厌氧计算(比较实用)

合集下载

厌氧池设计计算【范本模板】

厌氧池设计计算【范本模板】

厌氧池设计计算1.设计参数设计流量:10m3/d 每小时0。

5m3设计容积负荷为Nv=2.0kgCOD/(m3·d),COD去除率为60%。

则厌氧池有效容积为:V1=10×(1500—600)×0.001/2=4.5m32。

厌氧池的形状及尺寸据资料,经济的厌氧池高度一般为4~6m,并且大多数情况下这也是系统优化的运行范围。

厌氧池的池形有矩形、方形和圆形。

圆形厌氧池具有结构稳定的特点,但是建造圆形厌氧池的三相分离器要比矩形和方形的厌氧池复杂得多。

因此本次设计先用矩形厌氧池,从布水均匀性和经济考虑,矩形厌氧池长宽比在2:1左右较为合适。

设计厌氧池有效高度为h=5m,则横截面积S=4。

5/5=1.125m2设计厌氧池长约为宽的2倍,则可取L=1。

4m,B=0.70m;一般应用时厌氧池装液量为70%~90%,本工程中设计反应器总高度为H=6.5m,其中超高0.5m。

厌氧池的总容积V=0.7×1。

4×6=5。

88m3,有效容积为4。

5m3,则体积有效系数为76.5%,符合有机负荷要求。

水力停留时间(HRT)和水力负荷率V2T=(4.5/10)×24=10。

8h, V2=(10÷24)÷1.125=0.37m3/(m2·h)对于颗粒污泥,水力负荷V2=0。

1~0。

9 m3/(m2·h),符合要求。

3、进水分配系统的设计本次设计采用一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关。

为配水均匀,出水孔孔径一般为10~20mm,常采用15mm,孔口向下或与垂线成呈45°方向,为了使穿孔管各孔出水均匀,要求出口流速不小于2m/s。

本厌氧池采用连续进料方式,布水孔孔口向下,有利于避免管口堵塞,而且由于厌氧池底部反射散布作用,有利于布水均匀.为了增强污泥与废水之间的接触,减少底部进水管的堵塞,建议进水点距厌氧池底200~250mm,本次设计布水管离厌氧池底部200mm。

污水处理A2O生物池(厌氧缺氧好氧)计算公式

污水处理A2O生物池(厌氧缺氧好氧)计算公式
去除NH3-N需氧量 剩余污泥NH3-N氧当量
硝化需氧量 反硝化脱氮产生氧量 好氧池实际总平均需氧量
好氧池实际总最大需氧量
去除1kgBOD5需氧量
20℃清水溶解氧饱和度 T℃清水溶解氧饱和度
标准大气压 压力修正系数 好氧池中溶解氧浓度 污水与清水传氧速率比 污水与清水中饱和溶解氧之比 微孔曝气器距池底 微孔曝气器安装深度 微孔曝气器出口处压力 微孔曝气器氧转移效率
k1=
S0/Nt=
BOD5/TP(碳磷比)
k2=
S0/Pt=
A2O生物反应池容积计算(污泥负荷法) 去除水中BOD5,N和P
A2/O生物反应池设计流量
Q=
Q总=
BOD5污泥负荷
N=
混合液悬浮物固体浓度MLSS
X=
3.42857 40
7000 0.08 3500
m3/d kgBOD5/(kgMLSS·d) mgMLSS/L
L=
S单/W=
15.2778 m
=
取值 62.5 m
k4=
B/H=
1.8
k5=
L/B=
6.94444
H1=
0.5 m
H2=
H+H1=
5.5 m
1~2 5~10 0.5~1.0m
Q0=
Qs=
v=
S=
Q0/v=
D=
4S π
0.08102 m3/s 0.8 m/s
0.10127 m2
0.35909 m
=
v1=
单个曝气器通气量 单个曝气器服务面积 单组好氧区配置曝气器数量 单组好氧区表面积 单格曝气器服务面积 单组好氧池供风干支管风速
供风干管管径
需双侧供气供风支管风量 需双侧供气供风支管管径

