磁场对电荷的作用

合集下载

磁场对运动电荷的作用 课件

磁场对运动电荷的作用 课件

三、电子束的磁偏转 1.由于 受洛伦兹力的作用,电子束能在磁场中发生偏转 ,叫 做磁偏转. 2.电视显像管应用了电子束磁偏转 的原理.
一、对洛伦兹力的理解 磁场对运动电荷的作用力叫洛伦兹力.是由荷兰物理学家洛伦 兹首先提出的.
洛伦兹力的方向 (1)安培力实际上是大量运动电荷在磁场中受洛伦兹力的宏观 表现,所以洛伦兹力的方向也可由左手定则判定. (2)左手定则:伸开左手,使拇指跟其余四指垂直,且处于同一 平面内,让磁感线垂直穿入手心,四指指向正电荷运动的方向 (若是负电荷,则四指指向负电荷运动的反方向),拇指所指的 方向就是洛伦兹力的方向.
洛伦兹力的方向 【典例 1】 如图 2-4-1 所示,是电视机中偏转线圈的示意图, 圆心 O 处的黑点表示电子束,它由纸内向纸外而来,当线圈中 通以图示方向的电流时(两线圈通过的电流相同),则电子束将
( ).
图2-4-1 A.向左偏转 B.向右偏转 C.向下偏转 D.向上偏转
解析 偏转线圈由两个“U”形螺线管组成,由安培定则知右端 都是 N 极,左端都是 S 极,O 处磁场水平向左,由左手定则可 判断出电子所受的洛伦兹力向上,电子向上偏转,D 正确. 答案 D 借题发挥 安培定则是用来判断电流的磁场方向的,又叫右手 螺旋定则.左手定则是用来判断安培力或洛伦兹力方向的.两 个定则的功能要记牢,使用时左、右手的形状要记清.
洛伦兹力的大小 电荷在磁场中受洛伦兹力的大小与电荷量 q,电荷运动的速度 v 的大小,磁场的磁感应强度 B 的大小,速度 v 的方向以及磁 感应强度 B 的方向都有关. (1)当 v=0 时,洛伦兹力 F=0,即静止的电荷不受洛伦兹力. (2)当 v≠0,且 v∥B 时,洛伦兹力 F=0,即运动方向与磁场 方向平行时,不受洛伦兹力. (3)当 v≠0,且 v⊥B 时,洛伦兹力 F 最大,即运动方向与磁场 方向垂直时,所受洛伦兹力最大.

