磁场对运动电荷的作用

合集下载

9.2 磁场对运动电荷的作用

9.2 磁场对运动电荷的作用

9.2 磁场对运动电荷的作用概念梳理:一、洛伦兹力1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力. 2.洛伦兹力的方向 (1)判定方法左手定则:掌心——磁感线穿过掌心;四指——指向正电荷运动的方向或负电荷运动的反方向; 拇指——指向洛伦兹力的方向.(2)方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的平面(注意:洛伦兹力不做功). 3.洛伦兹力的大小(1)v ∥B 时,洛伦兹力F =0.(θ=0°或180°) (2)v ⊥B 时,洛伦兹力F =q v B .(θ=90°) (3)v =0时,洛伦兹力F =0. 二、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.(1)向心力由洛伦兹力提供:q v B =Rv m 2=2 mR ;(2)轨道半径公式:R =m vqB;(3)周期:T =2πR v =2πmqB ;(周期T 与速度v 、轨道半径R 无关)(4)角速度:ω=2πT =mqB.考点精析:考点一 带电粒子在匀强磁场中的运动一、带电粒子在磁场中做匀速圆周运动的四个特点研究带电粒子在磁场中做匀速圆周运动的关键是圆心、半径、运动时间的确定.在洛伦兹力作用下,做匀速圆周运动的带电粒子,不论沿顺时针方向还是沿逆时针方向,均具有四个重要特点.1.圆心的确定(1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图1所示,P 为入射点,M 为出射点,O 为轨道圆心. 图1 图2(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心.如图2所示,P 为入射点,M 为出射点,O 为轨道圆心.2.半径的确定和计算结合几何知识,通过解三角形计算半径,同时注意以下几何特点: (1)粒子速度的偏向角φ等于回旋角α(圆心角α),并等于AB 弦与切线的夹角(弦切角θ)的2倍.如图3所示.即φ=α=2θ.(2)相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°. 图3 3.粒子在磁场中运动时间的确定(1)利用回旋角α(圆心角α)与弦切角的关系,或者利用四边形的内角和等于360°计算圆心角的大小.若α用角度表示,则t =α360°T .若α用弧度表示,则t =α2πT ,可求出粒子在磁场中的运动时间.(2)若粒子在磁场中运动的弧长s 和速率已知,运动时间 t =sv .4.带电粒子在磁场中运动,速度方向的改变可用角度来表示,如图3所示.速度方向改变 的角度φ等于图中的α角.二、带电粒子在有界磁场中运动的几种常见情形 图4图5(1)直线边界(进出磁场具有对称性,如图4所示)(2)平行边界(存在临界条件,如图5所示)(3)圆形边界(沿径向射入必沿径向射出,如图6所示)图6题型一 带电粒子在直线边界磁场中的运动 【例1】质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场, 运行的半圆轨迹如图中虚线所示.下列表述正确的是( A )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间【练习】如图所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM ∶ON =3∶4,则下列说法中错误的是( AD )A .两次带电粒子在磁场中经历的时间之比为3∶4B .两次带电粒子在磁场中运动的路程长度之比为3∶4C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3【练习】如图所示的虚线框为一长方形区域,该区域内有一垂直于纸面向里的匀强磁场,一 束电子以不同的速率从O 点垂直于磁场方向、沿图中方向射入磁场后,分别从a 、b 、c 、d 四点射出磁场,比较它们在磁场中的运动时间t a 、t b 、t c 、t d ,其大小关系是( D ) A .ta <tb <tc <td B .t a =t b =t c =t d C .t a =t b >t d >t cD .t a =t b >t c >t d【练习】如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直 左边界射入,穿过此区域的时间为t .若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带 电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据可求出下列 物理量中的( AB )A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径题型二 带电粒子在圆形边界磁场中的运动【例1】如图所示,半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出,若∠AOB =120°,则该带电粒子在磁场中运动的时间为( D )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0【练习】如图所示,一半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,一质量为m , 电荷量为q 的正电荷(重力忽略不计)以速度v 沿正对着圆心O 的方向射入磁场,从磁场中射 出时速度方向改变了θ角.磁场的磁感应强度大小为( B )A.m v qR tan θ2B.m v qR cotθ2C.m v qR sin θ2D.m v qR cosθ2【练习】如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B =0.10 T ,磁场区域半径r =23 3m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外,两区域切点为C .