折流式厌氧反应器计算

折流式厌氧反应器计算

折流式厌氧反应器计算一、引言随着人口的增长和经济的发展,化学工业排放的废水对环境的影响日益显著,使得工业废水的处理成为当今热门话题。

其中,厌氧反应器是常见的废水处理技术之一,而折流式厌氧反应器是其中的一种。

本文将介绍折流式厌氧反应器的计算方法。

二、折流式厌氧反应器的原理折流式厌氧反应器是将废水与厌氧微生物接触的容器,在此过程中,厌氧微生物通过代谢降解有机物,生成甲烷、二氧化碳等产物。

折流式厌氧反应器通过流体的折回循环,使得废水中的污染物更充分地接触到微生物,提高废水的处理效率。

三、折流式厌氧反应器计算(一)折流式厌氧反应器的容积对于折流式厌氧反应器的容积计算,需要先确定需要处理的废水的流量Q和生化反应器的停留时间t,即反应器中的废水滞留时间,有公式:V=Q*t其中V即为反应器的容积。

(二)折流式厌氧反应器的负荷反应器中的有机负荷是指单位时间内废水中的化学需氧量(COD)浓度,计量单位为克COD/L.d。

折流式厌氧反应器中的有机负荷的计算公式为:F=COD/Q其中F即为有机负荷。

(三)折流式厌氧反应器的产气速率折流式厌氧反应器的产气速率是指反应器中产生的甲烷气体的体积,单位时间内反应器总体积的百分比。

折流式厌氧反应器的产气速率的计算公式为:VCH4=0.25*F*V其中VCH4即为产气速率,0.25为产甲烷的理论系数。

四、总结折流式厌氧反应器是一种有效的废水处理技术。

在确定折流式厌氧反应器的设计参数时,需要考虑废水的处理流量、反应器的停留时间、有机负荷和产气速率等因素。

通过以上计算方法,可以更合理地设计折流式厌氧反应器,提高其处理效率,实现可持续的废水处理。

厌氧池设计计算

厌氧池设计计算

厌氧池设计计算1。

设计参数设计流量:10m3/d 每小时0.5m3设计容积负荷为Nv=2.0kgCOD/(m3·d),COD去除率为60%。

则厌氧池有效容积为:V1=10×(1500—600)×0。

001/2=4.5m32.厌氧池的形状及尺寸据资料,经济的厌氧池高度一般为4~6m,并且大多数情况下这也是系统优化的运行范围.厌氧池的池形有矩形、方形和圆形.圆形厌氧池具有结构稳定的特点,但是建造圆形厌氧池的三相分离器要比矩形和方形的厌氧池复杂得多。

因此本次设计先用矩形厌氧池,从布水均匀性和经济考虑,矩形厌氧池长宽比在2:1左右较为合适。

设计厌氧池有效高度为h=5m,则横截面积S=4。

5/5=1。

125m2设计厌氧池长约为宽的2倍,则可取L=1。

4m,B=0.70m;一般应用时厌氧池装液量为70%~90%,本工程中设计反应器总高度为H=6.5m,其中超高0.5m。

厌氧池的总容积V=0。

7×1。

4×6=5。

88m3,有效容积为4。

5m3,则体积有效系数为76.5%,符合有机负荷要求.水力停留时间(HRT)和水力负荷率V2T=(4.5/10)×24=10。

8h, V2=(10÷24)÷1。

125=0.37m3/(m2·h)对于颗粒污泥,水力负荷V2=0。

1~0.9 m3/(m2·h),符合要求。

3、进水分配系统的设计本次设计采用一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关.为配水均匀,出水孔孔径一般为10~20mm,常采用15mm,孔口向下或与垂线成呈45°方向,为了使穿孔管各孔出水均匀,要求出口流速不小于2m/s。

本厌氧池采用连续进料方式,布水孔孔口向下,有利于避免管口堵塞,而且由于厌氧池底部反射散布作用,有利于布水均匀.为了增强污泥与废水之间的接触,减少底部进水管的堵塞,建议进水点距厌氧池底200~250mm,本次设计布水管离厌氧池底部200mm.4、排泥系统的设计一般认为,排出剩余污泥的位置在厌氧池的1/2高度处,但大都推荐把排泥设备安装在靠近厌氧池的底部,也有人在三相分离器下0.5m处理设计排泥管,以排除污泥床上面部分的剩余絮状污泥,而不会把颗粒污泥排走,对于厌氧池排泥系统,必须同时考虑在上、中、下不同位置设排泥设备,应根据生产运行中的具体情况考虑实际的排泥要求,来确定排泥位置。

