长春市高考数学模拟试卷(理科)(2月份)D卷

合集下载

吉林省长春市高考数学二模试卷(理科)

吉林省长春市高考数学二模试卷(理科)

吉林省长春市高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知复数Z= +() 4 ,则在复平面内复数Z对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2016高二上·福州期中) 已知m,n∈R,集合A={2,log7m},集合B={m,n},若A∩B={0},则m+n=()A . 1B . 2C . 4D . 83. (2分) (2016高三上·日照期中) 下列说法正确的是()A . “x2+x﹣2>0”是“x>1”的充分不必要条件B . “若am2<bm2 ,则a<b”的逆否命题为真命题C . 命题“∃x∈R,使得2x2﹣1<0”的否定是“∀x∈R,均有2x2﹣1>0”D . 命题“若x= ,则tanx=1”的逆命题为真命题4. (2分) (2017高一下·衡水期末) 某程序框图如图所示,则该程序运行后输出的值是()A . 0B . ﹣1C . ﹣2D . ﹣85. (2分) (2015高二下·赣州期中) 已知在双曲线中,F1 , F2分别是左右焦点,A1 , A2 ,B1 , B2分别为双曲线的实轴与虚轴端点,若以A1A2为直径的圆总在菱形F1B1F2B2的内部,则此双曲线离心率的取值范围是()A .B . [ ,+∞)C .D .6. (2分)将所有的自然数按以下规律排列:0123456789101112…那么从2012到2014的顺序为()A . →↑B . ↑→C . ↓→D . →↓7. (2分) (2018高二上·会宁月考) 已知定义在上的函数是奇函数且满足,,数列满足(其中为的前项和),则()A .B .C .D .8. (2分) (2019高一上·惠来月考) 一个几何体的三视图如图所示,则该几何体的表面积与体积分别为()A . 7+,3B . 7+,C . 8+,3D . 8+,9. (2分)(2017·上高模拟) 已知双曲线my2﹣x2=1(m∈R)与抛物线x2=8y有相同的焦点,则该双曲线的渐近线方程为()A . y=± xB . y=± xC . y=± xD . y=±3x10. (2分)设函数f(x)= ,则当x>0时,f[f(x)]表达式的展开式中常数项为()A . ﹣20B . 20C . ﹣70D . 7011. (2分)(2017·息县模拟) 若变量x,y满足条件,则xy的取值范围是()A . [0,5]B .C .D . [0,9]12. (2分) (2018高二下·虎林期末) 函数在处有极值为 ,则()A . -4或6B . 4或-6C . 6D . -4二、填空题 (共4题;共5分)13. (1分)已知向量=(2,1),=(3,λ),若,则λ=________14. (2分)如图,它满足第n行首尾两数均为n,则第7行第2个数是________.第n行(n≥2)第2个数是________.15. (1分)在上单调递增,则实数a 的取值范围为________.16. (1分) (2016高三上·巨野期中) 对于函数f(x)= ,有下列5个结论:①任取x1 ,x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;②函数y=f(x)在区间[4,5]上单调递增;③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;④函数y=f(x)﹣ln(x﹣1)有3个零点;⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 ,则x1+x2=3.则其中所有正确结论的序号是________.(请写出全部正确结论的序号)三、解答题 (共7题;共60分)17. (5分)在梯形ABCD中,AB∥CD,CD=2,∠ADC=120°,cos∠CAD=(Ⅰ)求AC的长;(Ⅱ)若AB=4,求梯形ABCD的面积.18. (10分) (2016高二下·丰城期中) 甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(1)至少有1人面试合格的概率;(2)签约人数ξ的分布列和数学期望.19. (15分)在三棱锥S﹣ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=5 .(1)证明:SC⊥BC;(2)求三棱锥的体积VS﹣ABC.(3)求侧面SBC与底面ABC所成二面角的大小.20. (10分)(2017·东北三省模拟) 椭圆C:的长轴长为2 ,P为椭圆C上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.21. (5分) (2017·广安模拟) 已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+ x2 ,且函数g(x)有极大值点x0 ,求证:x0f(x0)+1+ax02>0.22. (10分) (2020高三上·潮州期末) 已知动点都在曲线(为参数)上,对应参数分别为与,为的中点.(1)求的轨迹的参数方程;(2)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.23. (5分)(2017·温州模拟) 设函数f(x)= ,证明:(I)当x<0时,f(x)<1;(II)对任意a>0,当0<|x|<ln(1+a)时,|f(x)﹣1|<a.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共60分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、22-1、22-2、23-1、。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

2025届吉林省长春市九台区师范高中、实验高中高考数学二模试卷含解析

2025届吉林省长春市九台区师范高中、实验高中高考数学二模试卷含解析

2025届吉林省长春市九台区师范高中、实验高中高考数学二模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数的()12z i i =--为虚数单位在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.若0,0x y >>,则“222x y xy +=”的一个充分不必要条件是 A .x y = B .2x y = C .2x =且1y =D .x y =或1y =3.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE 14SB =.,异面直线SC 与OE 所成角的正切值为( )A .222B .53C .1316D .1134.51(1)x x-+展开项中的常数项为 A .1B .11C .-19D .515.向量1,tan 3a α⎛⎫= ⎪⎝⎭,()cos ,1b α=,且//a b ,则cos 2πα⎛⎫+=⎪⎝⎭( ) A .13B .223-C .23-D .13-6.已知12,F F 分别为双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 的左、右两支分别交于,A B 两点,若22240,5BF AB BF AF ⋅==,则双曲线C 的离心率为( ) A .13B .4C .2D .37.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,f b ,()f c 为边长的三角形,则实数h 的取值范围是( ) A .11,1e ⎛⎫-- ⎪⎝⎭B .11,3e e ⎛⎫--⎪⎝⎭C .11,e ⎛⎫-+∞⎪⎝⎭D .()3,e -+∞8.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按A ,B ,C 编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母A ,B ,C 的概率为( ) A .1721B .1928C .79D .23289.已知复数z 满足()1i +z =2i ,则z =( )A .2B .1C .22D .1210.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A .)2,⎡+∞⎣B .[)2,+∞C .(1,2⎤⎦D .(]1,211.已知函数()()1xe a axf x e ⎛⎫=-+ ⎪⎝⎭,若()()0f x x R ≥∈恒成立,则满足条件的a 的个数为( )A .0B .1C .2D .312.已知向量(2,4)a =-,(,3)b k =,且a 与b 的夹角为135︒,则k =( ) A .9-B .1C .9-或1D .1-或9二、填空题:本题共4小题,每小题5分,共20分。

2020年吉林省长春市高考数学二模试卷(理科)

2020年吉林省长春市高考数学二模试卷(理科)