今有质量m =3.2×10-26kg 、带电荷量q =1.6×10-19C 的某种离子,从左侧区边缘的A 点以速度v =1×106 m/s 正对O 1的方向垂直射入磁场,它将穿越C 点后再从右侧区穿出.求:(1)该离子通过两磁场区域所用的时间;(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指在垂直初速度方向上移动的距离)【练习】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( B ) A.12ΔtB .2ΔtC.13ΔtD .3Δt考点二 洛伦兹力和电场力的比较力内容对应项目洛伦兹力电场力性质 磁场对在其中运动的电荷的作用力 电场对放入其中电荷的作用力 产生条件 v ≠0且v 不与B 平行电场中的电荷一定受到电场力作用 大小 F =q v B (v ⊥B ) F =qE力方向与场 方向的关系 一定是F ⊥B ,F ⊥v ,与电荷电性无关 正电荷受力与电场方向相同,负电荷受力与电场方向相反 做功情况 任何情况下都不做功 可能做正功、负功,也可能不做功力为零时 场的情况 F 为零,B 不一定为零 F 为零,E 一定为零 作用效果只改变电荷运动的速度方向,不改变速度大小既可以改变电荷运动的速度大小,也可以改变电荷运动的方向【注意】①洛伦兹力对电荷不做功;安培力对通电导线可做正功,可做负功,也可不做功.②只有运动电荷才会受到洛伦兹力,静止电荷在磁场中所受洛伦兹力一定为零.【例1】带电粒子以初速度v 0从a 点进入匀强磁场,如图所示.运动中经过b 点,Oa =Ob , 若撤去磁场加一个与y 轴平行的匀强电场,仍以v 0从a 点进入电场,粒子仍能通过b 点, 那么电场强度E 与磁感应强度B 之比为( ) A .v 0 B .1C .2v 0D .v 02【练习】在如图所示宽度范围内,用场强为E 的匀强电场可使初速度是v 0的某种正粒子偏 转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的匀强磁场(图中未画出),使该粒 子穿过该区域,并使偏转角也为θ(不计粒子的重力),问: (1)匀强磁场的磁感应强度是多大? (2)粒子穿过电场和磁场的时间之比是多大?课后练习一.单项选择题1.电子在匀强磁场中做匀速圆周运动,下列说法正确的是(D)A.速率越大,周期越大B.速率越小,周期越大C.速度方向与磁场方向平行D.速度方向与磁场方向垂直2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和Rα,周期分别为T p和Tα.则下列选项正确的是(A)A.R p∶Rα=1∶2T p∶Tα=1∶2 B.R p∶Rα=1∶1T p∶Tα=1∶1C.R p∶Rα=1∶1T p∶Tα=1∶2 D.R p∶Rα=1∶2T p∶Tα=1∶13.如图所示是某离子速度选择器的原理示意图,在一个半径为R=10 cm的圆柱形筒内有B=1×10-4T的匀强磁场,方向平行于圆筒的轴线,在圆柱形筒的某直径的两端开有小孔,作为入射孔和出射孔.离子束以不同角度入射,最后有不同速度的离子束射出.现有一离子源发射比荷为2×1011 C/kg的正离子,且离子束中速度分布连续.当角θ=45°时,出射离子速度v的大小是(D)A.2×106 m/s B.2×108 m/sC.22×108 m/s D.22×106 m/s4.如图所示为四个带电粒子垂直进入磁场后的径迹,磁场方向垂直纸面向里,四个粒子质量相等,所带电荷量也相等.其中动能最大的负粒子的径迹是(D)A.Oa B.Ob C.Oc D.Od5.如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q的带电粒子,在x轴上到原点的距离为x0的P点,以平行于y轴的初速度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场.不计重力的影响.由这些条件可知(D)A.不能确定粒子通过y轴时的位置B.不能确定粒子速度的大小C.不能确定粒子在磁场中运动所经历的时间D.以上三个判断都不对6.一束质子以不同的速率沿如图所示方向飞入横截面是一个正方形的、方向垂直纸面向里的匀强磁场中,则下列说法中正确的是(C)A .在磁场中运动时间越长的质子,其轨迹线一定越长B .在磁场中运动时间相同的质子,其轨迹线一定重合C .在磁场中运动时间越长的质子,其轨迹所对圆心角一定越大D .速率不同的质子,在磁场中运动时间一定不同二.双项选择题1.如图所示,在两个不同的匀强磁场中,磁感强度关系为B 1=2B 2,当不计重力的带电粒子从B 1磁场区域运动到B 2磁场区域时(在运动过程中粒子的速度始终与磁场垂直),则粒子的( BC ) A .速率将加倍 B .轨道半径将加倍 C .周期将加倍D .做圆击运动的角速度将加倍2.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹,下图是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少.下列说法正确的是( AC ) A .粒子先经过a 点,再经过b 点 B .粒子先经过b 点,再经过a 点 C .粒子带负电 D .粒子带正电3.在M 、N 两条长直导线所在的平面内,一带电粒子的运动轨迹示意图如图所示.已知两条导线M 、N 只有一条导线中通有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子带电情况及运动的方向,说法正确的是( BC )A .M 中通有自下而上的恒定电流,带负电的粒子从a 点向b 点运动B .M 中通有自上而下的恒定电流,带正电的粒子从b 点向a 点运动C .N 中通有自下而上的恒定电流,带正电的粒子从b 点向a 点运动D .N 中通有自上而下的恒定电流,带负电的粒子从a 点向b 点运动三.计算题1、如图所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为30°. 求 : (1) 电子的质量m =? (2) 电子在磁场中的运动时间t =?dBe θv2、 如图所示,在半径为R 的圆的范围内,有匀强磁场,方向垂直圆所在平面向里。

