,可以制造出具有耐磨损性和可塑性的材料,被广泛应用于汽车制造、航空航天等领域。
5. 金属-陶瓷-高分子材料组份:将金属、陶瓷和高分子材料三者组合在一起,可以实现材料性能的多样化。
这种材料在医疗领域有着广泛的应用,如人工关节等。
二、功能梯度材料的应用功能梯度材料由于其独特的组份和性质分布,被广泛应用于各个领域。
以下是功能梯度材料的一些应用示例:1. 高温结构材料:功能梯度材料在高温环境下具有良好的耐热性能和机械性能,被广泛应用于航空航天、能源等领域。
功能梯度材料

功能梯度材料功能梯度材料(Functionally Graded Materials,FGMs)是一种独特的组织结构,具有不同材料性能的连续变化。
这种材料可以根据需求在不同区域具备不同的性能,具有广泛的应用潜力。
功能梯度材料的核心思想是利用不同材料的优势,通过逐渐过渡的方式将它们结合起来。
这样,在材料内部形成了一种材料性能随位置变化的梯度。
一般情况下,FGMs通过改变材料成分、晶格结构或孔隙分布来实现性能梯度的变化。
功能梯度材料的主要优势之一是优化材料的性能。
由于不同区域的性能可以根据需求进行调节,所以功能梯度材料可以在同一件材料中实现多种性能要求。
例如,可以在一个功能梯度材料中将刚性材料和韧性材料结合起来,以提高整体的强度和韧性。
另一个优势是优化材料的适应性和可靠性。
功能梯度材料的性能梯度可以使材料更好地适应不同环境的要求。
例如,可以在外部表面附近使用耐腐蚀材料,而在内部使用高强度材料。
这样可以增强材料的耐久性和可靠性。
功能梯度材料还具有优化材料的权衡性能的能力。
例如,对于某些应用,需要同时具备高温耐久性、热导率和机械性能。
通过在材料内部形成性能梯度,可以在不同区域平衡这些性能要求,达到最佳的综合性能。
此外,功能梯度材料还可以实现一些特殊功能。
例如,通过调整电子、热子、声子或离子的传输特性,可以实现功能梯度材料在导电、绝缘、热传导或声学传导方面的特殊性能。
这为多种应用提供了新的可能性,如光电子器件、传感器和能量转换器件等。
尽管功能梯度材料具有广泛的应用潜力,但其设计和制备仍然面临挑战。
目前,多数功能梯度材料的制备方法仍然较为复杂和昂贵,限制了其在大规模应用中的应用。
同时,材料性能梯度的设计和优化也需要更深入的理论和实验研究。
综上所述,功能梯度材料是一种具有多种优势和潜力的材料。
它可以实现性能的优化、适应性和可靠性的提高,同时提供了平衡和特殊功能的能力。
随着制备技术和理论研究的不断发展,功能梯度材料将在诸多领域中得到更广泛的应用。
功能梯度材料的概述

功能梯度材料的概述摘要:功能梯度材料是一种新型复合材料,本文阐述功能梯度材料的概念,表征,制备方法及应用。
关键词:功能梯度材料(FGM) 概念表征性能制备前景1 概述:功能梯度材料(Functionally Graded Materials,简称FGM)是采用先进的材料复合技术, 使材料的组成、结构沿厚度方向呈梯度变化的一种新型的非均质复合材料。
FGM的概念是由日本学者平井敏雄、新野正之等人于1987 年提出的为了解决在设计制造新一代航天飞机的热应力缓和问题的材料。
在航天飞机推进系统并列喷气燃烧器或再用型火箭燃烧器中, 由于气体燃烧温度高达2000℃ , 燃烧室壁承受的热负荷可达100MW/m2, 因此用做燃烧室壁的材料对耐热性、隔热性、耐久性和强韧性有很高的要求。
最初研究的FGM是表面使用温度达2000K、表里温度相差约1000K 的新型超耐热材。
2 表征:2.1 基于梯度源的功能梯度材料表示方法基于梯度源的功能梯度材料实体模型由香港大学的Y. K. Siu 和S. T. Tan,提出该模型将实体的几何元素 (如点、线、面)作为梯度源,记录该梯度源下的材料成分方程f ( d )及材料数组M, 其中, 材料成分方程f ( d)由各点到梯度源的垂直距离来记录实体内部材料分布情况.2.2 基于力学性能和玻璃化转变温度的功能梯度材料表示方法通过均匀分散碳纳米填料制备FGM ,用玻璃化转变温度和应力与应变行为的梯度来表征这些材料。
当油含量沿着薄层厚度从0 份变为100 份时,FGM 的玻璃化转变温度Tg从- 56 ℃变为- 80 ℃。