2020年吉林省长春市高考数学二模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|(2)0}A x x x =-…,{1B =-,0,1,2,3},则(A B =I ) A .{1-,0,3} B .{0,1} C .{0,1,2} D .{0,2,3} 2.若1(1)()z a i a R =+-∈,||2z =,则(a = )A .0或2B .0C .1或2D .13.下列与函数y x=定义域和单调性都相同的函数是( )A .22log xy = B .21log ()2x y = C .21log y x= D .14y x =4.已知等差数列{}n a 中,5732a a =,则此数列中一定为0的是( )A .1aB .3aC .8aD .10a5.若单位向量1e u r ,2e u u r 夹角为60︒,12a e e λ=-u r u u r r ,且||3a =r,则实数(λ= ) A .1-B .2C .0或1-D .2或1-6.《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是 (注:雷达图()RadarChart ,又可称为戴布拉图、蜘蛛网图()SpiderChart ,可用于对研究对象的多维分析)( )A .甲的数据分析素养高于乙B .甲的数学建模素养优于数学抽象素养C .乙的六大素养中逻辑推理最差D .乙的六大素养整体水平优于甲7.命题p :存在实数0x ,对任意实数x ,使得0sin()sin x x x +=-恒成立::0q a ∀>,()a xf x lna x +=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧8.在ABC ∆中,30C =︒,2cos 3A =-,152AC ,则AC 边上的高为( )A 5B .2C 5D 159.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A 县的分法有( ) A .6种B .12种C .24种D .36种10.在正方体1111ABCD A B C D -中,点E ,F ,G 分别为棱11A D ,1D D ,11A B 的中点,给出下列命题:①1AC EG ⊥;②//GC ED ;③1B F ⊥平面1BGC ;④EF 和1BB 成角为4π.正确命题的个数是( )A .0B .1C .2D .311.已知抛物线2:2(0)C y px p =>的焦点为F ,1(2M ,0)y 为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x = B .24y x = C .26y x = D .28y x = 12.已知11()x x f x e e x --=-+,则不等式()(32)2f x f x +-„的解集是( ) A .[1,)+∞B .[0,)+∞C .(-∞,0]D .(-∞,1]二、填空题:本题共4小题,每小题5分,共20分13.若x ,y 满足约条条件222022x y y x y +⎧⎪-⎨⎪-⎩…„„,则z x y =+的最大值为14.若1205()3a x dx -=⎰,则a = . 15.已知函数()sin()(0)6f x x πωω=+>在区间[π,2)π上的值小于0恒成立,则ω的取值范围是 .16.三棱锥A BCD -的顶点都在同一个球面上,满足BD 过球心O,且BD =,三棱锥A BCD -体积的最大值为 ;三棱锥A BCD -体积最大时,平面ABC 截球所得的截面圆的面积为 .三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.17.(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(Ⅰ)求m 的值;(Ⅱ)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列22⨯列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有 擅长 不擅长 合计 男生 30 女生 50 合计1002()P K x …0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828参考公式及数据:2()()()()K a b c d a c b d =++++,n a b c d =+++.18.(12分)如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,AB BC ⊥,124AA AB ==,M ,N 分别为1CC ,1BB 的中点,G 为棱1AA 上一点,若1A B ⊥平面MNG . (Ⅰ)求线段AG 的长;(Ⅱ)求二面角B MG N --的余弦值.19.(12分)已知数列{}n a 满足,11a =,24a =且*21430()n n n a a a n N ++-+=∈. (Ⅰ)求证:数列1{}n n a a +-为等比数列,并求出数列{}n a 的通项公式; (Ⅱ)设2n n b n a =g ,求数列{}n b 的前n 项和n S .20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A 、B ,焦距为2,点P 为椭圆上异于A 、B 的点,且直线PA 和PB 的斜率之积为34-.(Ⅰ)求C 的方程;(Ⅱ)设直线AP 与y 轴的交点为Q ,过坐标原点O 作//OM AP 交椭圆于点M ,试探究2||||||AP AQ OM g 是否为定值,若是,求出该定值;若不是,请说明理由.21.(12分)已知函数()x f x e =.(Ⅰ)求曲线()y f x =在点(1,f (1))处的切线方程;(Ⅱ)若对任意的m R ∈,当0x >时,都有21(2())221m f x km x+>-恒成立,求最大的整数k .(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线1C 的参数方程为22cos (2sin x y ααα=+⎧⎨=⎩为参数),曲线2C 的参数方程为38cos 4(3sin4x t ty t ππ⎧=+⎪⎪⎨⎪=⎪⎩为参数) (Ⅰ)求1C 和2C 的普通方程;(Ⅱ)过坐标原点O 作直线交曲线1C 于点(M M 异于)O ,交曲线2C 于点N ,求||||ON OM 的最小值.[选修4-5:不等式选讲](10分) 23.已知函数()|1||1|f x ax x =++-. (Ⅰ)若2a =,解关于x 的不等式()9f x <;(Ⅱ)若当0x >时,()1f x >恒成立,求实数a 的取值范围.2020年吉林省长春市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|(2)0}A x x x =-„,{1B =-,0,1,2,3},则(A B =I ) A .{1-,0,3}B .{0,1}C .{0,1,2}D .{0,2,3}【思路分析】可解出集合A ,然后进行交集的运算即可. 【解析】{|02}A x x =剟;{0A B ∴=I ,1,2}.故选:C .【归纳与总结】考查描述法、列举法的定义,一元二次不等式的解法,以及交集的运算. 2.若1(1)()z a i a R =+-∈,||z =(a = )A .0或2B .0C .1或2D .1【思路分析】根据复数求模公式计算即可. 【解析】因为1(1)()z a i a R =+-∈,2||(1)10z a a ∴=-=⇒=或2;故选:A .【归纳与总结】本题考查了复数求模问题,考查复数的运算,是一道常规题.3.下列与函数y定义域和单调性都相同的函数是( )A .22log xy = B .21log ()2x y = C .21log y x= D .14y x =【思路分析】可看出,y=在定义域{|0}x x >上单调递减,然后可判断选项A 的函数在定义域{|0}x x >上单调递增,而选项B ,D 的函数的定义域都不是{|0}x x >,从而得出选项A ,B ,D 都错误,只能选C .【解析】y在定义域{|0}x x >上单调递减,22log x y x ==在定义域{|0}x x >上单调递增,21()2x y log =的定义域为R ,21y log x=在定义域{|0}x x >上单调递减,14y x =的定义域为{|0}x x ….故选:C .【归纳与总结】本题考查了幂函数、一次函数和对数函数的单调性,对数函数和指数函数的定义域,对数的运算性质,考查了计算能力,属于基础题.4.已知等差数列{}n a 中,5732a a =,则此数列中一定为0的是( ) A .1aB .3aC .8aD .10a【思路分析】利用等差数列的通项公式即可得出.【解析】Q 等差数列{}n a 中,5732a a =,113(4)2(6)a d a d ∴+=+,化为:10a =. 则此数列中一定为0的是1a .故选:A .【归纳与总结】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.5.