磁场对运动电荷的作用 课件

磁场对运动电荷的作用 课件

三、电子束的磁偏转 1.由于 受洛伦兹力的作用,电子束能在磁场中发生偏转 ,叫 做磁偏转. 2.电视显像管应用了电子束磁偏转 的原理.
一、对洛伦兹力的理解 磁场对运动电荷的作用力叫洛伦兹力.是由荷兰物理学家洛伦 兹首先提出的.
洛伦兹力的方向 (1)安培力实际上是大量运动电荷在磁场中受洛伦兹力的宏观 表现,所以洛伦兹力的方向也可由左手定则判定. (2)左手定则:伸开左手,使拇指跟其余四指垂直,且处于同一 平面内,让磁感线垂直穿入手心,四指指向正电荷运动的方向 (若是负电荷,则四指指向负电荷运动的反方向),拇指所指的 方向就是洛伦兹力的方向.
洛伦兹力的方向 【典例 1】 如图 2-4-1 所示,是电视机中偏转线圈的示意图, 圆心 O 处的黑点表示电子束,它由纸内向纸外而来,当线圈中 通以图示方向的电流时(两线圈通过的电流相同),则电子束将
( ).
图2-4-1 A.向左偏转 B.向右偏转 C.向下偏转 D.向上偏转
解析 偏转线圈由两个“U”形螺线管组成,由安培定则知右端 都是 N 极,左端都是 S 极,O 处磁场水平向左,由左手定则可 判断出电子所受的洛伦兹力向上,电子向上偏转,D 正确. 答案 D 借题发挥 安培定则是用来判断电流的磁场方向的,又叫右手 螺旋定则.左手定则是用来判断安培力或洛伦兹力方向的.两 个定则的功能要记牢,使用时左、右手的形状要记清.
洛伦兹力的大小 电荷在磁场中受洛伦兹力的大小与电荷量 q,电荷运动的速度 v 的大小,磁场的磁感应强度 B 的大小,速度 v 的方向以及磁 感应强度 B 的方向都有关. (1)当 v=0 时,洛伦兹力 F=0,即静止的电荷不受洛伦兹力. (2)当 v≠0,且 v∥B 时,洛伦兹力 F=0,即运动方向与磁场 方向平行时,不受洛伦兹力. (3)当 v≠0,且 v⊥B 时,洛伦兹力 F 最大,即运动方向与磁场 方向垂直时,所受洛伦兹力最大.