油含量的变化也使拉伸强度、弹性模量、拉断伸长率等沿厚度发生变化。
FGM 的机械性能和Tg 的这种变化有助于在过渡区的低温环境下(即- 56 ℃~80 ℃) 既保持弹性又具有强度。
3 制备方法:3.1 电沉积法在含有某种金属离子的电解溶液中将被沉积工件作为阴极,通过一定波形的低压直流电,使金属离子不断在阴极上沉积为金属的过程。
梯度功能材料

梯度功能材料梯度功能材料State:1. 此⽂在是从中英⽂⽂献中的“简单总结”,没列出相应的参考⽂献2. 是为允诺⼀位朋友⽽做,也可以算作⾃⼰的读书⼩笔记,仅此⽽已背景梯度功能材料( Functionally Gradient Materials ,简称FGM)是由于航空航天技术的发展⽽提出的新概念。
航天飞机在⼤⽓层中长时间飞⾏,机头尖端和发动机燃烧室内壁的温度⾼达2100 K 以上,因此材料必须承受很⼤的⾼温以及内外的温度差别,服役的环境很恶劣。
1984 年,⽇本学者Masyuhi NINO,Toshio HIRA,和Ryuzo WATANBE等⼈⾸先提出了FGM 的概念,其设计思想⼀是采⽤耐热性及隔热性的陶瓷材料以适应⼏千度⾼温⽓体的环境,⼆是采⽤热传导和机械强度⾼的⾦属材料,通过控制材料的组成、组织和显微⽓孔率,使之沿厚度⽅向连续变化,即可得到陶瓷⾦属的FGM。
所谓梯度功能材料(FGM), 即在材料制备过程中,使组成、结构及孔隙率等要素在材料的某个⽅向上连续变化或阶梯变化, 从⽽使材料的性质和功能也呈连续变化或阶梯变化的⼀种⾮均质复合材料。
功能梯度材料的研究开发最早始于1987 年⽇本科学技术厅的⼀项“关于开发缓和热应⼒的功能梯度材料的基础技术研究”计划。
该项⽬于1992 年完成,随后将⼯作重⼼转向模拟件的试制及其在超⾼温、⾼温度梯度落差及⾼温燃⽓⾼速冲刷等条件下的实际性能测试评价上,并于1993 年开始研究具有梯度结构的能量转换材料。
第⼀届国际FGM 研讨会于1990 年在⽇本仙台召开,之后每两年举办⼀届。
中国于2002 年在北京主办过第七届FGM国际研讨会。
特点功能梯度材料的关键特点是控制界⾯的成分和组织连续变化,使材料的热应⼒⼤为缓和。
从材料的组成⽅式看,功能梯度材料可分为⾦属/陶瓷、⾦属/⾮⾦属、陶瓷/陶瓷、陶瓷/⾮⾦属和⾮⾦属/聚合物等多种结合⽅式。
从组成变化可划分为:功能梯度整体型(组成从⼀侧到另⼀侧呈梯度渐变的结构材料),功能梯度涂覆型(在基体材料上形成组成渐变的涂层)和功能梯度连接型(粘结两个基体间的接缝呈梯度变化)。
功能梯度材料

功能梯度材料功能梯度材料(FGM)是一种具有梯度性质的复合材料,其性能在材料内部呈现出逐渐变化的特点。
这种材料的设计灵感来源于自然界中许多生物体的结构,比如贝壳、骨骼等,它们都具有类似的梯度性质,能够有效地抵抗外部环境的影响,具有很高的韧性和强度。
功能梯度材料的设计理念是将不同性能的材料通过一定的方式结合起来,使得整体材料的性能在空间上呈现出梯度变化。
这种设计能够充分发挥各种材料的优势,同时弥补它们的缺陷,从而实现材料性能的最优化。
在实际应用中,功能梯度材料已经被广泛应用于航空航天、汽车制造、医疗器械等领域,取得了显著的效果。
功能梯度材料的制备方法多种多样,包括堆砌法、激光熔覆法、沉积法等。
其中,堆砌法是一种比较常见的制备方法,它通过层层堆砌不同性能的材料,然后进行烧结或热压,最终形成具有梯度性质的复合材料。
激光熔覆法则是利用激光熔化金属粉末,将不同成分的金属粉末逐层熔覆在基底上,形成梯度材料。
沉积法则是通过化学气相沉积、物理气相沉积等方法,在基底上沉积不同性能的材料,形成梯度材料。
功能梯度材料的应用前景广阔,它可以为工程领域提供更多的可能性。
比如,在航空航天领域,功能梯度材料可以用于制造航天器的热防护层,提高其对高温和高速气流的抵抗能力;在汽车制造领域,功能梯度材料可以用于制造车身结构件,提高汽车的安全性和舒适性;在医疗器械领域,功能梯度材料可以用于制造人工关节和骨科植入物,提高其与人体组织的相容性和稳定性。
总的来说,功能梯度材料是一种具有巨大潜力的新型材料,它将为人类社会的发展带来新的机遇和挑战。
随着科学技术的不断进步,功能梯度材料必将在更多领域展现出其独特的价值和魅力,为人类社会的可持续发展做出更大的贡献。