若单位向量1e u r ,2e u u r 夹角为60︒,12a e e λ=-u r u u r r ,且||a =r,则实数(λ= ) A .1-B .2C .0或1-D .2或1-【思路分析】根据条件即可求出1212e e =u r u u r g ,然后对12a e e λ=-u r u u r r两边平方,进行数量积的运算即可得出213λλ-+=,解出λ即可.【解析】Q 12||||1e e ==u r u u r ,12,60e e <>=︒u r u u r ,∴1212e e =u r u u r g ,且||3a =r,∴222221122213a e e e e λλλλ=-+=-+=u r u r u u r u u r rg ,解得2λ=或1-.故选:D .【归纳与总结】本题考查了向量数量积的运算及计算公式,单位向量的定义,考查了计算能力,属于基础题.6.《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是 (注:雷达图()RadarChart ,又可称为戴布拉图、蜘蛛网图()SpiderChart ,可用于对研究对象的多维分析)( )A .甲的数据分析素养高于乙B .甲的数学建模素养优于数学抽象素养C .乙的六大素养中逻辑推理最差D .乙的六大素养整体水平优于甲【思路分析】先对图表数据进行分析,再结合简单的合情推理逐一检验即可得解. 【解析】对于A 选项,甲的数据分析为3分,乙的数据分析为5分,即甲的数据分析素养低于乙,故选项A 错误,对于B 选项,甲的数学建模素养为3分,数学抽象素养为3分,即甲的数学建模素养与数学抽象素养同一水平,故选项B 错误,对于C 选项,由雷达图可知,乙的六大素养中数学建模、数学抽象、数学运算最差,故选项C 错误,对于D 选项,乙的六大素养中只有数学运算比甲差,其余都由于甲,即乙的六大素养整体水平优于甲,故选项D 正确,故选:D .【归纳与总结】本题考查了对数据的分析处理能力及进行简单的合情推理,属中档题. 7.命题p :存在实数0x ,对任意实数x ,使得0sin()sin x x x +=-恒成立::0q a ∀>,()a xf x lna x +=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧【思路分析】根据题意,由诱导公式分析可得P 为真命题,分析函数()a xf x ln a x+=-在0a >时的奇偶性,可得q 为真命题;由复合命题的真假判断方法分析可得答案.【解析】根据题意,命题p :存在实数0x ,对任意实数x ,使得0sin()sin x x x +=-恒成立, 当0x π=时,对任意实数x ,使得sin()sin x x π+=-恒成立,故P 为真命题;命题:0q a ∀>,()a xf x ln a x+=-,有0a x a x +>-,解可得a x a -<<,函数的定义域为(,)a a -,关于原点对称,有()()a x a xf x ln ln f x a x a x++-==-=---,即函数()f x 为奇函数,故其为真命题;则p q ∧为真命题,()()p q ⌝∨⌝、()P q ∧⌝、()p q ⌝∧为假命题;故选:A . 【归纳与总结】本题考查复合命题真假的判断,涉及全称命题和特称命题的真假的判断,属于基础题.8.在ABC ∆中,30C =︒,2cos 3A =-,152AC =-,则AC 边上的高为( )A .5B .2C .5D .15【思路分析】先利用平方关系求得sin A ,再由sin sin()ABC A C ∠=+及正弦定理可求得3AB =,最后由等面积法求得AC 边长的高.【解析】Q 2cos ,03A A π=-<<,∴5sin A =,∴5321152sin sin()sin cos cos sin 32ABC A C A C A C -∠=+=+=⨯-⨯=, 由正弦定理有,sin sin AC ABABC C =∠,即15211522AB -=-,解得3AB =, ∴11sin 22AB AC A AC BD ⨯⨯⨯=⨯⨯,即53(152)(152)BD ⨯-⨯=-⨯,∴5BD =,即AC 边上的高为5.故选:C .【归纳与总结】本题考查三角恒等变换与解三角形的综合运用,涉及了正弦定理,三角形的面积公式等知识点,考查计算能力,属于基础题.9.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A 县的分法有( ) A .6种B .12种C .24种D .36种【思路分析】根据分类计数原理,分两类,若甲单独被派遣到A 县,若若甲不单独被派遣到A 县,问题得以解决.【解析】若甲单独被派遣到A 县,则有22326C A =种, 若若甲不单独被派遣到A 县,则有336A =种,故根据分类计数原理可得,共有6612+=种,故选:B . 【归纳与总结】本题考查了分类计数原理,属于基础题.10.在正方体1111ABCD A B C D -中,点E ,F ,G 分别为棱11A D ,1D D ,11A B 的中点,给出下列命题:①1AC EG ⊥;②//GC ED ;③1B F ⊥平面1BGC ;④EF 和1BB 成角为4π.正确命题的个数是( ) A .0B .1C .2D .3【思路分析】如图对于①,连接1A C ,11B D ,可得11//EG D B ,又1CA ⊥平面EFG ,即可判断出正误. 对于②,取11B C 的中点M ,连接CM ,EM ,可得四边形CDEM 为平行四边形,进而判断出正误;③由于1B F 与11B C 不垂直,11//B C BC ,可得1B F 与BC 不垂直,即可判断出正误.④由于11//D D B B ,EF 和1DD 所角为4π.即可判断出正误.【解析】如图对于①,连接1A C ,11B D ,则11//EG D B ,而1CA ⊥平面EFG ,所以1AC EG ⊥;故①正确; 对于②,取11B C 的中点M ,连接CM ,EM ,可得四边形CDEM 为平行四边形,//CM ED ∴,因此//GC ED 不正确;③由于1B F 与11B C 不垂直,11//B C BC ,1B F ∴与BC 不垂直,因此1B F ⊥平面1BGC 不成立.④11//D D B B Q ,EF 和1DD 所角为4π.EF ∴和1BB 成角为4π.正确.正确命题的个数是2.故选:C .【归纳与总结】本题考查了空间位置关系、平行与垂直的判定与性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.11.已知抛物线2:2(0)C y px p =>的焦点为F ,1(2M ,0)y 为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( )A .22y x =B .24y x =C .26y x =D .28y x =【思路分析】根据抛物线的定义和三角形的性质即可求出.【解析】1(2M ,0)y 为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,过点M 作MB x ⊥轴,1||||22p MA MF ∴==+,1||22p BF =-120AMF ∠=︒Q ,30BMF ∴∠=︒,2||||BF MF ∴=,112()2222p p∴-=+,解得3p =, ∴抛物线方程为26y x =,故选:C .【归纳与总结】本题考查抛物线的定义,利用抛物线的定义进行线段的转化是关键. 12.已知11()x x f x e e x --=-+,则不等式()(32)2f x f x +-„的解集是( ) A .[1,)+∞B .[0,)+∞C .(-∞,0]D .(-∞,1]【思路分析】观察11()x x f x e e x --=-+,可得()(2)2f x f x +-=,于是()(32)2f x f x +-„等价转化为()(32)()(2)f x f x f x f x +-+-„,即(32)(2)f x f x --„,再分析()f x 的单调性,脱“f ”即可求得答案.【解析】11()x x f x e e x --=-+Q ①,(2)11(2)11(2)(2)2x x x x f x e e x e e x ------∴-=-+-=-+-②, ①+②得:()(2)2f x f x +-=,()(32)2()(32)()(2)f x f x f x f x f x f x ∴+-⇔+-+-剟,(32)(2)f x f x ∴--„③,又11()10x x f x e e --'=++>恒成立,11()x x f x e e x --∴=-+为R 上的增函数,∴③式可化为:322x x --„,解得:1x …,故选:A .【归纳与总结】本题考查利用导数研究函数的单调性,分析出()(2)2f x f x +-=是关键,考查观察与推理、运算能力,涉及等价转化思想的运用,属于难题. 二、填空题:本题共4小题,每小题5分,共20分13.若x ,y 满足约条条件222022x y y x y +⎧⎪-⎨⎪-⎩…„„,则z x y =+的最大值为 4【思路分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解析】由x ,y 满足约条条件222022x y y x y +⎧⎪-⎨⎪-⎩…„„作出可行域如图:化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过A 时,z 取得最大值,由222y x y =⎧⎨-=⎩,解得(2,2)A 时,目标函数有最大值为4z =.