磁场对运动电荷的作用

磁场对运动电荷的作用

磁场对运动电荷的作用一、洛伦兹力1.洛伦兹力是磁场对 电荷的作用力. 2.大小:(1)当v ⊥B 时,洛伦兹力最大,F= ;(2)当v ∥B 时,洛伦兹力最小,F= . 3.方向:(1)由 判定(注意正负电荷的不同). (2)特点:a .F ⊥B 且F ⊥v ,即F 总是垂直于B 和v 决定的平面,但v 与B 不一定垂直.b .不论带电粒子在匀强磁场中做何种运动,因为 ,故F 一定不做功.F 只改变速度的 而不改变速度的 .二、带电粒子在匀强磁场中运动(不计其他作用)1.若v ∥B ,带电粒子所受的洛伦兹力F=0,因此带电粒子以速度v 做 运动. 2.若v ⊥B ,带电粒子在垂直于磁感线的平面内以入射速度v 做 运动. (1)向心力由洛伦兹力提供,即 ;(2)轨道半径公式:R= ; (3)周期:T= ; (4)频率:f=注意:T 的大小与轨道半径R 和运动速率v 无关,只与磁感应强度B 和粒子的比荷q/m 有关.一、洛伦兹力的应用1、带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹,如图是在有匀强磁场的云室中观察到的粒子的运动轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少.下列说法正确的是( ). A .粒子先经过a 点,再经过b 点 B .粒子先经过b 点,再经过a 点 C .粒子带负电荷 D .粒子带正电荷2.初速度为v o 的电子,沿平行于通电长直导线的方向射出,直导线中的电流方向与电子的初始运动方向如图所示,则( ). A .电子将向右偏转,速率不变 B .电子将向左偏转,速率改变 C .电子将做匀速圆周运动D .电子将做半径逐渐增大的曲线运动3 、如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?解:由公式知,它们的半径和周期是相同的。

磁场对运动电荷作用

磁场对运动电荷作用
磁场对运动电荷作用
一、洛伦兹力:磁场对 运动电荷
的作用力.
1.洛伦兹力的大小: F=qvBsinθ ,其中θ 为 v 与 B 间的夹角.当带电粒子的运动方向与磁场方向互 相平行时, F = 0 ;当带电粒子的运动方向与磁场方向 互相垂直时,F= qvB .只有运动电荷在磁场中才 有可能受到洛伦兹力作用,静止电荷在磁场中受到的 磁场对电荷的作用力一定为0.
mv2 mv 【解析】(1)qvB= ,r= r qB 离子在磁场中运动最大轨道半 径:rm=1m 由几何关系知,最大速度的离 子刚好沿磁场边缘打在荧光屏上, 如图,所以 OA1 长度为: y=2rcos30°= 3 m 即离子打到荧光屏上的范围为:[0, 3 m] 2πm (2)离子在磁场中运动的周期为: T= =π × qB 10-6s 5π T -7 经过时间:t= ×10 s= 3 6 2π π 离子转过的圆心角为 φ= t= T 3
三、洛伦兹力计算公式的推导 如图所示,整个导线受到的磁场力 ( 安培力 ) 为 F 安 =
BIL;其中I=nqsv;设导线中共有N个自由电子N=nsL; 每个电子受的磁场力为 F ,则 F 安 = NF. 由以上四式得 F =qvB.条件是v与B垂直.当v与B成θ 角时, F=qvBsinθ .
题型一:带电粒子在磁场中的圆周运动问题
D.若将带电粒子在A点时初速度变小(方向不变),它不 能经过B点
【解析】 无论是带正电还是带负电粒子都能到达 B 点,画出粒子运动的轨迹,正粒子在 L1 上方磁场中运 1 3 动 T,在 L2 下方磁场中运动 T,负粒子在 L1 上方磁场 4 4 3 T 中运动 T,在 L2 下方磁场中运动 ,设 l1l2 之间的距离 4 4 为 a.带电粒子运动的半径为 R,则对于负粒子,AB= a + 2R+ a- 2R= 2a. 对于正粒子, AB= a- 2R+ a+ 2R= 2a.

