接地电阻测仪的原理及计算方法

接地电阻测仪的原理及计算方法
接地电阻测仪的原理及计算方法

近年来,随着电力系统的发展,发生接地故障时经地网流散的电流愈来愈大,地网的电位也随之升高,由于接地措施的缺陷而造成的事故也屡有发生,接地问题已得到人们的普遍重视。接地的目的是为了在正常、事故以及雷击的情况下,利用大地作为接地电流回路的一个组件,从而将设备接地处限制为所允许的接地电位。当有电流通过接地极流人地中时,设备接地处的电位会相当高,雷击时瞬时电位甚至可达几万伏。

接地电阻的大小直接关系到设备安全和人身安全。其大小除和大地的结构、土壤的电阻率有关外,还和接地极的几何尺寸及形状有关,在雷电冲击电流流过时还和流经接地极的冲击电流的幅值和波形有关。

1998年实施的我国电力行业标准《交流电气装里的接地》中规定了交流标称电压500kV及以下发电、变电、送电和配电电气装置以及建筑物电气装置的接地要求和方法。各种接地电阻的实际值需要在地网铺设完毕后通过实测得出。大中型发、变电站的接地电阻测量普遍采用电压电流表法,并用工频交流电源供电(即220一380V电源经隔离变压器供电)。小型发、变电站的接地电阻一般采用接地电阻测量仪测量。

接地电阻测的基本原理,接地电流在地中流散时地中的电位分布。

接地电流肠通过接地极以半球面形状向地中流散时,地中的电位分布曲线如图1所示,从图中可以看出,愈靠近接地极E,散流电阻愈大,电位愈高。试验表明,在离开单根接地极或接地短路点20m以外的地方,散流电阻已近于零,也即电位趋近于零。接地电阻的测量就是利用了这一结论。

接地电阻测仪的原理及计算方法

测量接地电阻的基本原理是利用欧姆定律。根据欧姆定律,接地极的接地电阻风d 等于其电位Ujd与扩散电流Ijd的比值。即Rjd=Usd/Isd。要想测童接地电阻的值,必须首先给接地极注人一定大小的电流,从而需要设置一个能构成电流回路的电流极C,并用电流表加以测定。同时,为了用电压表测出接地极的对地电位,还需要设置一个能反应零电位的电压极P。通过测量电压和电流来获得接地电阻。

根据实践,在离开单根接地极或接地短路点E20m以外的地方,散流电阻已近于零,

也即电位趋近于零,电压极P可设置在离接地极E20m以外的区域,电流极C和电压极P 的距离也要大于ZOm。当采用直线型布置测量时,接地极、电压极和电流极的位置和电位分布如图2所示。实际侧量时,以120rm/in的速率摇动手柄,使接地极上产生对地电压U,d,接地电流从接地极流人,经过大地,从电流极流出。电压极上没有电流流过。因为电压极与接地极和电流极的距离均大于20m,电位为零,由此可得到所测量接地电阻为:风d二叭d/毛d。zC一8型接地电阻测量仪正是根据这一原理制成的。

测t时可能出现的情况及其对测t结果的影响

接地电阻测量的关键是根据现场地形、地质和接地网的结构特点,合理设置电流极和电压极的位置,得出正确的测量结果。在实际测量时可能出现的情况是多种多样的,要综合考虑天气、土质不均匀等各方面因素对测量结果的影响。为了简化分析,我们假设土壤干燥且电阻率均匀,接地极E、电压极P、电流极C呈直线型布置,仅考虑接地极E、电压极P、电流极C的相互位置和接地极的形状对测量结果的影响。

数字接地电阻测试仪的工作原理及主要特点

1、工作原理

本表摒弃传统的人工手摇发电工作方式,采用先进的中大规模集成电路,应用DC/AC变换技术将三端钮、四端钮测量方式合并为一种机型的新型接地电阻测量仪。

工作原理为由机内DC/AC变换器将直流变为交流的低频恒流,经过辅助接地极C 和被测物E组成回路,被测物上产生交流压降,经辅助接地极P送入交流放大器放大,再经过检波送入表头显示。借助倍率开关,可得到三个不同的量限:0~2Ω,0~20Ω,0~200Ω。

2、使用范围

本表适用于电力、邮电、铁路、通信、矿山等部门测量各种装置的接地电阻以及测量低电阻的导体电阻值;本表还可测量土壤电阻率及地电压。

3、主要特点

结构上采用高强度铝合金作为机壳,电路上为防止工频、射频干扰采用锁相环同步跟踪检波方式并配以开关电容滤波器,使仪表有较好的抗干扰能力。

采用DC/AC变换技术将直流变为交流的低频恒定电流以便于测量。

允许辅助接地电阻在0~2KΩ(RC),0~40KΩ(RP)之间变化,不致于影响测量结果。

本仪表不需人工调节平衡,3(1/2)位LCD显示,除测地电阻外,还可测低电阻导体电阻、土壤电阻率以及交流地电压。

如若测试回路不通表头显示“1”代表溢出,符合常规测量习惯。

接地电阻的测量方法(2021版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 接地电阻的测量方法(2021版) Safety management is an important part of production management. Safety and production are in the implementation process