故答案为:4.【归纳与总结】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.若1205()3a x dx -=⎰,则a = 2 .【思路分析】直接利用定积分知识的应用和被积函数的原函数的求法和应用求出结果.【解析】1205()3a x dx -=⎰,整理得1213100015()||33a x dx ax x -=-=⎰,所以1533a -=,解得2a =. 故答案为:2【归纳与总结】本题考查的知识要点:定积分知识的应用,被积函数的原函数的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.15.已知函数()sin()(0)6f x x πωω=+>在区间[π,2)π上的值小于0恒成立,则ω的取值范围是 5(6,11]12 .【思路分析】由题意可得,[66x ππωωπ+∈+,2)6πωπ+,由此求得ω的取值范围.【解析】Q 函数()sin()(0)6f x x πωω=+>在区间[π,2)π上的值小于0恒成立,故()f x 的最大值小于零. 当[x π∈,2)π,[66x ππωωπ+∈+,2)6πωπ+,6πωππ∴+>,且226πωππ+„,求得511612ω<„,故答案为:5(6,11]12.【归纳与总结】本题主要考查正弦函数的定义域和值域,函数的恒成立问题,属于基础题. 16.三棱锥A BCD -的顶点都在同一个球面上,满足BD 过球心O ,且22BD =,三棱锥A BCD -体积的最大值为223;三棱锥A BCD -体积最大时,平面ABC 截球所得的截面圆的面积为 .【思路分析】由于BD 过球心,所以可得90BAD BCD ∠=∠=︒,AO ⊥面BCD ,所以当BC CD =时体积最大,这时三角形ABC 为等边三角形,故求出外接圆的半径,进而求出面积.【解析】当BD 过球心,所以90BAD BCD ∠=∠=︒,所以AO ⊥面BCD ,1132A BCD V BC CD OA -=g g g ,当BC CD =时体积最大,因为22BD =,2OA =,所以2BC CD ==,所以最大体积为:112222232=g g g g ;三棱锥A BCD -体积最大时,三角形ABC 中,222AB AC OC OA BC ==+==,设三角形ABC 的外接圆半径为r ,则23r =,所以3r =,所以外接圆的面积为243S r ππ==,故答案分别为:22,43π.【归纳与总结】本题考查平面的基本性质及其外接球的半径与棱长的关系,面积公式,属于中档题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.17.(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(Ⅰ)求m 的值;(Ⅱ)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列22⨯列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有 擅长 不擅长 合计 男生30女生 50 合计1002()P K x …0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828参考公式及数据:2()()()()K a b c d a c b d =++++,n a b c d =+++.【思路分析】(Ⅰ)由小矩形面积之和为1即可求出m ;(Ⅱ)根据频率分布直方图先求出擅长冰上运动的人数,再计算其余人数,然后根据公式求出2K 并与6.635比较,从而得出答案.【解析】(Ⅰ)由图可知,(0.0050.0150.0200.0300.005)101m +++++⨯=, 解得0.025m =; 擅长 不擅长 合计 男性 20 30 50 女性 10 40 50 合计307010024.762 6.635()()()()50503070K a b c d a c b d ==≈<++++⨯⨯⨯,故不能在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系. 【归纳与总结】本题主要考查频率分布直方图与独立性检验的应用,属于基础题. 18.(12分)如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,AB BC ⊥,124AA AB ==,M ,N 分别为1CC ,1BB 的中点,G 为棱1AA 上一点,若1A B ⊥平面MNG . (Ⅰ)求线段AG 的长;(Ⅱ)求二面角B MG N --的余弦值.【思路分析】(Ⅰ)由线面垂直的性质可得1A B GN ⊥,在BNE ∆中可求得BE ,进而得到1A E ,再解△1AGE ,即可求得AG 的长; (Ⅱ)建立空间直角坐标系,求出平面BMG 及平面MNG 的法向量,利用向量的夹角公式即可求得所求余弦值.【解析】(Ⅰ)1A B ⊥Q 平面MNG ,GN 在平面MNG 内,1A B GN ∴⊥, 设1A B 交GN 于点E ,在BNE ∆中,可得145cos 2164BE BN ABN =∠=⨯=+g , 则114565164A E A B BE =-=+-=, 在△1AGE 中,11165534cos 25A EA G AA B===∠,则1AG =; (Ⅱ)以1B 为坐标原点,1B B ,1B C ,11B A 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则(4B ,0,0),(2M ,2,0),(3G ,0,2),(2N ,0,0),故(2,2,0),(1,0,2)BM BG =-=-u u u u r u u u r,(0,2,0),(1,0,2)NM NG ==u u u u r u u u r,设平面BMG 的一个法向量为(,,)m x y z =r ,则22020m BM x y m BG x z ⎧=-+=⎪⎨=-+=⎪⎩u u u u r r g u u u rr g ,可取(2,2,1)m =r , 设平面MNG 的一个法向量为(,,)n a b c =r ,则2020n NM b n NG a c ⎧==⎪⎨=+=⎪⎩u u u u r r g u u u rr g ,可取(2,0,1)n =-r , 设二面角B MG N --的平面角为θ,则5|cos ||cos ,|||||||m n m n m n θ=<>==r r g r rr r ,∴二面角B MG N --的余弦值为5.【归纳与总结】本题考查空间中线线,线面,面面间的位置关系,考查利用空间向量求解二面角问题,考查推理能力及计算能力,属于基础题.19.(12分)已知数列{}n a 满足,11a =,24a =且*21430()n n n a a a n N ++-+=∈. (Ⅰ)求证:数列1{}n n a a +-为等比数列,并求出数列{}n a 的通项公式;(Ⅱ)设2n n b n a =g ,求数列{}n b 的前n 项和n S .【思路分析】本题第(Ⅰ)题将递推式进行转化可得到2113()n n n n a a a a +++-=-,则数列1{}n n a a +-是以3为首项,3为公比的等比数列.然后计算出数列1{}n n a a +-的通项公式,再应用累加法可计算出数列{}n a 的通项公式;第(Ⅱ)题先根据第(Ⅰ)题的结果可计算出数列{}n b 的通项公式3n n b n n =-g.构造数列{}n c :令3n n c n =g .设数列{}n c 的前n 项和为n T ,可运用错位相减法计算出数列{}n c 的前n 项和为n T ,最后运用分组求和法计算出数列{}n b 的前n 项和n S .【解答】(Ⅰ)证明:依题意,由21430n n n a a a ++-+=,可得 2143n n n a a a ++=-,则2111333()n n n n n n a a a a a a ++++-=-=-. 21413a a -=-=Q ,∴数列1{}n n a a +-是以3为首项,3为公比的等比数列.11333n n n n a a -+∴-==g ,*n N ∈. 由上式可得,1213a a -=,2323a a -=,g gg113n n n a a ---=,各项相加,可得:11211331333331322n n n n a a ---=++⋯+==--g ,113131331(31)22222n n nn a a ∴=-+=-+=-g g g ,*n N ∈.(Ⅱ)由(Ⅰ)知,122(31)32nn n n b n a n n n ==-=-g g g g .构造数列{}n c :令3n n c n =g. 设数列{}n c 的前n 项和为n T ,则1231231323333n n n T c c c c n =+++⋯+=+++⋯+g g g g , 2331323(1)33n n n T n n =++⋯+-+g g g g , 两式相减,可得:112333233233333331322n nnn n n n T n n +---=+++⋯+-=-=---g g g ,233344n n n T -∴=+g .故12n n S b b b =++⋯+12(1)(2)()n c c c n =-+-+⋯+- 12()(12)n c c c n =++⋯+-++⋯+(1)2n n n T +=-22331134422n n n n -=+--g .