IC厌氧反应器设计计算

IC厌氧反应器设计计算

IC厌氧反应器设计计算IC 厌氧反应器作为一种高效的厌氧处理技术,在废水处理领域得到了广泛的应用。

其独特的结构和运行原理,使其能够在处理高浓度有机废水时展现出出色的性能。

下面我们就来详细探讨一下 IC 厌氧反应器的设计计算。

一、设计基础数据在进行 IC 厌氧反应器的设计计算之前,首先需要明确一些基础数据,包括废水的水质水量、进水有机物浓度、温度、pH 值等。

这些数据将直接影响反应器的尺寸、容积和运行参数的确定。

例如,废水的流量决定了反应器的处理能力,进水有机物浓度则关系到反应器内微生物的负荷以及产气率。

一般来说,IC 厌氧反应器适用于处理高浓度有机废水,有机物浓度通常在数千毫克每升以上。

温度对厌氧反应的速率和微生物的活性有着重要影响,通常在 30 38℃之间较为适宜。

pH 值也需要控制在一定范围内,一般为 65 80 ,以保证微生物的正常生长和代谢。

二、IC 厌氧反应器的结构IC 厌氧反应器主要由两个反应区组成,即下部的第一反应区(也称流化床反应区)和上部的第二反应区(也称固液分离区)。

第一反应区是一个高负荷的反应区域,废水和颗粒污泥在此充分混合,有机物被快速降解。

这一区域通常具有较大的上升流速,以保证良好的传质效果。

第二反应区则主要用于泥水分离,使处理后的废水和污泥得以分离。

其结构相对较为简单,通常采用沉淀或过滤的方式实现泥水分离。

此外,IC 厌氧反应器还包括进水系统、出水系统、沼气收集系统和排泥系统等附属设施。

三、设计计算步骤1、确定反应器的容积负荷容积负荷是指单位容积反应器每天所能承受的有机物量,通常以千克 COD/(立方米·天)表示。

容积负荷的取值需要根据废水的水质、温度和处理要求等因素综合确定。

一般来说,对于高浓度有机废水,容积负荷可以取 10 20 千克 COD/(立方米·天)。

2、计算反应器的有效容积根据进水流量和容积负荷,可以计算出反应器的有效容积:有效容积=进水流量 ×进水有机物浓度 ÷容积负荷例如,假设进水流量为 100 立方米/天,进水有机物浓度为 10000 毫克/升(即 10 千克/立方米),容积负荷取 15 千克 COD/(立方米·天),则有效容积为:100 × 10 ÷ 15 ≈ 667(立方米)3、确定反应器的尺寸根据有效容积和反应器的高径比(一般为 2 5),可以确定反应器的直径和高度。

ic厌氧反应器的工艺及设备计算实例

ic厌氧反应器的工艺及设备计算实例

一、厌氧反应器的工艺设计1、水质指标原废水水质:流量:Q=9000m3/d;COD=6000mg/l;SS=2000mg/l。

凯氏氮TKN= NH3-N= PH=7;SO42- =2、处理效果水质衡算废水经IC反应器处理后,COD=6000*(1-70%)=1800mg/l。

厌氧反应器产污泥量为2100kg/d。

二、IC反应器的设计计算1、有效容积计算厌氧反应器有效容积的常用参数是进水容积负荷率和水利停留时间;本设计采用容积负荷率法,按中温消化(35~37°C)、污泥为颗粒污泥等情况进行计算。

=Q(C0-Ce)/Nv式中V----反应器有效容积m3,Q---废水的设计流量m3/d,Nv—容积负荷率kgCOD/m3.d,C0---进水COD浓度,kg/m3,Ce---出水的COD浓度,kg/m3.本设计采用IC反应器处理高浓度造纸废水,而IC反应器第一反应室和第二反应室由于内部流态及处理效率的不同而结构有较大差异。

