磁场对电流的作用

合集下载

磁场对电流的作用

磁场对电流的作用

磁场对电流的作用
磁场对电流的作用如下:
1.通电导线在磁场中要受到磁力的作用。

是由电能转化为机械能。

应用:电动机。

2.通电导体在磁场中受力方向:跟电流方向和磁感线方向有关。

3.电动机原理:是利用通电线圈在磁场里受力转动的原理制成的。

结构:定子和转子(线圈、磁极、换向器)。

它将电能转化为机械能。

4.换向器作用:当线圈刚转过平衡位置时,换向器自动改变线圈中的电流方向,从而改变线圈的受力方向,使线圈连续转动(实现交流电和直流电之间的互换)。

磁场物理概念是指传递实物间磁力作用的场。

磁场是由运动着的微小粒子构成的,在现有条件下看不见、摸不着。

磁场具有粒子的辐射特性。

磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用。

由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是相对于观测点运动的电荷的运动的电场的强度与速度。

高中物理3-1教学 探究磁场对电流的作用

高中物理3-1教学 探究磁场对电流的作用

3.判断通电导线或线圈在安培力作用下的运动 方向的方法
(1)电流元分析法:把整段电流分成很多小段直 线电流,其中每一小段就是一个电流元。先用左手定 则判断每小段电流元受到的安培力的方向,再判断整 段电流所受安培力的方向,从而确定导体的运动方向。
(2)特殊位置分析法:根据通电导体在特殊位置所受安 培力的方向,判断其运动方向,然后推广到一般位置。
图6-1-2
(3)安培力公式适用于匀强磁场,或通电导 线所处区域的磁感应强度的大小和方向相同。
2.安培力的方向 (1)安培力的方向总是垂直于磁场方向和电流方向所 决定的平面,在判断时首先确定磁场和电流所确定的平面, 从而判断安培力的方向在哪一条直线上,然后再根据左手 定则判断安培力的具体方向。 (2)当电流方向跟磁场方向不垂直时,安培力的方向 仍垂直于电流和磁场所决定的平面,所以仍可用左手定则 来判断安培力的方向,只是磁感线不再垂直穿过手心。
向,那么,拇指所指方向即为通电直 导线在磁场中的 受力 方向。(如图6-
1-1所示)
图6-1-1
[重点诠释]
1.对安培力的认识 (1)安培力的计算方法: 当B与I垂直时,F=IlB;当B与I成θ角时,F= IlBsinθ;当B与I平行时,F=0。
(2)公式F=IlB和F=IlBsinθ中的l指的是“有效长度”, 如图6-1-2所示,弯曲导线的有效长度l等于连接两端点直 线的长度,相应的电流沿l由始端流向末端。
③在磁感应强度与电流的大小和方向不变的情况 下,改变通电导线在磁场中的 长度 ,探究通电导线 在磁场中的长度对安培力的影响。
3.结论 在匀强磁场中,通电导线与磁场方向垂直时, 安培力的大小:F= I。lB
4.判断安培力方向的方法——左手定则

11-5磁场对电流的作用

11-5磁场对电流的作用

dFx
θ
Idl
所以:2 F2 y dF2 sin BIdl sin F
BIr
π
0

sin d BI 2r cos 0 BI AB
在均匀磁场中,闭合载流回路受到的合磁力为零。 11
例5:求作用在圆电流上的磁力。
解:由 I1 产生的磁场为
a
y
f


a
0 I1 I 2
2 πx
dx
I1
f
a
L
I2
0 I1 I 2
aL ln 2π a
方向:垂直电流I2平行电流I1
6
例3 求半圆形载流导线在均匀磁场中受力
解:建坐标如图 在电流线上取电流元 Idl
安培力大小为 df ( Idl ) B
方向:与横坐标夹角为(如图) 分量:
2 r
r I1
I2
电流元受力为dF=I1dlB=I1dlBsink,k是
x
沿z轴方向的单位矢量。
21
力对轴线的力矩的大小为
y
2 R I1dl
dM r sin dF