【归纳与总结】本题主要考查数列由递推公式推导出通项公式,以及运用错位相减法和分组求和法求前n 项和.考查了转化与化归思想,构造法,等比数列的通项公式和求和公式,逻辑推理能力和数学运算能力.本题属中档题.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A 、B ,焦距为2,点P 为椭圆上异于A 、B 的点,且直线PA 和PB 的斜率之积为34-.(Ⅰ)求C 的方程;(Ⅱ)设直线AP 与y 轴的交点为Q ,过坐标原点O 作//OM AP 交椭圆于点M ,试探究2||||||AP AQ OM g 是否为定值,若是,求出该定值;若不是,请说明理由.【思路分析】(Ⅰ)设P 的坐标,由离心率及直线PA 和PB 的斜率之积为34-.P 点代入椭圆的方程,再由a ,b ,c 之间的关系求出a ,b 进而求出椭圆的方程; (Ⅱ)设直线AP 的方程,与椭圆联立求出P 的纵坐标,代入直线方程进而求出横坐标,即求出P 的坐标,再由椭圆令直线的0x =求出Q 的纵坐标,进而求出||||AP AQ 之积,有题意设直线OM 的方程与椭圆联立求出M 的坐标,进而求出2||OM ,进而求出2||||||AP AQ OM g 为定值【解析】(Ⅰ)有题意可得22c =,即1c =,(,0)A a -,(,0)B a ,设(,)P x y ,由直线PA 和PB 的斜率之积为34-可得34y y x a x a =-+-g ,即22234y x a =--, 而P 在椭圆上,所以22221(0)x y a b a b +=>>,22222222(1)()x b y b x a a a=-=--g ,所以2234b a =,而222b ac =-可得:24a =,23b =,所以椭圆的方程为:22143x y +=;(Ⅱ)设直线AP 的方程为:2x my =-,联立与椭圆的方程:22234120x my x y =-⎧⎨+-=⎩,整理可得22(43)120m y my +-=, 所以21243P m y y m +=+,所以21243P my m =+,226843P m x m -=+,所以||AP ==,在2x my =-中,令0x =,2y m =,即2(0,)Q m,所以||AQ =所以221||||643m AP AQ m +=+g ,有题意设OM 的方程为:x my =,代入椭圆中可得22(43)12m y +=,所以221243M y m =+,所以2221243Mm x m =+,所以2222212(1)||43M M m OM x y m +=+=+,所以222226(1)||||614312(1)||12243m AP AQ m m OM m ++===++g 为定值. 【归纳与总结】本题考查求椭圆的方程及直线与椭圆的综合和两点间的距离公式,属于中档题.21.(12分)已知函数()x f x e =.(Ⅰ)求曲线()y f x =在点(1,f (1))处的切线方程;(Ⅱ)若对任意的m R ∈,当0x >时,都有21(2())1m f x x+>-恒成立,求最大的整数k .【思路分析】()I 先对函数求导,然后结合导数的几何意义可求切线的斜率,进而可求切线方程;()II 由已知对m 分类讨论,当0m =时,显然成立,当0m ≠时,原不等式可化为12()f x x +>,然后构造函数11()2()2xh x f x e x x=+=+,结合导数及函数的性质可求()h x 最小值的范围,可求. 【解析】()()x I f x e '=,则曲线()y f x =在点(1,f (1))处的切线斜率k f ='(1)e =,又f (1)e =, 故曲线()y f x =在点(1,f (1))处的切线方程(1)y e e x -=-即y ex =,()II因为21(2())1m f x x+>-恒成立,当0m =时,显然成立,当0m ≠时,不等式可化为12()f x x +>, 令11()2()2x h x f x e x x =+=+,则21()2x h x e x'=-,因为21()2x h x e x '=-在(0,)+∞上单调递增,且1()402h '=<,2330h '=->>,故存在01(2x ∈使得00201()20x h x e x '=-=当0(0,)x x ∈时,()0h x '<,函数单调递减,当0(x x ∈,)+∞时,()0h x '>,函数单调递增,故当0x x =时,函数取得最小值002000111()2x h x e x x x =+=+,令01t x =∈,则0202000111()2(3x h x e t t x x x =+=+=+∈+,将()h x 的最小值记为a ,则(3a ∈+.因此原式需要满足a >即210am -+>恒成立, 又0a >,可知△840k a =-<即可,即12k a <,且(3a ∈+.故k 可以取得的最大整数为2.【归纳与总结】本题主要考查了导数的几何意义的应用及利用导数及函数的性质求解由不等式恒成立求解参数范围 问题,体现了转化思想及分类讨论思想的应用.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线1C 的参数方程为22cos (2sin x y ααα=+⎧⎨=⎩为参数),曲线2C 的参数方程为38cos 4(3sin4x t ty t ππ⎧=+⎪⎪⎨⎪=⎪⎩为参数) (Ⅰ)求1C 和2C 的普通方程;(Ⅱ)过坐标原点O 作直线交曲线1C 于点(M M 异于)O ,交曲线2C 于点N ,求||||ON OM 的最小值.【思路分析】(Ⅰ)由22cos (2sin x y ααα=+⎧⎨=⎩为参数),消去参数α,可得1C 的参数方程;化38cos 43sin 4x t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩为8x y ⎧=-⎪⎪⎨⎪=⎪⎩,消去参数t ,可得2C 的普通方程; (Ⅱ)分别写出圆1C 的极坐标方程与直线2C 的极坐标方程,设过坐标原点且与两曲线相交的直线方程为()42ππθαα=-<<,可得8|||cos sin |||4|cos |ON OM ααα+=,整理后利用三角函数求最值.【解析】(Ⅰ)由22cos (2sin x y ααα=+⎧⎨=⎩为参数),消去参数α,可得1C 的参数方程为22(2)4x y -+=;由38cos 4(3sin 4x t t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩为参数),得8x y ⎧=-⎪⎪⎨⎪=⎪⎩,消去参数t ,可得2C 的普通方程为8x y +=;(Ⅱ)如图,圆1C 的极坐标方程为4cos ρθ=,直线2C 的极坐标方程为cos sin 8ρθρθ+=, 即8cos sin ρθθ=+,设过坐标原点且与两曲线相交的直线方程为()42ππθαα=-<<,则28||244|cos sin |||4|cos||sin cos ||sin 2cos 21||2sin(2)1|4ON OM cos ααπααααααα+====+++++. Q 42ππα-<<,∴52444πππα-<+<.∴|2sin(2)1|[1,12]4πα++∈+,则||||ON OM 的最小值为4(21)21=-+.【归纳与总结】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了利用三角函数求最值,考查计算能力,是中档题. [选修4-5:不等式选讲](10分) 23.已知函数()|1||1|f x ax x =++-. (Ⅰ)若2a =,解关于x 的不等式()9f x <;(Ⅱ)若当0x >时,()1f x >恒成立,求实数a 的取值范围.【思路分析】(Ⅰ)当2a =时,()|21||1|f x x x =++-,由绝对值的意义,去绝对值符号,解不等式,求并集,可得所求解集;(Ⅱ)由题意可得1()min f x <,(0)x >,讨论0a =,0a <,0a >,结合绝对值不等式的性质,可得所求范围.【解析】(Ⅰ)当2a =时,3,11()|21||1|2,1213,2x x f x x x x x x x ⎧⎪>⎪⎪=++-=+-⎨⎪⎪-<-⎪⎩剟,则()9f x <等价为139x x >⎧⎨<⎩或11229x x ⎧-⎪⎨⎪+<⎩剟或1239x x ⎧<-⎪⎨⎪-<⎩,解得13x <<或112x -剟或132x -<<-, 综上可得原不等式的解集为(3,3)-;(Ⅱ)当0x >时,()1f x >恒成立,即为1()min f x <,当0a =时,()|1|f x x =-,其最小值为f (1)0=,不符题意; 当a <,即0a ->时,111()|1||1||||1|(1)||(|1|||)f x ax x a x x a x x x a a a=++-=-++-=--++-++,当10a --…,()f x 有最小值,且为1|1|a +,又1|1|1a+>不恒成立;当0a >,0x >时,()1|1f x ax x =++-的最小值为f (1)1|1a =+>恒成立, 综上可得,a 的范围是(0,)+∞.【归纳与总结】本题考查绝对值不等式的解法和不等式恒成立问题解法,考查分类讨论思想和转化思想,以及化简运算能力、推理能力,属于中档题.。