磁场对电荷的作用

磁场对电荷的作用

磁场对电荷的作用在我们的日常生活中,磁场似乎是一种神秘而又无处不在的力量。

从电动机的运转到指南针的指向,磁场都在发挥着关键的作用。

而其中一个重要的方面,就是磁场对电荷的作用。

要理解磁场对电荷的作用,首先得明确电荷是什么。

电荷是物质的一种基本属性,分为正电荷和负电荷。

就像磁铁有南北极一样,电荷也有正负之分。

而当电荷在磁场中运动时,就会受到磁场的力的作用。

这种力被称为洛伦兹力。

想象一下,一个电荷以一定的速度在磁场中穿梭,磁场就会对它施加一个垂直于电荷运动方向和磁场方向的力。

这就好比在湍急的河流中划船,水流(相当于磁场)会对船(相当于电荷)产生一个侧向的力。

洛伦兹力的大小取决于电荷的电荷量、运动速度以及磁场的强度。

电荷量越大,受到的力就越大;速度越快,力也越大;磁场越强,力同样会增大。

而且,洛伦兹力的方向可以用左手定则来判断。

伸出左手,让磁感线穿过掌心,四指指向电荷运动的方向,那么大拇指所指的方向就是洛伦兹力的方向。

磁场对电荷的作用在许多实际应用中都发挥着重要作用。

比如说,在电视机的显像管中,电子枪发射出的电子在磁场的作用下发生偏转,从而能够准确地打在屏幕的特定位置上,形成清晰的图像。

再来看质谱仪,这是一种用于分析物质成分的仪器。

在质谱仪中,带电粒子在磁场中运动时,由于不同粒子的质量和电荷量不同,它们受到的洛伦兹力也不同,从而导致运动轨迹的半径不同。

通过测量这些轨迹的半径,就可以确定粒子的质量和电荷量的比值,进而分析出物质的成分。

在科学研究中,磁场对电荷的作用也为我们探索微观世界提供了有力的工具。

例如,在粒子加速器中,带电粒子在强大的磁场作用下不断加速和偏转,从而达到极高的能量,帮助科学家研究物质的基本结构和相互作用。

然而,磁场对电荷的作用并非总是有益的。

在一些情况下,它可能会带来一些问题。

比如在输电线路中,电流中的电荷会受到地球磁场的作用,这可能导致输电线路产生振动和能量损耗。

为了更好地利用磁场对电荷的作用,科学家们一直在不断地进行研究和探索。

高中物理磁场对运动电荷的作用

高中物理磁场对运动电荷的作用

高中物理磁场对运动电荷的作用在高中物理的学习中,磁场对运动电荷的作用是一个非常重要的知识点。

它不仅是电磁学的核心内容之一,也在许多实际应用中发挥着关键作用,比如粒子加速器、质谱仪等。

当我们谈到磁场对运动电荷的作用时,首先要了解的是洛伦兹力。

洛伦兹力是指运动电荷在磁场中所受到的力。

这个力的大小与电荷量、速度大小、磁感应强度以及速度方向与磁场方向的夹角有关。

其表达式为:F =qvBsinθ,其中 F 是洛伦兹力,q 是电荷的电荷量,v 是电荷的运动速度,B 是磁感应强度,θ 是速度方向与磁场方向的夹角。

让我们通过一个简单的例子来直观地感受一下洛伦兹力。

想象一个带正电的粒子以一定的速度垂直进入一个匀强磁场。

由于粒子的速度方向与磁场方向垂直,此时夹角θ为 90 度,sinθ等于 1。

那么粒子将会受到一个大小恒定、方向始终与速度方向垂直的洛伦兹力。

在这个力的作用下,粒子会做匀速圆周运动。

为什么会做匀速圆周运动呢?因为洛伦兹力始终与速度方向垂直,所以它只改变速度的方向,而不改变速度的大小。

这就好比我们用一根绳子拴着一个小球在水平面上旋转,绳子提供的拉力始终垂直于小球的运动方向,只改变小球的运动方向,而不改变其运动的快慢。

那么,如何确定粒子做圆周运动的半径和周期呢?根据洛伦兹力提供向心力的原理,我们可以得到:qvB = mv²/r,由此可以推导出半径r = mv/qB。

而周期 T =2πr/v =2πm/qB。

接下来,我们再深入探讨一下当速度方向与磁场方向不垂直的情况。

假设夹角为θ(0 <θ < 90 度),此时洛伦兹力的大小会变小,因为sinθ的值小于 1。

而且洛伦兹力的方向不再与速度方向垂直,而是与速度方向和磁场方向都垂直。