0 I1 I 2
2
sin d l ,
2
r I1
I2
力矩方向沿-j方向,其中dl=Rd(2)=2Rd。
x
由于整个线圈所受力矩方向都相同,总力矩为
0 I1 I 2 R 2 1 M dM sin d 0 I1 I 2 R 2
线圈在该力矩的作用下将发生转动,转动方 向为对着y轴看去沿顺时针方向,最后停止在与 长直电流共面的平衡位置上。 22
例4:半径0.2m,电流20A的N 圈圆形线圈放在 均匀磁场中,磁感应强度为0.08T,沿x方向,分 析其受力情况。 解:在均匀磁场中的闭合载流

法拉第电磁感应定律磁场与电流的相互作用

法拉第电磁感应定律磁场与电流的相互作用

法拉第电磁感应定律磁场与电流的相互作用法拉第电磁感应定律是描述磁场与电流相互作用的重要定律之一。

它建立了电磁感应现象与磁场强度、导体尺寸、运动速度和磁场方向之间的关系。

本文将深入探讨法拉第电磁感应定律和磁场与电流的相互作用。

一、法拉第电磁感应定律介绍法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年首先提出。

法拉第电磁感应定律指出,当导体中的磁通量发生变化时,将在导体中产生感应电动势,从而产生涡流或感应电流。

这一定律说明了磁场变化与电流产生之间的相互关系。

二、磁场与电流的相互作用1. 磁场对电流的作用当导体中存在电流时,会形成环绕导体的磁场。

根据安培环路定理,磁场的强度与电流大小成正比,且方向由右手螺旋法决定。

磁场对电流的作用表现为洛仑兹力,即导体中每个电荷元受到的力使导体发生运动。

这一作用是电磁感应现象的基础。

2. 电流对磁场的作用根据法拉第电磁感应定律,当导体中的电流发生变化时,将在导体周围产生磁场。

这一作用可以通过安培环路定理得到证明。

电流对磁场的作用是电磁感应的基础,广泛应用于电磁器件和电磁传感器。

三、电磁感应在生活中的应用1. 发电机原理发电机是基于电磁感应定律的重要装置之一,通过导体在磁场中旋转产生的感应电动势转化为电能。

发电机的基本原理是将机械能转化为电能,广泛应用于发电厂和各种电力设备中。

2. 变压器原理变压器是利用电磁感应定律的原理来实现电压的变换。

当交流电经过初级线圈时,产生变化的磁场通过铁芯传递给次级线圈,从而在次级线圈中产生感应电动势,从而实现电压的变换。

变压器广泛应用于电力传输和电子设备中。

3. 感应炉原理感应炉是一种利用电磁感应原理进行加热的装置。

通过感应线圈产生的交变磁场感应导体中产生的感应电流,从而产生热量。

感应炉在冶金、熔炼和加热处理等领域有着广泛的应用。

四、电磁感应的实验1. 法拉第电磁感应实验法拉第进行的经典实验是通过将导体绕过磁铁时,观察到导线两端产生感应电流的现象。

磁场对电流的作用

磁场对电流的作用

磁场对电流的作用首先,磁场可以改变电流的方向。

根据右手定则,当电流通过导线时,在电流方向垂直平面上的正负极性上有一个磁场会形成,这个磁场的方向与电流方向垂直。

通过这个磁场的作用,电流会受到一个力的作用,使其改变方向。

这也是电磁铁和电动机正常工作的原理之一、利用磁场可以改变电流方向的特性,可以实现磁控开关、电动机、发电机等设备的正常运作。

其次,磁场可以影响电流的速度。

当电流通过导线时,磁场会对电流施加一个力,这个力的大小与磁场的强度、电流的大小、导线的长度、磁场与导线之间夹角的正弦函数成正比。