这里分别介绍一、二反应室的容积。

IC反应器的第一反应室(相当于EGSB)去除总COD的80%左右,而第二反应室去除总COD的20%左右。

取第一反应室的容积负荷率Nv=25kgCOD/(m3.d),第二反应室的容积负荷率Nv=8kgCOD/(m3.d)。

第一反应室有效容积V1=Q(C0-Ce)80%/Nv1=9000*(6-1.8)*80%/22=1347m3,第二反应室有效容积V2=Q(C0-Ce)20%/Nv1=10000*(6-1.8)*20%/7=2727m3,IC反应器的总有效容积:V=V1+V2=1527+1200=2727m3取V=2800m3.2、IC反应器的几何尺寸取IC反应器的高径比为2.1(一般为2~4),V=AH=πD2H/4,D=(4V/2.1π)1/3=(4╳2800/2.1╳3.14)1/3=11.93,取C=12m;H=2.1╳12=25.2 ,取H=26m。

AO生物池厌氧缺氧好氧计算书

AO生物池厌氧缺氧好氧计算书

工艺计算(一)序号(二)水质参数CODcrBOD5TSS NH-N3TKN NO3- -NTNTPPH碱度Tmax Tmin 污水处理一设计参数进水水量项目符号公式计算值单位备注工程设计规模Q =70003m /d总总变化系数K z= 1.47平均日、平均时流量Q h=Q总/24=291.6673m /hQ s=Q h/3600=0.081023m /s最高日、最高时流量Q =Q*K =428.753max h z m /h=Q max/3600=0.11913m /s进出水水质进水指标( mg/L)符号出水指标( mg/L)符号去除率%备注400COD50COD87.5t te120S010S e91.6666666790%~95% 220T SS10T S95.4545454525N o5N a8035N k5Nke85.7142857101035N t15N te57.1428571460%~85%3P t0.5P te83.333333336~96~9280S ALK20℃14℃A2O生物反应池(厌氧 / 缺氧 / 好氧)(一)序号(二)判断是否可采用A2 O工艺项目符号公式BOD/TN(碳氮比)k =S /N=510 tBOD5/TP(碳磷比)k2=S0 /P t =A2O生物反应池容积计算 ( 污泥负荷法)去除水中B OD5,N和PA2/O生物反应池设计流量Q=Q总=BOD污泥负荷N=5混合液悬浮物固体浓度M LSS X=污泥回流比R=脱氮率ηN=N t -N te /N t =混合液回流比R内=ηN/ (1- ηN)==取值2V=Q ( S o S e)A O生物反应池有效容积NX计算值单位备注3.42857≥440≥1770003m /d0.08kgBOD/(kgMLSS5·d)0.1~0.23500mgMLSS/L3000~4000mg/L1100%回流0.5714360%~85%1.33333100%~400%2200%27503m(三)A2O生物反应池总停留时间厌氧 / 缺氧 / 好氧段停留时间之比厌氧区停留时间缺氧区停留时间好氧区停留时间厌氧区有效容积缺氧区有效容积好氧区有效容积校核氮磷负荷=HRT==k3=HRT=1HRT=2HRT3=V厌=V缺=V好=取值V/Q=24×HRT=HRT*1/(1+2+8)=HRT*2/(1+2+8)=HRT*8/(1+2+8)=V*1/(1+2+8)=V*2/(1+2+8)=V*8/(1+2+8)=27503随停留时间需要确定m0.39286d9.42857h1:2:80.85714h1.71429h6.85714h2503m5003m20003mQN t0.05N0.035 kgTN/(kgMLSS d)XV 好厌氧段总磷负荷(四)剩余污泥量计算污泥总产率(增殖)系数MLSS中MLVSS所占比例内源代谢系数 ( 污泥自身氧化率 )生物污泥产量非生物污泥产量剩余污泥产量(五)碱度校核K P=QP t<0.06 ,符合要求0.024 kgTP/(kgMLSS·d)XV 厌Y=0.6kgMLSS/kgBOD0.3~0.65f=0.7kgMLVSS/kgMLSS0.7~0.8K d=0.05d-1P =YQ(S-S )-k VfX=125125g/dx o e d=125.125kg/dP s=Q( T ss-T s)× 