在这种情况下,粒子的运动轨迹将不再是简单的圆周运动,而是一个螺旋线。

磁场对运动电荷的作用在实际生活中有很多应用。

比如,在电视机的显像管中,电子枪发射出的电子在磁场的作用下发生偏转,从而能够准确地打到屏幕的不同位置,形成图像。

磁场对电荷的作用

磁场对电荷的作用

磁场对电荷的作用磁场作为一种基本的物理现象,对电荷具有重要的作用。

在我们日常生活中,电子、负离子和正离子等电荷都处于磁场的影响下。

本文将从电磁感应、洛伦兹力和磁场对电子运动的影响等几个方面,探讨磁场对电荷的作用。

首先,我们来看电磁感应。

当导体中的电荷运动的时候,会在周围产生磁场。

这个现象被称为电流感应,是电场与磁场相互作用的结果。

根据法拉第电磁感应定律,当磁场中的磁通量发生变化时,会在导体中产生感应电动势。

这个现象被广泛应用于发电机、变压器等电气设备中。

因此,磁场对电荷的运动状态产生了重要影响。

其次,我们来探讨磁场对电荷的洛伦兹力的作用。

洛伦兹力是指电荷由于运动而受到的由磁场引起的力。

根据洛伦兹力的方向可知,磁场对电荷的影响主要表现为对电荷轨道的偏转。

以正电荷和负电荷为例,当正电荷和负电荷在相同的磁场中运动时,由于洛伦兹力的方向相反,正电荷和负电荷的运动方向也将相反。

这种现象被广泛应用于质子加速器、离子束技术等领域。

进一步讨论磁场对电子运动的影响。

由于电子带负电,当电子在磁场中运动时,洛伦兹力的方向会使其产生一个力偶矩,使电子的运动轨迹呈现为螺旋状。

这个现象被称为电子螺旋运动。

由于电子螺旋运动的特性,磁场对电子的运动状态产生了很大的影响。

例如,在粒子加速器中,通过调整磁场的强度和方向,可以控制电子的运动轨迹,从而实现对电子束的加速、聚焦和调谐。

此外,磁场对电荷还有一项非常重要的作用,即磁场对电荷的破坏。

在高强度的磁场下,电荷会受到很大的洛伦兹力,产生热量。

这种热量会导致电荷的运动速度增加和轨迹的偏移,从而影响电荷的正常运动。

这也是为什么在一些磁场特别强的实验室或设备中,要对电荷进行屏蔽和保护的原因之一。

综上所述,磁场对电荷具有重要的作用。

通过电磁感应、洛伦兹力和磁场对电子运动的影响等多个方面,我们了解到磁场可以影响电荷的运动轨迹、速度和破坏电荷的正常运动等。

这些研究对于理解电磁学的基本原理、应用和探索新型电子学器件等方面具有重要意义。

磁场对电荷的作用

磁场对电荷的作用

磁场对电荷的作用磁场是我们生活中常见的现象之一,它对电荷的作用也是物理学中的重要内容。

磁场可以对电荷施加力,改变其运动轨迹,同时也可以产生电磁感应现象。

本文将从磁场对电荷的力和电磁感应两个方面进行探讨。

一、磁场对电荷的力磁场对电荷的力是由洛伦兹力所引起的。

洛伦兹力是指电荷在磁场中受到的力,其大小与电荷的速度和磁场的强度有关。

当电荷运动时,如果与磁场垂直,则会受到一个与速度方向垂直的力。

这个力的方向遵循右手定则,即伸出右手,让大拇指指向电荷的速度方向,四指指向磁场的方向,那么手掌的方向就是力的方向。

洛伦兹力的大小与电荷的速度成正比,与磁场的强度成正比,与电荷的正负有关。

当电荷为正电荷时,力的方向与速度方向相同;当电荷为负电荷时,力的方向与速度方向相反。

这说明磁场对电荷的作用是有方向的,并且会改变电荷的运动状态。

二、磁场对电荷的轨迹改变磁场对电荷的作用不仅仅是改变其运动状态,还可以改变其运动轨迹。

当电荷在磁场中运动时,由于受到洛伦兹力的作用,其运动轨迹将发生偏转。

这种偏转的轨迹称为磁场中的霍尔效应。

霍尔效应是一种基于磁场对电荷的作用而产生的现象。

当电荷通过一个垂直于磁场的导线时,会受到洛伦兹力的作用,使其在导线内部产生一个电势差。

这个电势差会导致电子在导线中沿着一侧的边缘运动,形成霍尔电流。

这种霍尔电流的存在会产生一个横向的电场,使得电子受到一个向内的力,从而使电子的轨迹发生偏转。