吉林省长春市高考数学二模试卷(理科)

吉林省长春市高考数学二模试卷(理科)

吉林省长春市高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·湖北模拟) 函数的图像大致为()A .B .C .D .2. (2分) (2019高一上·龙岩月考) 已知集合,,则等于()A .B .C .D .3. (2分)若函数为奇函数,则a=()A .B .C .D . 14. (2分)设等差数列的公差为d,若的方差为2,则d等于()A . 1B . 2C . ±1D . ±25. (2分)(2017·呼和浩特模拟) 双曲线(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,直线AB过焦点,且|AB|=2,则双曲线实轴长为()A .B .C .D . 36. (2分)(2017·呼和浩特模拟) 如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且B(,﹣),点C在第一象限,∠AOC=α,BC=1,则cos(﹣α)=()A . ﹣B . ﹣C .D .7. (2分)(2017·呼和浩特模拟) 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,最长棱的长度是()A .B .C . 6D .8. (2分)(2017·呼和浩特模拟) 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=3,n=3,输入的a依次为由小到大顺序排列的质数(从最小质数开始),直到结束为止,则输出的s=()A . 9B . 27C . 32D . 1039. (2分)(2017·呼和浩特模拟) 在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A .B .C .D . 36π10. (2分)(2017·呼和浩特模拟) 设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A . α>βB . α<βC . α+β>0D . α2>β211. (2分)(2017·呼和浩特模拟) 已知椭圆(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1 , F2 ,在线段AB上有且仅有一个点P满足PF1⊥PF2 ,则椭圆的离心率为()A .B .C .D .12. (2分)(2017·长宁模拟) 如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a 的取值范围是()A . (﹣∞, ]B . [3,+∞)C . [﹣2 ,2 ]D . [﹣3,3]二、填空题 (共4题;共5分)13. (1分)关于函数,给出下列命题:①若函数f(x)是R上周期为3的偶函数,且满足f(1)=1,则f(2)-f(-4)=0;②若函数f(x)满足f(x+1)f(x)=2 017,则f(x)是周期函数;③若函数g(x)=是偶函数,则f(x)=x+1;④函数y=的定义域为 .其中正确的命题是________.(写出所有正确命题的序号)14. (1分) (2016高一上·如皋期末) 已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则| + |=________.15. (2分)(2012·湖南理) 函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若φ= ,点P的坐标为(0,),则ω=________;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为________.16. (1分)(2017·呼和浩特模拟) 天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”从新开始,即“甲戊”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到新中国成立80年时,即2029年为________年.三、解答题 (共7题;共70分)17. (15分)(2017·白山模拟) 已知函数f(x)=lnx+bx﹣c,f(x)在点(1,f(1))处的切线方程为x+y+4=0.(1)求f(x)的解析式;(2)求f(x)的单调区间;(3)若在区间内,恒有f(x)≥2lnx+kx成立,求k的取值范围.18. (10分) (2018高三上·辽宁期末) 在如图所示的四棱锥中,四边形ABCD为正方形,平面PAB,且分别为的中点, .证明:(1)平 ;(2)若,求二面角的余弦值.19. (10分)(2020·扬州模拟) 某厂根据市场需求开发三角花篮支架(如图),上面为花篮,支架由三根细钢管组成,考虑到钢管的受力和花篮质量等因素,设计支架应满足:①三根细钢管长均为1米(粗细忽略不计),且与地面所成的角均为;②架面与架底平行,且架面三角形与架底三角形均为等边三角形;③三根细钢管相交处的节点分三根细钢管上、下两段之比均为 .定义:架面与架底的距离为“支架高度”,架底三角形的面积与“支架高度”的乘积为“支架需要空间”.(1)当时,求“支架高度”;(2)求“支架需要空间”的最大值.20. (10分) (2019高二下·湖州期末) 已知,为抛物线上的相异两点,且.(1)若直线过,求的值;(2)若直线的垂直平分线交x轴与点P,求面积的最大值.21. (5分)(2017·呼和浩特模拟) 已知函f(x)=lnx﹣ax2+(2﹣a)x.①讨论f(x)的单调性;②设a>0,证明:当0<x<时,;③函数y=f(x)的图象与x轴相交于A、B两点,线段AB中点的横坐标为x0 ,证明f′(x0)<0.22. (10分)(2017·呼和浩特模拟) 在极坐标系中,点P的坐标是(1,0),曲线C的方程为ρ=2.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.23. (10分)(2017·呼和浩特模拟) 已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对∀x∈R恒成立.(1)求t的取值范围;(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:≤ .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。