50%/1000=735kg/d△ X=P X+P S=860.125kg/d生物污泥中含氮量每日微生物同化 ( 合成 ) 作用除氮量被氧化的N H3-N的量所需脱硝量需要脱去的硝态氮总量氧化 1mgNH3-N消耗碱度氧化 NH3-N消耗总碱度去除 1mgBOD产生碱度5去除 BOD产生的总碱度5还原 1mgNO-N产生碱度3还原 NO-N产生总碱度3剩余碱度(六)A2O生物反应池尺寸计算反应池组数单组反应池池容单组反应池有效水深单组反应池有效面积单组推流式反应池廊道数量廊道宽度单组反应池宽度单组反应池长度校核宽深比校核长宽比反应池超高反应池总高(七)反应池进、出水管渠计算反应池总进水管设计流量进水管流速进水管截面积k4=N w==N NH=N N=N T=S ALK1=S ALK2=SALK3=SALK4=SALK5=SALK6=S ALK7=n=V单=H=S单=n1=B=W=L==k4=k5=H1=H2=Q0=v=S=P x×k4=N w×1000/Q=N t -N a -N w=N t -N te -N w=Q×N N/1000=S ALK1×N NH=S ×(S-S )=ALK3o eS ×N=ALK5NS ALK-S ALK2+S ALK4+S ALK6=V/n=V单/H=B×n=1S单/W=取值B/H=L/B=H+H1=Q =sQ0/v=0.124以12.4%计15.5155kg/d用于生物细胞合成2.2165mg/L27.7835mgNH-N/L317.7835mgN0-N/L3124.485kgN03-N/d7.14mg/mgNH-N3198.374mg/L0.1mg/mgBOD511mg/L3.57mg/mgNO-N363.4871mg/L156.113mg/L>100mg/L(CaCO计)32组31375 m5m2275 m2个9m18 m15.2778m62.5m1.81~26.944445~100.5m0.5~1.0m5.5m0.081023m /s0.8m/s0.7~2.0m/s0.101272m进水管直径校核管道流速回流污泥管设计流量回流污泥管流速回流污泥管截面积回流污泥管直径4 SD=π0.35909m=取值 0.6m DN600 v1=Q 01πD20.28654m/s0.7~2.0m/s4Q =R×Q=0.08102310m /sv=0.8m/s0.7~2.0m/s S=Q0/v=0.101272mD=4 S0.35909mπ=取值0.6m DN600单组生物反应池进水孔设计流量进水孔流速进水口过水断面积进水孔边长出水堰流量出水堰宽出水堰堰上水头流量系数过堰流量出水孔过流量出水孔流速出水孔过水断面积出水孔边长出水管设计流量出水管流速出水管截面积出水管直径校核管道流速(八)曝气系统设计计算BOD5分解速度常数BOD试验时间5去除B OD5需氧量剩余污泥中 BOD氧当量碳化需氧量去除N H3-N需氧量剩余污泥 NH-N氧当量3硝化需氧量反硝化脱氮产生氧量好氧池实际总平均需氧量好氧池实际总最大需氧量去除1kgBOD需氧量520℃清水溶解氧饱和度T℃清水溶解氧饱和度标准大气压压力修正系数好氧池中溶解氧浓度污水与清水传氧速率比污水与清水中饱和溶解氧之比微孔曝气器距池底微孔曝气器安装深度微孔曝气器出口处压力微孔曝气器氧转移效率Q2=v2=A=L孔==Q3=B堰=H=m=Q堰=Q4=v3=A出=L孔出==Q5=v4=S=D==v5=k=t=D o1=D o2=D o3=D N1=D N2=D N3=D N4=AOR==AOR max==AOR =BODC s(20) =Cs(14)=p标=ρ=C L=α=β= H4=H5=p b=E A=(1+R)Q/n=0.0810230m /s0.6m/sQ /v2=0.1350322mA0.36747m取值0.6m(1+R+R )Q /n=0.162043内0m /sB=9m0.083m0 .00270.437530 .405H33m B 堰 2 g H 20.41708m /sQ =0.162043m /s30.6m/sQ /v3=0.2700624mA0.51967m取值0.9mQ =0.1620433m /s0.8m/sQ5 /v 4=0.202552m4 S0.50783mπ取值0.8mQ 5120.32236m/sπ D40.23d-15dQ(S0S e )1126.78kgO2 /d1000 (1 e kt )1.42 ×P =177.678kgO /dX2D o1-D o2=949.102kgO2 /d4.6Q(N t -N a)/1000=966kgO2 /d4.6 ×12.4%×P =71.3713kgO /dX2D N1-D N2=894.629kgO2 /d2.86 ×N =356.026kgO /dT2D03+D N3-D N4=1487.71kgO2 /dAOR/24=61.9877kgO2 /h1.4 ×AOR=2082.79kgO2 /dAOR max/24=86.7828kgO2 /h1000AORQ ( S0 S e ) 1.93209kgO2 /kgBOD9.17mg/L10.17mg/L101300Pa12mg/L0.820.950.2mH-H4= 4.8mp +9800×H=148340Pa标50.221(1E A )79 21(1E A )由进水竖井潜孔进假设为正方形孔取值保证过堰流量≈Q3DN8000.7~2.0m/s合成细胞,未耗氧合成细胞,未耗氧查表附录十二查表附录十二当地气压比标准气压根据安装要求定由设备性能参数定空气出池时氧的百分比好氧池溶解氧饱和度好氧池标准状态总平均需氧量O t21(1E A )=E A )79 21(1C sm(14) = C s(14)(p b O t)2.066 1050.42AOR C s(20)SOR=(T 20)α ( βρC sm(T)C L ) 1.0240.1753711.5485 mg/L2138.11 kgO2 /d由实际需要量换算好氧池标准状态总最大需氧量好氧池平均时供气量单组好氧池平均时供气量好氧池最大时供气量单组好氧池最大时供气量3采用鼓风曝气时毎m 污水供气量供风管道局部阻力曝气器淹没水头曝气器阻力富余水头好氧区所需风压单个曝气器通气量单个曝气器服务面积单组好氧区配置曝气器数量单组好氧区表面积单格曝气器服务面积单组好氧池供风干支管风速供风干管管径需双侧供气供风支管风量需双侧供气供风支管管径(九)缺氧池搅拌设备计算缺氧池组数单组缺氧池容积3毎m污水所需搅拌功率单组缺氧池所需搅拌功率(十)混合液回流设备计算混合液回流量毎组好氧池设回流泵台数单台回流泵流量=SOR =maxG s==G1S==Gsmax===G smax1===G sp=h1=h2=h3=h4=△ h=p气==q=S q=n3=F o=Fo单=v风=d风==Gsmax2=d支2==n4=V缺单=p搅拌=p搅拌1=Q R==n5=Q R单=SOR/24=1.4 ×SOR=SOR/0.3E A=G s/60=G s/n=G1S/60=1.4 ×G=sG smax/60=G smax/3600=G smax/n=G/60=smax1G smax1/3600=24×G s/Q=0.01 ×( H-H4)=h1+h2+h3+h4+△ h=p气×1000=G1max/q=V好/H/n=F o /n 3=4Gsmaxπv 风取值G/n =smax1 14 G smax2πv 风取值V缺/n 4=p搅拌×V缺单 =Q×R内=Q r /24=Q / (n×n)= R589.0878kgO2 /h124.723kgO2/h31484.8m /h324.7466m /min3742.398m /min312.3733m /min32078.71m /h334.6452m /min30.57742m /s31039.36m /min317.3226 m/min30.28871m /s335.09073m /m 污水0.001Mpa.1Mpa.48Mpa.4Mpa.5Mpa0.059Mpa59kPa32m /h0.3~0.725m519.679 个2200 m20.38485 m10m/s0.27114 mDN50030.14436 m /s0.13557 mDN2502组3250 m5w1.25 kw140003m /d583.3333m /h1台291.6673m /h风机选型参考风机选型参考3 3≥3m/m 污水需要根据情况计算需要根据情况计算1m水头为 0.01MPa≤0.004~0.005MPa0.003~0.005MPa风机选型参考数据由厂家提供数据由厂家提供≤0.75m210~15m/s32~8w/m搅拌设备选型参考可考虑再备用一台回流泵选型参考计算值设定值反校值已知条件设计标准。