根据洛伦兹力定律,当电流的速度与磁场方向垂直时,洛伦兹力会对电流产生一个垂直于两者的力,使其运动轨迹发生弯曲。

这就是电子在有磁场的情况下偏转的基本原理。

基于这个原理,我们可以通过磁场来控制电子的运动方向,实现磁控电子束的偏转和聚焦,从而应用于电子显微镜、电子加速器等领域。

此外,磁场还可以改变电流的分布。

在磁场中,电流会受到洛伦兹力的作用,电子会在磁场中沿着圆弧轨道移动,而正电荷则会相对于电子运动轨道发生偏移,使得电流的电荷分布不均匀。

这个现象称为霍尔效应。

借助磁场对电流分布的影响,我们可以利用霍尔元件来检测磁场的强度。

同时,磁场也可以改变电流的密度分布,通过调整磁场的方向和强度,可以实现对电流的控制。

此外,磁场对电流还有一些其他影响。

例如,磁场可以引起电流的感应。

当电流通过导线时,会产生磁场,当磁场变化时,会在导线中产生感应电动势。

这个原理被广泛应用在电磁感应、变压器、电动发电机等设备中。

电动机则是运用了磁场和电流相互作用的原理,在磁场的作用下,电流通过线圈内部的导线,产生力矩,驱动设备进行工作。

总结起来,磁场对电流的作用通过洛伦兹力,在电流流动的导线周围产生一个力的效应。

这种效应可以用来改变电流的方向、速度、分布,以及感应电流的产生。

利用磁场对电流的影响,我们可以实现磁控开关、电动机、发电机、电子显微镜、电子加速器、电磁感应等设备的正常运作。

磁场对电流的作用原理

磁场对电流的作用原理

磁场对电流的作用原理电流和磁场的相互作用是物理学的重要现象之一,对于理解电机、电磁感应、磁瓦效应、变压器等电磁学现象有着重要的意义。

磁场对电流的作用原理也就是电磁力的原理,是指一股电流在外加磁场作用下所产生的电磁力。

一股电流通过一个线圈时,会在空间中形成一种定向的磁场。

当一个磁极让离它有一定距离的另一个磁极产生对磁时,它们之间就形成了一种相互之间的磁场作用关系。

同理,当一股电流通过一个线圈时,线圈空间内也会形成一种定向,线圈之外也会有一定范围内的磁场,其作用力强弱取决于电流的强弱,线圈越多,磁力越强,线圈越少,磁力越弱。

当一股电流通过一个线圈时,线圈空间内的磁场会对它产生力,称为磁力。

在此基础上,我们可以简单地理解磁场对电流的作用原理:电流的存在会引起空间的磁场变化,当它们发生变化时,空间内的磁场会对电流产生力,即磁场对电流产生推力,形成磁力来作用于电流。

磁场对电流的作用还表现出特殊的性质,即对称性。

对称性是指:当一股电流以某一种特定方向流动时,其空间中的磁场总是同一方向的。

如果逆向流动,则磁场也会相应的反方向变化,每提供磁场的电流的方向与其磁场的方向完全相反。

这就是磁场对电流的作用原理。

此外,当电流发生变化时,它所产生的磁力也会发生变化。

当电流减小时,磁力会减小;当电流增大时,磁力会增大。

这也是磁场对电流的作用原理。

磁力不仅可以作用于电流,还可以作用于静电,此外,它们还可以产生电动势,这在变压器中尤其重要。

当变压器的两侧的线圈空间中的磁场由于电流的不同而有所变化时,会产生电动势,从而使变压器能够实现对电压的调节。

简而言之,磁场对电流的作用原理就是:一股通过线圈的电流,会在空间中产生一个定向的磁场,线圈空间内的磁场会对电流产生力,称为磁力,磁力会随着电流变化而变化,能够实现电压的调节。