届长春市高三理科数学二模拟试卷及答案

届长春市高三理科数学二模拟试卷及答案

届长春市高三理科数学二模拟试卷及答案多做一些高考数学模拟试题将对你高考很有帮助,将能训练自己在高考数学时的做题逻辑,以下是为你的20XX届长春市高三理科数学二模拟试卷,希望能帮到你。

一、选择题:本大题12小题,每题5分,共60分.每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合,,那么 ( )A. B. C. D.2.假设复数满足 ( 为虚数单位),那么复数的虚部为 ( )A.1B.C.D.3. 指数函数且在上是减函数,那么函数在R上的单调性为 ( )A.单调递增B.单调递减C.在上递增,在上递减 D .在上递减,在上递增4.命题p: ;命题q:,那么以下命题中的真命题是 ( )A. B. C. D.5.在以下区间中,函数的零点所在的区间为( )A.( ,0)B.(0, )C.( , )D.( , )6.设,那么 ( )A. B. C. D.7.函数的图像对称,那么函数的图像的一条对称轴是( )A. B. C. D.8. 函数的局部图象大致为 ( )9.函数的单调增区间与值域相同,那么实数的取值为 ( )A. B. C. D.10.在整数集中,被7除所得余数为的所有整数组成的一个“类”,记作,即,其中 .给出如下五个结论:① ; ② ;③ ;④ ;⑤“整数属于同一“类””的充要条件是“ ”。

其中,正确结论的个数是 ( )A.5B.4C.3D.211. 是定义在上的偶函数,对于 ,都有 ,当时,,假设在[-1,5]上有五个根,那么此五个根的和是 ( )A.7B.8C.10D.1212.奇函数定义域是,,当 >0时,总有>2 成立,那么不等式 >0的解集为A. B.C. D.第二卷 (非选择题共90分)二、填空题:本大题共4小题,每题5分,共20分.把答案填在题中横线上.13.函数在点处切线的斜率为 .14.由抛物线,直线 =0, =2及轴围成的图形面积为 .15. 点是边上的一点,那么的长为.16.函数那么关于的不等式的解集为 .三、解答题:本大题包括6小题,共70分,解容许写出文字说明,证明过程或演算步骤17.(本小题总分值10分)设、,,。

吉林省长春市2024年数学(高考)部编版第二次模拟(自测卷)模拟试卷

吉林省长春市2024年数学(高考)部编版第二次模拟(自测卷)模拟试卷

吉林省长春市2024年数学(高考)部编版第二次模拟(自测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题函数的图象大致为()A.B.C.D.第(2)题若向量、满足:,,,则()A.B.C.D.第(3)题设集合,,则()A.B.C.D.第(4)题已知函数,则在上()A.单调递增B.单调递减C.先增后减D.先减后增第(5)题已知复数(为虚数单位),则()A.B.C.1D.第(6)题已知分别是椭圆的左、右焦点,为上一点,若,则()A.2B.3C.5D.6第(7)题若曲线在点处的切线方程为,则的最小值为()A.-1B.C.D.1第(8)题已知抛物线的焦点为,点在上,且,则()A.8B.10C.11D.15二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,下列说法正确的有()A.的极大值为B.的单调递减区间为C.曲线在处的切线方程为D.方程有两个不同的解第(2)题正方体的棱长为1,为侧面上的点,为侧面上的点,则下列判断正确的是()A.若,则到直线的距离的最小值为B.若,则,且直线平面C.若,则与平面所成角正弦的最小值为D.若,,则,两点之间距离的最小值为第(3)题下列说法正确的是()A.已知随机变量服从正态分布且,则B.设离散型随机变量服从两点分布,若,则C.若3个相同的小球放入编号为1,2,3,4的盒子,则恰有两个空盒的放法共有12种D.已知,若,则三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题若展开式中的所有项系数和为243,则_______;该展开式中的系数___________.第(2)题2021年全国有部分省推行“”新高考模式,选择性考试科目中,首选科目成绩直接以原始成绩呈现;再选科目化学、生物、政治、地理成绩以等级赋分转换后的等级成绩呈现.等级赋分以30分作为赋分起点,满分为100分,将考生每门再选科目考试的原始成绩从高到低划定为,,,,五个等级,各等级人数所占比例分别为15%,35%,13%和2%.转换基数为实际参加该再选科目考试并取得有效成绩的人数.转换时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到100~86分、85~71分、70~56分、55~41分、40~30分五个等级分数区间,根据转换公式计算,四舍五入得到考生的等级成绩.等级赋分转换公式为,,分别表示某等级原始分数区间的下限和上限;,分别表示相应等级的赋分区间的下限和上限;表示考生的原始成绩,表示考生转换后的等级成绩.考生原始成绩正好为原始分数区间上限或下限时,不需要按转换公式计算,相应的赋分区间的上限或下限分数即为该考生的等级成绩.某校的一次统考中,甲同学选考科目生物成绩原始分91分,属于档,这次原始成绩的档的最低分90分,最高分100分,则甲同学赋分后的生物成绩约为____________.第(3)题已知等差数列和等比数列满足,,则数列在________时取到最小值.四、解答题(本题包含5小题,共77分。