三、磁场对电荷的电磁感应除了对电荷施加力和改变其运动轨迹外,磁场还可以产生电磁感应现象。

电磁感应是指磁场的变化可以诱导出电场的变化,从而产生电流。

根据法拉第电磁感应定律,当磁场的强度或方向发生变化时,会在导线中产生感应电动势,从而产生电流。

电磁感应的原理是磁场的变化引起电场的变化,进而产生电流。

这种现象在电动机、发电机等设备中得到了广泛应用。

通过改变磁场的强度或方向,可以产生不同大小和方向的感应电动势,从而实现能量的转换和传输。

磁场对运动电荷作用

磁场对运动电荷作用
磁场对运动电荷作用
一、洛伦兹力:磁场对 运动电荷
的作用力.
1.洛伦兹力的大小: F=qvBsinθ ,其中θ 为 v 与 B 间的夹角.当带电粒子的运动方向与磁场方向互 相平行时, F = 0 ;当带电粒子的运动方向与磁场方向 互相垂直时,F= qvB .只有运动电荷在磁场中才 有可能受到洛伦兹力作用,静止电荷在磁场中受到的 磁场对电荷的作用力一定为0.
mv2 mv 【解析】(1)qvB= ,r= r qB 离子在磁场中运动最大轨道半 径:rm=1m 由几何关系知,最大速度的离 子刚好沿磁场边缘打在荧光屏上, 如图,所以 OA1 长度为: y=2rcos30°= 3 m 即离子打到荧光屏上的范围为:[0, 3 m] 2πm (2)离子在磁场中运动的周期为: T= =π × qB 10-6s 5π T -7 经过时间:t= ×10 s= 3 6 2π π 离子转过的圆心角为 φ= t= T 3
三、洛伦兹力计算公式的推导 如图所示,整个导线受到的磁场力 ( 安培力 ) 为 F 安 =
BIL;其中I=nqsv;设导线中共有N个自由电子N=nsL; 每个电子受的磁场力为 F ,则 F 安 = NF. 由以上四式得 F =qvB.条件是v与B垂直.当v与B成θ 角时, F=qvBsinθ .
题型一:带电粒子在磁场中的圆周运动问题
D.若将带电粒子在A点时初速度变小(方向不变),它不 能经过B点
【解析】 无论是带正电还是带负电粒子都能到达 B 点,画出粒子运动的轨迹,正粒子在 L1 上方磁场中运 1 3 动 T,在 L2 下方磁场中运动 T,负粒子在 L1 上方磁场 4 4 3 T 中运动 T,在 L2 下方磁场中运动 ,设 l1l2 之间的距离 4 4 为 a.带电粒子运动的半径为 R,则对于负粒子,AB= a + 2R+ a- 2R= 2a. 对于正粒子, AB= a- 2R+ a+ 2R= 2a.

磁场对运动电荷的作用

磁场对运动电荷的作用

磁场对运动电荷的作用一、洛仑兹力磁场对运动电荷的作用力1.洛伦兹力的公式: f=qvB sinθ,θ是V、B之间的夹角.2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相垂直时,f=qvB4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.二、洛伦兹力的方向1.洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.2.使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.三、洛伦兹力与安培力的关系1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB;其运动周期T=2πm/qB(与速度大小无关).3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).【例1】一带电粒子以初速度V垂直于匀强电场E 沿两板中线射入,不计重力,由C点射出时的速度为V,若在两板间加以垂直纸面向里的匀强磁场,粒子仍以V入射,恰从C关于中线的对称点D射出,如图所示,则粒子从D点射出的速度为多少?点评:凡是涉及到带电粒子的动能发生了变化,均与洛仑兹力无关,因为洛仑兹力对运动电荷永远不做功。