鉴于磁场对电流的作用原理的重要性,研究发展磁力学和应用已成为物理学领域中的重要内容,特别是在电磁学、电力学、强电磁场等领域,都是关键性的研究内容。

磁场对电流的作用应用

磁场对电流的作用应用磁场对电流的作用应用磁场和电流是两种紧密相关的物理现象。

在研究它们的关系时,人们发现磁场会对电流产生影响,同样,电流也会对磁场产生影响。

这些相互作用的特性已经被大量运用于物理学、电力工程、电子学以及医学等各个领域。

本文将探讨磁场对电流的作用,以及这些作用的应用和意义。

磁场和电流的相互作用在一个磁场中,如果有电流通过,会产生一个力(被称作洛伦兹力)作用在该电流上。

这个力的方向垂直于磁场和电流的方向。

当电荷移动时,这个力的大小将取决于电荷的速度、磁场的强度和电荷的电荷量。

在一个恒定的磁场中,当电流垂直于磁场方向,它将会受到一个力,使它在一个圆周上旋转。

此外,磁场还会对电流产生绕转,从而生成一个磁场。

它的方向垂直于电流的方向和磁场的方向。

这个作用关系到磁通量和电感的概念,当电流通过导体时,它将产生一个磁场,该磁场将会导致磁通量发生变化,从而生成电动势。

这被称作电磁感应。

这些相互作用的特性已经被广泛地运用于实际应用中,例如电机、电动机、磁共振成像、电加热及电阻器等。

应用1:电机电机是几乎所有工业和家庭设备中运用到的一个设备。

电机将电能转化成机械能,实现了车辆、家电、生产机械等方面的广泛应用。

它本质上就是将一种形式的能量转变为另一种形式的能量。

电动机中的电流在一个磁场中旋转,从而将电能转换为旋转动能。

通过建立磁场并勾引到电流,我们可以在发现的过程中使用洛仑兹力来控制电流的方向和速度,从而建立一个磁场,这是电机工作的基本原理。

在大型汽车中,电机的产生能量需要超过几百千瓦,电机的结构和性能比小型电机复杂得多。

应用2:磁共振成像另一个重要的应用是磁共振成像技术。

磁共振成像通过磁场对电流的影响来探测人体内部的情况。

这项技术已成为现代医学诊断的重要工具。

作为人体的组成部分,我们身体内有许多电流。

由于电流的相互作用,当一个人处于磁场中时,他的电流和磁场将相互作用,产生信号输出。

这些信号被磁共振成像机器接收到,通过计算机来转化成人体影像。

磁场与电流的相互作用:磁场对电流的作用和电流对磁场的产生

磁场与电流的相互作用:磁场对电流的作用和电流对磁场的产生磁场与电流的相互作用是电磁学中一个非常重要的概念。

磁场对电流的作用及其产生的现象,以及电流对磁场的产生都是我们学习电磁学的基础内容之一。

首先,让我们来看看磁场对电流的作用。

当电流通过一条导线时,会在导线周围产生一个磁场。

磁场的方向由安培定则给出,即右手定则。

在这个磁场中,如果我们放入一根磁铁针,或者是另一根有电流的导线,我们会发现它们会发生运动。

这就是磁场对电流的作用。

这个现象可以通过洛伦兹力来解释。

根据洛伦兹力的定律,当一个带有电荷的粒子在磁场中运动时,会受到一个垂直于磁场和速度方向的力。

对于电流来说,它可以被视为由一群电荷所组成的流动粒子。

当这群电荷在磁场中运动时,每一个电荷都会受到洛伦兹力的作用,从而导致整个导线受到一个合力的作用。

这个力会使导线发生一个运动,或者说它会受到一个力的作用。

这个现象在实际应用中非常常见。

比如说电动机,它通过电流在磁场中发生力的作用,从而产生了机械转动。

又比如说电磁铁,它通过电流在磁场中产生的力的作用,可以实现吸附和释放物体的功能。

这些技术和设备都是基于磁场对电流的作用原理设计而成的。

另一方面,电流也可以产生磁场。

当电流通过一个导线时,会在导线周围产生一个磁场。

这个磁场的大小和方向由安培定则给出。

当导线中的电流改变时,磁场也会随之改变。

这种现象被称为安培环路定理。

电流产生的磁场在实际应用中也非常重要。

比如说,我们常常用电磁铁来产生一个强磁场。

电磁铁通常由一个铁芯和绕在铁芯上的线圈组成。

当电流通过线圈时,它会在铁芯周围产生一个磁场,从而使铁芯具有强磁性。

这种设计非常实用,可以应用于各种领域,比如电动机、电磁隔离等。

总而言之,磁场与电流的相互作用是电磁学中的基础概念之一。

磁场对电流的作用表现为力的作用,可以通过洛伦兹力来解释。

而电流产生的磁场则可以应用于各种技术和设备中。

这些原理的理解和应用对于我们深入学习和研究电磁学是非常重要的。

磁场对电流的作用5篇

磁场对电流的作用5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、心得体会、申请书、工作计划、工作报告、读后感、作文大全、演讲稿、教案大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, experiences, application forms, work plans, work reports, post reading feedback, essay summaries, speech drafts, lesson plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!磁场对电流的作用5篇磁场对电流的作用是物理学中的重要概念,它描述了电流在磁场中运动时所受到的力和磁场的相互作用。