磁场对运动电荷的作用

磁场对运动电荷的作用

磁场对运动电荷的作用一、洛仑兹力磁场对运动电荷的作用力1.洛伦兹力的公式: f=qvB sinθ,θ是V、B之间的夹角.2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相垂直时,f=qvB4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.二、洛伦兹力的方向1.洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.2.使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.三、洛伦兹力与安培力的关系1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB;其运动周期T=2πm/qB(与速度大小无关).3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).【例1】一带电粒子以初速度V垂直于匀强电场E 沿两板中线射入,不计重力,由C点射出时的速度为V,若在两板间加以垂直纸面向里的匀强磁场,粒子仍以V入射,恰从C关于中线的对称点D射出,如图所示,则粒子从D点射出的速度为多少?点评:凡是涉及到带电粒子的动能发生了变化,均与洛仑兹力无关,因为洛仑兹力对运动电荷永远不做功。

磁场对运动电荷的作用

磁场对运动电荷的作用

F
× × ×
× ×
×
× ×
× ×
+
× ×v × ×
× × v
× × ×
×
-
× ×
×
B
×
× ×
× ×B ×
二:洛伦兹力的应用
洛伦兹力的方向: 电性;相对速度。 例题:用绝缘细线悬挂一个质量为m,带电荷量为+q的小球, 让它处于图示的磁感应强度为B的匀强磁场中。由于磁场的运 动,小球静止在图中位臵,这时悬绳与竖直方向的夹角为, 并被拉紧,则磁场的运动速度和方向是( ) A、v=mg/Bq,水平向左 B、v=mgtan/Bq,竖直向下 C、v=mgtan/Bq,竖直向上 +q D、v=mg/Bq,水平向右
磁场对运动电荷的作用
一:洛伦兹力
1、定义:磁场对运动电荷的作用力叫洛轮兹力。 2、大小: ⑴当vB时,F洛=qvB
B
-q
v
一:洛伦兹力
1、定义:磁场对运动电荷的作用力叫洛轮兹力。 2、大小: ⑴当vB时,F洛=qvB ⑵当v B时,F洛=0
B -q v
一:洛伦兹力
1、定义:磁场对运动电荷的作用力叫洛轮兹力。 2、大小: ⑴当vB时,F洛=qvB ⑵当v B时,F洛=0 ⑶当v与B夹角时,F洛=qvBsin
例题:一垂直纸面、磁感应强度为B的匀强磁场(如图)。一 不计重力的粒子,从坐标原点 y o处以速度v进入磁场,且速度 方向与x轴正方向夹角1200,粒 B v 子穿越y轴正半轴后在磁场中到 x x轴的最大距离a,则该粒子 0 的比荷q/m多少?电荷的正负?
过已知点,大致画出粒子运动的圆周轨迹. 画轨迹: 找圆心: ①两半径的交点;②半径与弦中垂线的交点. ①公式:R=mv/qB ②结合几何知识计算. 定半径: 求时间: ①公式:t=T/3600,或t=T/2. ②t=s/v. 偏转角等于圆心角,等于对应弦切角的2倍,即==2. 两对应的弦切角相等. 粒子从同一边界进出磁场具有对称性.

磁场对运动电荷的作用

磁场对运动电荷的作用

磁场对运动电荷的作用一、 考点聚焦1.磁场对运动电荷的作用,洛伦兹力。

带电粒子在匀强磁场中的运动 Ⅱ2.质谱仪.回旋加速器 Ⅰ二、 知识扫描1.磁场对运动电荷的作用力叫做洛伦兹力。

当v ⊥B qvB f =;当v ∥B 时,f =0。

2.洛伦兹力的方向:用左手定则判定。

注意:四指代表电流方向,不是代表电荷的运动方向。

3.由于洛伦兹力f 始终与速度v 垂直,因此f 只改变速度方向而不改变速度大小。

当运动电荷垂直磁场方向进入磁场时仅受洛伦兹力作用,因此一定做匀速圆周运动。

4.带电粒子在匀强磁场中做匀速圆周运动有一个动力学方程:R v m qvB 2=,两个基本公式(1)轨道半径公式:qB mv R =,(2)周期公式:qB m T π2=。