梯度功能材料

3
• 构件中 材料成分和性能的突然变化常常会导致明显的 构件中材料成分和性能的突然变化常常会导致明显的 材料成分和性能的突然变化 局部应力集中。 局部应力集中 。 如果一种材料过渡到另一种材料是逐 步进行的,这些应力集中就会大大地降低。 步进行的,这些应力集中就会大大地降低。 • 为减少材料的应力集中 , 提高材料性能 , 人们发展了 为减少材料的应力集中,提高材料性能, 新型的梯度功能材料 简称FGM) 。 梯度功能材料(简称 新型的梯度功能材料 简称 • 日本、美国、德国、俄罗斯、英国、法国、瑞士等许 日本、 美国、 德国、 俄罗斯、 英国、 法国、 多国家都开展FGM的研究,其应用已扩展到宇航、能 的研究, 多国家都开展 的研究 其应用已扩展到宇航、 交通、光学、化学、生物医学工程等各领域。 源、交通、光学、化学、生物医学工程等各领域。
梯度功能材料快速成型
Functionaily Gradient Materials
1
主要内容
什么是梯度功能材料 梯度功能材料的制备 梯度功能材料的应用
2
• 许多结构件会遇到各种使用条件 , 因此要求材料的性能应随构件 中的位置而不同。 中的位置而不同。 • 刀具只需刃部坚硬 , 其它部位需 刀具只需刃部坚硬, 要具有高强度和韧性; 要具有高强度和韧性;
PVD镀膜器件 镀膜器件
10
等离子喷涂法
• 等离子体喷涂能同时熔化难熔相和金属,通过控制 等离子体喷涂能同时熔化难熔相和金属, 两种粉末的相对供给速率来预先设置混合比率。 两种粉末的相对供给速率来预先设置混合比率。 • 使用粉末作为喷涂材料,以氦气、氩气等气体为载 使用粉末作为喷涂材料,以氦气、 吹入高温等离子体射流。 体,吹入高温等离子体射流。等离子体射流把能量 传递给颗粒,粉末被熔融后进一步加速, 传递给颗粒,粉末被熔融后进一步加速,高速冲撞 在基材表面形成涂层。 在基材表面形成涂层。高速使颗粒撞到固体基底上 时变得相当扁平,使涂层具有相对低的孔隙率。 时变得相当扁平,使涂层具有相对低的孔隙率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、物理气相沉积技术
控制因素: 1.蒸发速度 2.蒸发物质的组成 3.基板温度 4.反应气体的导入量 阴极:中空 阳极:铜坩锅 氩气:阴阳级放电时
氩气电离产生 氩等离子体 坩锅中金属:受热、 熔融、蒸发、 沉积于基板
02.03.2021
20
02.03.2021
过程: 通过加热等物理方法使源物质(如金 属等)蒸发,使蒸气直接沉积在基板 上成膜,或与反应气体作用并在基 版上沉积(物理-化学气相沉积) 特点: 1.物系的选择面宽 2.产物纯度高 3.组成控制精度高 4.可制多层不同物质的膜 5.膜薄,每层膜为一种物质 应用:合成瓷以及金 属/陶瓷的复合物
02.03.2021
12
生 物 功 能 梯 度 材 料
02.03.2021
人体长骨结构示意图
无机: 羟基磷灰石 碳酸磷灰石 有机: 胶原纤维
骨是无机与 有机的复合 材料
13
注意: 梯度材料与合金材料、复合材料的区别
材料 设计思想
组织结构 结合方式
微观组织
混杂材料 分子、原子级水 平合金化 0.1nm-0.1m 化学键、物理键
绝热瓦
航天飞机的外部燃料箱体形巨大, 长度约为154英尺,直径大约27.6英 尺。哥伦比亚号的外部燃料箱净重 66,000磅,装满液氢和液氧之后,总 重量可达170万磅。
02.03.2021
10
12.1 功能梯度材料概述
1 梯度功能材料概念的提出 是应航天航空的需要,能在极限环境下正常工作而发展起来
操作过程简单,反应迅速,能耗低,纯度高 材料致密度低 应用:1)电磁加压+自蔓延:TiB2/Cu; 2)自蔓延+热等静压相结合:TiC/TiC+10%Ni/ TiC+20
3)功能上分: (1)热防护梯度功能材料 (2)折射率梯度功能材料
02.03.2021
16
能 材 料热 的防 制护 备梯 方度 法功
12.2
原料体系 气相 液相 固相法
02.03.2021
方法类别 化学法 物理法 化学法
物理法 化学法 物理法