如何解释磁场对电流的作用力

如何解释磁场对电流的作用力磁场对电流的作用力是通过洛伦兹力来实现的。

洛伦兹力是指电流在磁场中受到的力,其大小和方向由电流、磁场的强度以及二者之间的相对运动关系决定。

在本篇文章中,我们将讨论磁场对电流的作用力产生的原理、相关公式以及实际应用。

磁场对电流的作用力产生的原理是基于电流(电荷的移动)与磁场之间的相互作用。

根据洛伦兹力公式,当电流通过导线时,它会在磁场中受到一个力的作用,该力的方向垂直于电流方向及磁场方向,并服从右手定则。

具体而言,当我们将右手以如此方式握住导线,使得大拇指指向电流的方向,四指指向磁场的方向,那么四指的方向就代表洛伦兹力的方向。

根据洛伦兹力公式,可以推导出磁场对电流的作用力的大小公式:F = BILsinθ。

其中,F代表力的大小,B代表磁场的强度,I代表电流的大小,L代表导线的长度,θ代表电流与磁场之间的夹角。

从以上公式可以看出,磁场对电流的作用力与电流和磁场的关系密切相关。

当电流或磁场较大时,作用力也相应增大。

此外,作用力的方向还取决于电流和磁场之间的夹角,若夹角不为零,则会产生一个垂直于电流和磁场的力。

如果夹角为零,即电流与磁场的方向平行,则不会产生作用力。

磁场对电流的作用力在实际中有许多重要应用。

一种应用是电动机的工作原理。

电动机是利用电流在磁场中受到的力来实现机械运动的。

通过将电流通入线圈中,线圈会在磁场中受到一个力,从而引起线圈的转动,从而驱动机械的运动。

另一个常见的应用是电磁铁。

电磁铁是通过在线圈中通电产生磁场,从而使得磁铁具有吸附物体的能力。

这是因为磁场对电流的作用力会使得磁铁表面产生一个吸力,从而将物体吸引住。

此外,磁场对电流的作用力还在研究和实践中有广泛应用。

例如,磁体设计中的磁场控制、电磁感应实验中的电能转换、电动机和发电机的设计等领域都离不开磁场对电流的作用力。

这些应用使得我们对磁场与电流的相互作用有了更深入的了解,并推动了相关技术的发展和应用的创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《磁场对电流的作用》教案
教学目标
知识与能力
1.知道磁场对通电导体有作用力。

2.知道通电导体在磁场中受力的方向与电流方向和磁感应线方向有关,改变电流方向或改变磁感线方向,导体的受力方
向随着改变。

3.知道通电线圈在磁场中转动的道理。

4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。

5.培养学生观察能力和推理、归纳、概括物理知识的能力。

过程与方法
培养学生理论联系实际的意识
感态度与价值观
通过了解物理知识如何转化成实际技术应用,进一步提高学习科学技术知识的兴趣。

教学重点、难点
重点
1磁场对通电的导体有力的作用
2通电的导体的受力方向跟磁场方向和电流方向有关
难点
左手定则的运用
(二)教具
小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不
多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架
(吊铝箔筒用),如课本图12—10的挂图,线圈(参见图12
—2),抄有题目的小黑板一块(也可用幻灯片代替)。

(三)教学过程
1复习相关知识并提问:
1.磁场的基本性质是它对放入其中的磁体产生()作用,
磁体间的相互作用就是通过()发生的。

2.将一根导线平行地放在静止的小磁针上方,当导线通电时,
发现小磁针(),说明电流周围存在()。

2.引入新课
本章主要研究电能:第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送,电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器一电动机。

出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。

提问:电动机是根据什么原理工作的呢?
讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现—电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。

根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。

下面我们通过实验来研究这个推断。

3.进行新课
(1)通电导体在磁场里受到力的作用
板书课题:〈第四节磁场对电流的作用〉
介绍实验装置,将铝箔筒两端的铝箔条吊挂在支架上,使铝箔筒静止在磁铁的磁场中。