厌氧反应器常用计算公式汇总

厌氧反应器常用计算公式汇总

厌氧反应器常用计算公式汇总目前,厌氧微生物处理是高浓度有机废水处理工艺中不可或缺的处理工段,它较好氧微生物处理不仅能耗低,同时还可以产生沼气作为能源二次利用。

厌氧反应容积负荷高较好氧反应高出很多,对于处理同等量的COD厌氧反应投资更低。

在厌氧反应器的运行中,上升流速、水力停留时间和容积负荷等,那么这些数据都是如何计算的呢?今天我们就来讲一讲厌氧反应器日常运行中最常用的5个计算公式。

1. 上升流速上升流速(Up flow Velocity)也叫表面速度(Superficial Velocity)或表面负荷(Superficial Loading Rate)。

假定一个向上流动的反应器的进水流量(包括出水的循环)为Q(m3/h),反应器的横截面面积为A(m2),则上升流速u(m/h)可定义为:式中:u –上升流速,单位米/小时Q - 反应器的进水流量,单位立方米/小时A - 反应器的横截面面积,单位平方米2.水力停留时间水力停留时间(Hydrolic Retention Time)简写作HRT,它实际上指进入反应器的废水在反应器内的平均停留时间,因此,如果反应器的有效容积为V(m3),则式中:HRT –水力停留时间V –反应器容积,单位立方米Q - 反应器的进水流量,单位立方米/小时如果反应器高为H(m),则:因为Q=uA,V=HA 所以HRT也可表示为如下公式,即水力停留时间等于反应器高度与上升流速之比。

式中:HRT –水力停留时间H - 反应器高度,单位米u -上升流速,单位米/小时3. 反应器的有机负荷反应器的有机负荷(Organic Loading Rate,简写作OLR)可“分为容积负荷(Volume Loading Rate,简写作VLR)和污泥负荷(Sludge Loading Rate,简写作SLR)两种表示方式。

VLR即表示单位反应器容积每日接受的废水中有机污染物的量,其单位为kgCOD/(m3d)或kgBOD/(m3d)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、沼气的净化、贮存、输送
浮式气柜就是一种恒压变容贮柜,压力波动,但不大。

“后面要不要压缩机?”我们认为,主要看前面的厌氧反应器和后面的使用方法。

我们在向别人介绍厌氧反应器时,一般都这样要介绍,“我们的反应器的优点之一:可以提供2000(或其它的数据)毫米水柱的压力,可满足净化、贮存、中距离输送、大多数燃烧器、等阻力的要求,不必须专门的压缩机。