三、好题精析例1 在如图11.3-1所示的三维空间中,存在方向未知的匀强磁场。

一电子从坐标原点出发,沿x 轴正方向运动时方向不变;沿y轴正方向运动时,受到z 轴负方向的洛伦兹力作用。

试确定当电子从O 点沿z 轴正方向出发时的轨道平面及绕行方向。

解析 运动的电荷在匀强磁场中方向不变有两种可能:一是电荷沿磁场方向运动不受洛伦兹力;二是电荷受洛伦兹力与其它力的合力为零。

本题电子沿x 轴正方向运动时方向不变,表明沿磁场方向运动,即磁场方向与yOz 平面垂直,而电子沿y 轴正方向运动时,受到z 轴负方向的洛伦兹力作用,由左手定则可知,磁场指向纸内。

当电子从O 点沿z 轴正方向出发时,轨道平面一定在yOz 平面内,沿顺时针方向做匀速圆周运动,且圆心在y 轴正方向某一点。

如图11.3-2所示。

点评 本题考查对洛伦兹力方向的判定和分析带电粒子在磁场中运动轨迹。

物理习题中所给条件有的是直接给出的,也有隐含在题中,需要根据所学知识进行挖掘。

本题中匀强磁场的方向就是通过两步分析来确定的。

图11.3-1图11.3-2例2 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。

电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图11.3-3所示。

磁场对运动电荷的作用

磁场对运动电荷的作用

磁场对运动电荷的作用1. 引言在物理学中,磁场是指存在于物体周围的力场,可以对运动中的电荷施加作用力。

电荷在磁场中受到的力和运动状态之间存在着密切的关系。

本文将探讨磁场对运动电荷的作用以及其物理原理。

2. 洛伦兹力磁场对运动电荷产生的作用力称为洛伦兹力。

根据洛伦兹力定律,洛伦兹力的大小与电荷的电量、电荷的速度以及磁场的强度和方向有关。

洛伦兹力的方向垂直于电荷的速度方向和磁场方向,遵循右手定则。

3. 右手定则右手定则是用于确定洛伦兹力方向的常用方法。

当右手拇指指向电荷的速度方向,四指指向磁场的方向时,手心所指的方向即为洛伦兹力的方向。

右手定则为我们理解磁场对电荷作用力提供了便利。

4. 磁场对直线运动电荷的作用当电荷沿直线运动时,如果与磁场垂直,则洛伦兹力将偏离电荷的直线运动方向,并且始终垂直于电荷的速度方向和磁场方向。

这是由于洛伦兹力的方向始终与速度和磁场互相垂直,导致电荷运动轨迹弯曲,形成圆弧轨迹。

5. 磁场对曲线运动电荷的作用当电荷沿曲线运动时,磁场对其的作用将影响电荷在曲线上的运动轨迹。

在曲线上的每一点上,电荷的速度方向和磁场方向不再垂直。

由于洛伦兹力始终垂直于速度和磁场方向,电荷将受到一个向轨迹中心的向心力。

这使得电荷在曲线上的运动具有向心加速度的特征。

6. 磁场对静止电荷的作用磁场对静止电荷的作用力为零。

这是因为洛伦兹力的大小与电荷的速度有关,而静止的电荷速度为零,因此洛伦兹力也为零。

磁场只对运动中的电荷产生作用。

7. 磁场对带电粒子的运动轨迹的影响磁场对带电粒子的运动轨迹产生明显的影响。

在强磁场的作用下,带电粒子将受到明显的偏转,形成类似于螺旋线状的轨迹。

这种现象在粒子加速器以及磁共振成像技术中得到了广泛应用。

8. 磁场对电流的作用电流也是由运动电荷产生的,因此磁场也对电流产生作用。

根据安培定律,电流在磁场中受到的力的大小与电流强度、导线长度以及磁场的强度和方向有关。

磁场对电流的作用可用于磁力计、电动机、发电机等各种电磁设备中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场对运动电荷的作用
一、对洛伦兹力的理解
【例1】带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.下列表述正确的是( )
A .洛伦兹力对带电粒子做功
B .洛伦兹力不改变带电粒子的动能
C .洛伦兹力的大小与速度无关
D .洛伦兹力不改变带电粒子的速度方向
二、带电粒子在匀强磁场中做圆周运动的分析方法
1.圆心的确定 2.半径的确定 3.运动时间的确定
【例2】如图所示,半径为r 的圆形空间内,存在着垂直于纸面向
外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度
v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则
该粒子在磁场中运动的时间为( )
A.2πr 3v 0
B.23πr 3v 0
C.πr 3v 0
D.3πr 3v 0
【基础演练】