用铝箔筒作通电导体是因为铝箔筒轻,受力后容易运动,以便我们观察。

演示实验1:用一节干电池给铝箔筒通电(瞬时短路),让学生观察铝箔筒的运动情况,并回答小黑板上的题1:给静止在磁场中的铝箔筒通电时,铝箔筒会______,这说明______。

板书:<1.通电导体在磁场中受到力的作用。


(2)通电导体在磁场里受力的方向,跟电流方向和磁感线方向有关
教师说明:下面我们进一步研究通电导体在磁场里的受力方向与哪些因素有关。

演示实验2:先使电流方向相反,再使磁感线方向相反,让学生观察铝箔筒运动后回答小黑板上的题2:保持磁感线方向不变,交换电池两极以改变铝箔筒中电流方向,铝箔筒运动方向会_________,这说明_________。

保持铝箔筒中电流方向不变,交换磁极以改变磁感线方向,铝箔筒运动方向会______,这说明______。

归纳实验2的结论并板书:〈2.通电导体在磁场里受力的方向,跟电流方向和磁感线方向有关。


(3)磁场对通电线圈的作用
提问:应用上面的实验结论,我们来分析一个问题:如果把直导线弯成线圈,放入磁场中并通电,它的受力情况是怎样的呢?
出示方框线圈在磁场中的直观模型(磁极用两堆书代替),并出示如课本的挂图(此时,图中还没有标出受力方向)。

引导学生分析:通电时,图甲中ab边和cd边都在磁场中,都要受力,因为电流方向相反,所以受力方向也肯定相反。

提问:你们想想看,线圈会怎样运动呢?
演示实验3:将电动机上的电刷、换向器拆下(实质是线圈)后通电,让学生观察线圈的运动情况。


教师指明:线圈转动正是因为两条边受力方向相反,边说边在挂图上标明ab和cd边的受力方向。

提问:线圈为什么会停下来呢?
利用模型和挂图分析:在甲图位置时,两边受力方向相反,但不在一条直线上,所以线圈会转动。

当转动到乙图位置时,两边受力方向相反,且在同一直线上,线圈在平衡力作用下保持平衡而静止。

板书结论:〈3.通电线圈在磁场中受力转动,到平衡位置时静止。


(4)讨论
①教材中的“想想议议”。

②小黑板上的题3:通电导体在磁场中受力而运动是消耗了______得到了______能。

板书:〈4.通电导体在磁场中运动是消耗了电能,得到了机械能。


4小结:1)通电导体在磁场里受到力的作用
2)通电导体在磁场里受力的方向,跟电流方向和磁感
线方向有关
3)通电线圈在磁场中受力转动,到平衡位置时静止
5作业(思考题):电动机就是根据通电线圈在磁场中受力而转动的道理工作的。

但实际制成电动机时,还有些问题需要我们解决,比如:通电线圈不能连续转动,而实际电动机要能连续转动,这个问题同学们先思考,下节我们研究。

教学反思:因为电和磁的教学本身就比较抽象,因此,在本节的教学中,我采用了从实验电动机入手,抓住学生的兴趣,再提出本节的内容。

复习奥斯特实验、力的相互作用更容易使
学生理解本节内容的中心思想,即磁场对电流也能产生力的作用。

在探究性实验教学中,本人注重以学生为主的原则,让教学在学生猜想、假设、实验验证、总结的过程中完成。

在教学过程中,我在学生实验的基础上又将实验搬到了幻灯片上讲解,使实验中的电流方向、磁场方向、受力方向变得可视化,抽象内容可视化,使学生更好地了理解实验现象,自主地掌握了左手定则。

在左手定则的应用中,由学生的讲解分析、教师的补充,使学生更好地巩固消化了所学知识。

而在本节学生的讲解分析部分,我留给学生的预习时间不够充足,加之本节课比较抽象,个别学生在理解上还比较困难。

在电动机实验引入教学、扬声器的教学中,由于学校器材不足,没有给学生动手的机会,从而学生对这些的认识比较模糊,给本节教学留下了些许遗憾。

相关文档
最新文档