磁场对电荷的作用洛伦兹力的神奇效应

磁场对电荷的作用洛伦兹力的神奇效应

磁场对电荷的作用洛伦兹力的神奇效应磁场对电荷的作用:洛伦兹力的神奇效应磁场是一种具有激动和引力作用的力场,它对于电荷的运动具有重要的影响。

在物理学中,洛伦兹力是描述电荷在磁场中受力的基本定律,它展现了磁场对电荷的神奇效应。

一、洛伦兹力的基本原理洛伦兹力是由荷兰物理学家洛伦兹在19世纪末提出的,它描述了电荷在磁场中受力的规律。

根据洛伦兹力定律,当电荷在磁场中运动时,会受到一个垂直于运动方向和磁感应强度的力的作用。

这个力被称为洛伦兹力,用F表示。

洛伦兹力的计算公式为:F = qvBsinθ其中,F代表洛伦兹力的大小,q为电荷的数值,v为电荷的速度,B为磁感应强度,θ为电荷速度与磁感应强度的夹角。

二、洛伦兹力的神奇效应洛伦兹力的神奇效应体现在它改变了电荷的运动状态,使得电荷在磁场中表现出一系列奇妙的现象。

1. 磁场中的电荷受力方向变化根据洛伦兹力的计算公式,当电荷速度与磁感应强度的夹角为0°或180°时,洛伦兹力的大小为0,即电荷不受力作用。

而当电荷速度与磁感应强度的夹角为90°时,洛伦兹力的大小达到最大值,使得电荷按照一定的轨道运动。

2. 磁场中的电荷受力方向与电荷性质有关根据洛伦兹力的公式可以看出,电荷的正负性质不同,受到的洛伦兹力方向也不同。

正电荷在磁场中受到的洛伦兹力方向与负电荷相反,这也是磁场对电荷的作用中的一个重要特点。

3. 磁场中电荷的轨道运动在磁场中,电荷的轨道运动受到洛伦兹力的制约,形成了磁场中的电荷运动的特定轨迹。

当电荷在磁场中垂直于磁感应强度方向运动时,其轨道为圆形;而当电荷速度与磁感应强度夹角不为90°时,则产生的轨迹为螺旋状。

三、洛伦兹力的应用和意义洛伦兹力的神奇效应不仅仅是一种物理现象,更是许多重要设备和技术的基础。

1. 电磁感应现象根据洛伦兹力的原理,当导体中的电荷运动时,会产生电流。

这就是著名的电磁感应现象,也是电磁感应发电机的工作原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场对电荷的作用
1.初速度为v 0的电子沿平行于通电长直导线的方向射出,直导线中电
流方向与电子初始运动方向如图所示,则( )
A.电子将向右偏转,速率不变
B.电子将向左偏转,速率改变
C.电子将向左偏转,速率不变
D.电子将向右偏转,速率改变
2.如图所示,水平绝缘面上一个带电荷量为+q 的小带电体处
于垂直于纸面向里的匀强磁场中,磁感应强度为B ,小带电体的质
量为m .为了使它对水平绝缘面正好无压力,应该( )
A.使B 的数值增大
B.使磁场以速率v =mg qB 向上移动
C.使磁场以速率v =mg 向右移动
D.使磁场以速率v =mg 向左移动 3.一m 1∶m 2=1A.B.C.D.4.A.B.C.D.5.磁场中(中,圆环运动的速度图象可能是下图中的( )
6.一个带电粒子沿垂直于匀强磁场的方向射入云室中.粒子的一段径迹如
图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的气体电
离,因而粒子的能量逐渐减小(带电荷量不变).从图中情况可以确定粒子的运动
方向和带电情况分别为( )
A.粒子从a 运动到b ,带正电
B.粒子从a 运动到b ,带负电
C.粒子从b 运动到a ,带正电
D.粒子从b 运动到a ,带负电
7.如图甲所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂
直纸面向里,P 为屏上的一小孔,PC 与MN 垂直.一群质量为m 、带
电荷量为-q 的粒子(不计重力)以相同的速率v 从P 处沿垂直于磁
场的方向射入磁场区域,粒子的入射方向在与磁场B 垂直的平面
内,且散开在与PC 夹角为θ的范围内.求在屏MN 上被粒子打中
的区域的长度.
8.如图所示,在两个不同的匀强磁场中,磁感强度关系为B1=
2B2,当不计重力的带电粒子从B1磁场区域运动到B2磁场区域时(在运
动过程中粒子的速度始终与磁场垂直),则粒子的 ( )
A.速率将加倍 B.轨道半径将加倍
C.周期将加倍 D.做圆周运动的角速度将加倍
9.如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强
度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q
的带电粒子,在x轴上到原点的距离为x0的P点,以平行于y轴的初速
度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场.不计重
力的影响.由这些条件可知
A.不能确定粒子通过y轴时的位置 B.不能确定粒子速度的大小
C.不能确定粒子在磁场中运动所经历的时间 D.以上三个判断都不对
10.如图所示,在垂直纸面向里的匀强磁场的边界上,有两个电
场中
A
C
D
11
质量为m
12.
半轴上的
x
垂直于y
(1)M
(2)
(3)
13.
在匀强磁场,磁场方向垂直xy平面(纸面)向外。

一电量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h处的P2点进
入磁场,并经过y轴上y=-2h处的P3点。

不计重力。


(l)电场强度的大小。

(2)粒子到达P
时速度的大小和方向。

2
(3)磁感应强度的大小。

相关文档
最新文档