吉林省长春市汽车经济开发区第六中学2024年高三第二次高考模拟考试数学试题试卷

吉林省长春市汽车经济开发区第六中学2024年高三第二次高考模拟考试数学试题试卷

吉林省长春市汽车经济开发区第六中学2024年高三第二次高考模拟考试数学试题试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中2,O A O B ''''== 3O C ''=,则ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .3πC .(833)πD .(16312)π2.设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++=3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙4.已知集合{|24}A x x =-<<,集合2560{|}B x x x =-->,则A B =A .{|34}x x <<B .{|4x x <或6}x >C .{|21}x x -<<-D .{|14}x x -<<5.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过点1F 的直线与椭圆交于P 、Q 两点.若2PF Q ∆的内切圆与线段2PF 在其中点处相切,与PQ 相切于点1F ,则椭圆的离心率为( )A .22B .32C .23D .336.已知边长为4的菱形ABCD ,60DAB ∠=︒,M 为CD 的中点,N 为平面ABCD 内一点,若AN NM =,则AM AN ⋅=( )A .16B .14C .12D .87.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()UA B =( )A .()0,3B .[)2,3C .()0,2D .()0,∞+8.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .179.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .10.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>11.已知△ABC 中,22BC BA BC =⋅=-,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++的最小值为( ) A .2B .34-C .2-D .2512-12.为研究某咖啡店每日的热咖啡销售量y 和气温x 之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x 轴表示气温,y 轴表示销售量),由散点图可知y 与x 的相关关系为( )A .正相关,相关系数r 的值为0.85B .负相关,相关系数r 的值为0.85C .负相关,相关系数r 的值为0.85-D .正相关,相关负数r 的值为0.85-二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春市高考数学模拟试卷(理科)(2月份)D卷
姓名:________ 班级:________ 成绩:________
一、选择题: (共12题;共24分)
1. (2分)(2016·山东文) 设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()
A . {2,6}
B . {3,6}
C . {1,3,4,5}
D . {1,2,4,6}
2. (2分)(2017·闵行模拟) 若z∈C,i为虚数单位,且,则复数z等于()
A .
B .
C .
D .
3. (2分)角的终边经过点,则的值为()
A . -4
B . -3
C .
D .
4. (2分)(2013·陕西理) 如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()
A .
B .
C .
D .
5. (2分) (2017高二上·西安期末) 过抛物线y2=4x的焦点作直线交抛物线于A(x1 , y1),B(x2 , y2),如果x1+x2=6,那么|AB|=()
A . 8
B . 10
C . 6
D . 4
6. (2分)ABC中,角A,B,C的对边分别为a,b,c,若c=,b=,B=120,则a=()
A .
B . 2
C .
D .
7. (2分) (2017高三上·安庆期末) 阅读如图的程序框图,运行相应的程序,则输出n的值为()
A . 6
B . 8
C . 10
D . 12
8. (2分)若函数f(x)=2sin(2x+)+a﹣1(a∈R)在区间[0,]上有两个零点x1 , x2(x1≠x2),则x1+x2﹣a的取值范围是()
A . (﹣1,+1)
B . [,+1)
C . (﹣1,+1)
D . [,+1)
9. (2分)(2017·兰州模拟) 已知实数x,y满足条件,则z=x+2y的最小值为()
A .
B . 4
C . 2
D . 3
10. (2分)双曲线的左、右焦点分别为F1、F2 ,过点 F1作倾斜角为30°的直线l ,l与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为
()
A .
B .
C .
D .
11. (2分)(2020·鹤壁模拟) 某几何体的三视图如图所示,则该几何体的体积为()
A .
B .
C .
D .
12. (2分)(2017·石家庄模拟) 已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是()
A . (e2﹣3,e2+1)
B . (e2﹣3,+∞)
C . (﹣∞,2e2+2)
D . (2e2﹣6,2e2+2)
二、填空题: (共4题;共4分)
13. (1分)(2018·南阳模拟) 的展开式中的系数是________.(用数字作答)
14. (1分) (2016高一下·衡阳期末) 某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据:
x24568
y3040605070
由资料显示y对x呈线性相关关系.根据上表提供的数据得到回归方程中的b=6.5,预测销售额为115万元时约需________万元广告费.
15. (1分)已知模长为1,2,3的三个向量,,,且• = • = • =0,则| + + |的值为________.
16. (1分) (2015高二上·怀仁期末) 在直三棱柱A1B1C1﹣ABC中,底面ABC为直角三角形,∠BAC= ,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的最小值为________.
三、解答题 (共5题;共35分)
17. (10分) (2016高三上·黑龙江期中) 已知数列{an}满足an+2﹣2an+1+an=0(n∈N*),a2=4,其前7项和为42,设数列{bn}是等比数列,数列{bn}的前n项和为Sn满足b1=a1﹣1,S30﹣(310+1)S20+310S10=0.
(1)求数列{an},{bn}的通项公式;
(2)令cn=1+log3 ,dn= + ,求证:数列{dn}的前n项和Tn≥ .
18. (10分)(2013·辽宁理) 现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.
19. (5分) (2018高一下·北京期中) 正四棱锥的侧面积是底面积的2倍,高是3,求它的全面积.
20. (5分)(2017·辽宁模拟) 已知椭圆的离心率e= ,左、右焦点分别为F1、F2 ,定点,P(2,),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.
21. (5分)(2017·石家庄模拟) 已知函数f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.
四、选做题 (共1题;共10分)
22. (10分) (2018高二下·甘肃期末) 在平面直角坐标系中,曲线的参数方程为(
为参数),直线经过点,斜率为,直线与曲线相交于两点.
(1)写出曲线的普通方程和直线的参数方程;
(2)求的值.
五、选修4-5:不等式选讲 (共1题;共10分)
23. (10分)(2018·海南模拟) 设函数 .
(1)若不等式的解集为,求的值;
(2)在(1)的条件下,若不等式恒成立,求的取值范围.
参考答案一、选择题: (共12题;共24分)
1-1、答案:略
2-1、答案:略
3-1、答案:略
4-1、答案:略
5-1、答案:略
6-1、答案:略
7-1、答案:略
8-1、答案:略
9-1、
10-1、答案:略
11-1、
12-1、
二、填空题: (共4题;共4分)
13-1、答案:略
14-1、
15-1、
16-1、
三、解答题 (共5题;共35分)
17-1、答案:略
17-2、答案:略
18-1、答案:略
18-2、答案:略
19-1、
20-1、答案:略
21-1、答案:略
四、选做题 (共1题;共10分)
22-1、答案:略
22-2、答案:略
五、选修4-5:不等式选讲 (共1题;共10分) 23-1、答案:略
23-2、答案:略。

相关文档
最新文档