”我们不知你的(或你用的)反应器有没有这个优点,也不知道后面你们打算怎么用。

所以,不知道要不要压缩机,如果你进一步提供信息,我们可进一步讨论。

厌氧反应器系统的设计必须预先考虑沼气的处理或利用的问题。

是不是要脱硫,能不能不要水气分离器,气柜体积和压力多少。

贮气柜选用螺旋升降式比较安全,运行效果较好,贮气柜及沼气输送系统都要考虑动火安全维修措施。

废水中的COD在厌氧微生物的作用下,生成气体从水中逸出、生成固体(微生物体)沉下来、生成不是污染的水等,好氧也是如此,物理化学法也是如此。

厌氧的特点之一,COD用于生成微生物量的比例很低,用于生成沼气的比例很高,在进行沼气产量计算时,假设全部生成沼气误差不大。

厌氧系统没有添加任何“氧化剂”,根据前面的假定,从水中去除的COD,必然全部进入气体(沼气)中。

340L甲烷相当于1kg的COD。

所以,从水中每去除1kgCOD可以产生340L
甲烷。

这样,我们能根据去除的COD量计算出来甲烷的产量了。

沼气是由于CHONSP发生自身氧化还原反应的产物,例如C元素,一部分被氧化了就生成二氧化碳,另一部分被还原了生成甲烷,N、S
元素也是如此。

一般假定H、O不参与氧化还原过程(除非有大量的氢气等生成)。

沼气中的主要组分就是二氧化碳和甲烷,二者之间的比例和CHO的三元素比例关系而定,Bussel有个方程式,可以计算出来。

例如,碳水化合物中H、O比例为2:1,碳的化合价为0,所以,二氧化碳和甲烷的比例为1:1。

去除COD产生的甲烷量恒定,而甲烷与二氧化碳的比例是变化的,所以,沼气的产量也是变化的。

如果,是1:1,沼气产量就是680L/1kgCOD去除。

注意,二氧化碳比甲烷容易溶于水,所以,沼气中的二氧化碳比计算值要少。

2、沼气的价值-燃烧
在厌氧反应器中每去除1kgCOD能产生340L甲烷气体,如果沼气中二氧化碳和甲烷的比例是1:1,沼气产量为680L。

如果某种废水流量5000立方米/日,浓度为10000毫克COD/升,在厌氧反应器中的去除率为90%,那么,该系统的甲烷产量为
15300立方米甲烷/日,大约30600立方米沼气/日。

1立方米废水产生3立方米甲烷,6立方米沼气。

甲烷的低值热值为35.9MJ/Nm3,如果假定沼气中甲烷含量为50%。

主要能源的热值比较如下:
1、标准煤的热值为7000kcal/kg,1立方米沼气相当于0.66kg标
煤。

例子中30000立方米沼气/日,相当于20000kg(即20吨)标准
煤。

2、原煤的热值若为5000 kcal/kg,1立方米沼气相当于0.86kg原
煤,如果500元/吨原煤,例子中30000立方米沼气/日,用于替代原煤,其年(300日/年)产值相对于:近4百万元/年。

3、煤油的热值若为10300 kcal/kg,1立方米沼气相当于0.42kg
煤油,如果5000元/吨煤油,例子中30000立方米沼气/日,用于替代煤油,其年(300日/年)产值相对于:近2千万元/年。

4、液化石油气的热值若为12000 kcal/kg,1立方米沼气相当于
0.35kg液化石油气,如果5000元/吨液化石油气,例子中30000
立方米沼气/日,用于替代石油气,其年(300日/年)产值相对于:近1千5百万元/年。

5、煤气热值若为1200 kcal/立方米,1立方米沼气相当于3.5立
方米煤气,如果2元/立方米煤气,例子中30000立方米沼气/日,用于替代煤气,其年(300日/年)产值相对于:近3千万元/年。

6、气田天然气热值为8500 kcal/立方米,1立方米沼气相当于0.5
立方米天然气,如果3元/立方米天然气,例子中30000立方米沼气/日,用于替代天然气,其年(300日/年)产值相对于:近1千4百万元/年。

我们在这里不厌其烦地给出固体、液体、气体燃料,(1)给大家一些背景数据,以后可能用得上;(2)告诉大家替代不同的燃料,价值差别大了。

3、沼气燃烧的空气量
我们还假定沼气的组成为甲烷比二氧化碳为1:1。

同时假定:空气氧气和氮气比为1:79/21 = 1:3.76
沼气燃烧的化学计量方程为
(CH4 + CO2)+ 2(O2 + 3.76 N2)== 2 CO2 + 2 H2O + 7.52 N2 通过化学式可见:
1、空燃比(空气沼气比)(空沼比):4.76:1
即1立方米沼气燃烧需要4.76立方米的空气,通过此结论,我们可以大致计算沼气燃烧所需的配风量。

注意:实际燃烧过程中空气量都是稍稍过量的,不同燃烧器的过剩系统不一样,一般不会超出1.0~1.2。

2、空气甲烷比:9.52:1即1立方米甲烷需要9.52立方米的空气,通过此可以计算不同甲烷含量沼气所需的空沼比。

4、沼气燃烧的条件
沼气属于一种气体燃料,有气体燃料的共性,也有一些特殊性,燃烧的条件还是“3T+1O”。

1、温度(Temperature);
2、燃烧停留时间(Time);
3、燃料和空气的混合(Turbulence);
4、足够的氧气(Oxygen)。

相关文档
最新文档