方法 化学气相沉积法 物理气相沉积
溅射法 离子注入法
电镀法 氧化还原法
21
三.自蔓延技术
点火装置
产物
TiC
反
应
反应区
进
行
燃烧波前沿
方
预热区
向
混合物
Ti+C
SHS反应模型示意图
02.03.2021
钢管 铝热剂
Fe层 Al2O3陶瓷
离心复合梯度层
22
过程: 将金属粉末和陶瓷粉末按梯度化充填,加压压实,从成形 体的一端点火燃烧,反应自行向另一端传播,利用化学反应产生的 热量和反应的自传播性,使材料烧结和合成。 特点:适合于生成热大的化合物的合成,如AlN、TiC、TiB2等
均质/非均质
复合材料 组分优点的复 合 0.1m-1m 分子间力
非均质
梯度材料 特殊功能为目 标 10nm-10mm
分子间力/物理 键/化学键 均质/非均质
宏观组织 均质
均质
非均质
功能
一致
一致
梯度化
02.03.2021
14
3 梯度功能材料的特点 1)组分、结构和性能均呈连续梯度变化。 2)内部无明显的界面。
W:T=3680K, 19.3; MO:T=2890K,10.2 氧化物陶瓷熔点均在2000K以上,密度:
Al2O3=4.0;TiB2=4.5;SiC=3.12等
虚线-压应力区;0-无应力区
比较发现:
1. 成分突变会导致应力集中(解决不
好,哥伦比亚号坠毁,见图)
2. 成分逐步过渡,应力集中大大降低
3. 无梯度样品冷却时开裂,有梯度样
熔射法 熔体凝固法 自蔓延法(热分解法)
涂层法 烧结法 部分结晶法 扩散法
17
常见热防护梯度功能制备工艺 一、化学气相沉积技术
热应力缓和型SiC/C 梯度材料的CVD合成 原料:SiCl4+CH4+H2 H2-载体气 SiCl4(液态)-硅源 CH4-C源 发热体-石墨 基板-石墨
02.03.2021
4 梯度功能材料分类 1) 组合方式上分: 金属/金属 金属/陶瓷、 金属/非金属、 陶瓷/陶瓷、 陶瓷/非金属 非金属/塑料
02.03.2021
15
2)组成变化上分: (1)梯度功能整体型(从一侧到另一侧组成梯度变化) (2)梯度功能涂履型(涂层的组成梯度变化) (3)梯度功能连接型(粘接接缝的组成梯度变化)
第十二章功能梯度材料
02.03.2021
2
02.03.2021
3
02.03.2021
4
02.03.2021
5
背景:航空方面
每秒3.2公里,10倍音速
02.03.2021
6
设计
不锈钢-陶瓷(Si3N4)界面上应力分布 (单位:1/100MPa)
(a)无梯度;(b)有梯度
02.03.2021
18
02.03.2021
过程:通过两种气相物质在反应器 中均匀混合,在一定的条件下发生 化学反应,使生成物在基板上沉积 特点: 1.调节气的流量和压力控制组分比 2.可镀表面形状复杂的材料 3.沉积面光滑致密 4.沉积率高 应用:Ti/TiC、Ti/TiN、Cr/ CrN、SiC/C/TiC等
19
02.03.2021
11
越王勾践剑深埋地下2400多年,1965年冬出土时依旧寒光逼人,锋利无 比。1977年12月,复旦大学与中科院等对剑进行了无损检测。主要成分是铜、 锡及少量的铝、铁、镍、硫。剑的各个部位铜和锡的比例不一。剑脊含铜较多, 韧性好,不易折断;刃部含锡高,硬度大,使剑非常锋利;花纹处含硫高,硫 化铜可防锈蚀。形成了良好的成分梯度。其实大自然,人类自身早已存在了功 能梯度材料。
的一种新型功能材料。由两日本人(新野正之、平井敏雄)于 1986年首先提出的,其实我们祖先早在2400多年前就已生产了。 2 梯度功能材料(functionally gradient materials,缩写FGM)
是两种或多种材料复合成组分和结构呈连续梯度变化的一种 新型复合材料;它要求功能、性能随内部位置的变化而变化,实 现功能梯度的材料。
品有近400MPa结合强度
4.有梯度时集中区拉应力仅为无梯度
时的1/3~1/4
7
02.03.2021
成分设计: 表层:陶瓷类结构材 料,耐热、抗氧化 内层:金属材料,高 热导率、机械强度; 中间通过成分、结构、 性能上的梯度变化, 释放其热应力。
8
02.03.2021
9
液氧的温度约为-297华氏度 液氢的温度约为-423华氏度