1.在高纬度地区的高空,大气稀薄,常出现五颜六色的弧状、带状或幕状的极其美丽壮观的发光现象,这就是我们常说的“极光”.“极光”是由太阳发射的高速带电粒子受地磁场的影响,进入两极附近时,撞击并激发高空中的空气分子和原子引起的.假如我们在北极地区忽然发现正上方的高空出现了射向地球的沿顺时针方向生成的紫色弧状极光(显示带电粒子的运动轨迹).则关于引起这一现象的高速带电粒子的电性及弧状极光的弯曲程度的说法中,正确的是( )
A .高速粒子带负电
B .高速粒子带正电
C .轨迹半径逐渐减小
D .轨迹半径逐渐增大
2.真空中两根长直金属导线平行放置,其中一根导线中通有恒定电流.在两导线所确定的平面内,一电子从P 点运动的轨迹的一部分如图中的曲线PQ
所示,则一定是( )
A .ab 导线中通有从a 到b 方向的电流
B .ab 导线中通有从b 到a 方向的电流
C .cd 导线中通有从c 到d 方向的电流
D .cd 导线中通有从d 到c 方向的电流
3.如图所示,圆柱形区域的横截面.在没有磁场的情况下,带电粒子(不计重力)以某一
初速度沿截面直径方向入射时,穿过此区域的时间为t ;若该区域加沿轴
线方向的匀强磁场,磁感应强度为B ,带电粒子仍以同一初速度沿截面直
径入射,粒子飞出此区域时,速度方向偏转了π3
.根据上述条件可求得的物理量为( )
A .带电粒子的初速度
B .带电粒子在磁场中运动的半径
C .带电粒子在磁场中运动的周期
D .带电粒子的比荷
4.回旋加速器是用来加速带电粒子的装置,如图所示,它的核心
部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,
在两盒间的窄缝中形成交变电场,使带电粒子每次通过窄缝都得到加
速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场
中做匀速圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大
圆周半径时通过特殊装置被引出,如果用同一回旋加速器分别加速氚
核(31H)和α粒子(42He),比较它们所加的高频交流电源的周期和获得的
最大动能的大小,可知( )
A .加速氚核的交流电源的周期较大,氚核获得的最大动能较小
B .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大
C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小
D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大
5.如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时
的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半
轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正
负是( )
A.3v 2aB
,正电荷 B.v 2aB ,正电荷 C.3v 2aB ,负电荷 D.v 2aB
,负电荷 6.如图所示,在边界PQ 上方有垂直纸面向里的匀强磁场,
一对正、负电子同时从边界上的O 点沿与PQ 成θ角的方向以
相同的速度v 射入磁场中,则关于正、负电子,下列说法不正
确的是( )
A .在磁场中运动的时间相同
B .在磁场中运动的轨道半径相同
C .出边界时两者的速度相同
D .出边界点到O 点处的距离相等
7.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等
领域有重要的应用.
如图所示的矩形区域ACDG(AC 边足够长)中存在垂直
于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经
静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向
射入磁场,运动到GA 边,被相应的收集器收集,整个装置
内部为真空.
已知被加速的两种正离子的质量分别为m 1和m 2(m 1>m 2),电荷量均为q ,加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.
(1)求质量为m 1的离子进入磁场时的速率v 1.
(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s.。

相关文档
最新文档