接地电阻的测量方法(2021版) 1.接地电阻的概念 与大地紧密接触并形成电气连接的一个或一组导体,叫接地极。通过接地极与大地相连接,称接地。接地,按用途分,有防雷接地,防静电接地,防触电接地,工作接地,零线的重复接地,还有逻辑接地。 工频电流或冲击电流从接地极向周围大地流散时,土壤呈现的电阻称为接地电阻。 通过接地极流入大地的电流作半球形散开,半球形的球面,在距接地极越远,电阻越小,20M以外的地方,已无电阻的存在。也就无电压降了。20M以外的地方,电位等于零,我们称为电气上的零电位,也称地电位。在接地体分布密集的地方很难找到电气上的地。 电子设备中各级电路中,有一个参考电位,这个电位称为逻辑地。它可以是电子设备的机壳、底座、印刷电路版的地线,建筑物

内总接地端子,接地干线。逻辑地,可以与大地相连接,也可以不连接。 逻辑地没有接地电阻的概念。 接地电阻的数值等于接地极的对地电位与通过接地极的接地短路电流的比。所谓接地电阻是表征工频电流或冲击电流通过接地极向周围大地流散的能力。接地电阻愈小,流散愈快。接地电阻不能用从接地极到大地某点的电阻来表达,因此,不能用欧姆表测量接地电阻。 可以认为,接地电阻虽然具有直流电阻相同的量纲,但实际上是土壤电阻率ρ与电容的比率乘以介电系数ε,因此,确切的说,接地电阻应称为接地阻抗。同时,由于接地电阻R含有电容C这一分量。因此,测量时,不能使用直流电源。也不宜使用功率表法来测量,用功率法的指示值只反映电阻分量。而且一般功率表法的误差与功率因数COSΦ有关。随着COSΦ的降低,误差较大。接地电阻的阻抗角一般都是在Φ=COS-1(0.5-0.7)之间,因此,不宜使用功率表法来测量,因误差较大。由此可见,接地电阻与一般导体的电

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

电缆隧道接地电阻计算书

接地电阻计算书 一、垂直接地体接地电阻计算: 1.单根接地体接地电阻计算: 计算公式:() (1) 式中:R v ——垂直接地极的接地电阻(Ω); ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); d ——接地极的直径(0.03m)。 数值代入公式计算得:R v=529.88(Ω) 2.间距为s的多根垂直接地极并联后的接地电阻计算: 计算公式: (2) 式中:R N——n根垂直接地极的并联接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m); ι——垂直接地极的长度(1.5m); s ——接地极的间距(5m); n ——接地极的总根数(920); d ——接地极的直径(0.03m); 数值代入公式计算得:R N=97.82(Ω) 二、水平接地体接地电阻计算: 计算公式:() 式中:R h——水平接地极的接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m);

L ——水平接地极的总长度(4600m); h ——水平接地极的埋设深度(0.2m); d ——水平接地极的等效直径(0.02m); A——水平接地极的形状系数(1)。 数值代入公式计算得:R h=0.81(Ω) 三、综合接地电阻计算: 计算公式: (3) 式中:——综合接地电阻(Ω); R N——垂直接地极的并联接地电阻(Ω); R h——水平接地极的接地电阻(Ω); R Nh——垂直接地极和水平接地极之间的互阻(Ω),可根据公式(4)计算; (4) 式中:ρ ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); ——水平接地极的总长度(4600m); 数值代入公式计算得: R Nh=0.60(Ω) Rz=0.81(Ω) 石墨基柔性接地体的接地电阻可用降阻效果系数带入进行计算:最终接地电阻为: =0.7×0.81=0.567(Ω)。

接地电阻测试方法与设置要求(图解)

一、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 二、接地电阻设置要求: a. 交流工作接地,接地电阻不应大 于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 三、接地电阻测试方法 1、测量接地电阻值时接线方式的规定仪表上的E端钮接5m导线,P端钮接20m线,C 端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m

1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤:

2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。 2.6、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。 四、注意事项: 1、禁止在有雷电或被测物带电时进行测量。 2、仪表携带、使用时须小心轻放,避免剧烈震动。

接地电阻测试仪测量方法详细介绍

目前,市场上存在的接地电阻测试仪有成百上千种,有进口的也有国产的,归纳起来,其测量方法只有三类:打地桩法、钳夹法、地桩与钳夹结合法。 一、打地桩法:地桩法可分为二线法、三线法和四线法 1.二线法:这是最初的测量方法:即将 一根线接在被测接地体上,另一根接辅助地极。此法的测量结果R=接地电阻+地桩电阻+引线及接触电阻,所以误差较大,现已一般不用。 2.三线法:这是二线法的改进型,即采用两个辅助地极,通过公式计算,在中间一根辅助地极在总长的0.62倍时,可基本消除由于地桩电阻引起的误差;现在这种方法仍然在用。但是此法仍不能消除由于被测接地体由于风化锈蚀引起接触电阻的误差。 3. 四线法:这是在三线法基础上的改进法。这种方法可以消除由于辅助地极接地电阻、测试引线及接触电阻引起的误差。 二、钳夹法:钳夹法分为单钳法和双钳法 1.双钳法:利用在变化磁场中的导体会产生感应电压的原理,用一个钳子通以变化的电流,从而产生交变的磁场,该磁场使得其内的导体产生一定的感应电压,用另一个钳子测量由此电压产生的感应电流,最后用欧姆定律计算出环路电路值。其适用条件一是要形成回路,二是另一端电阻可忽略不计。 2. 单钳法: 单钳法的实质是将双钳法的两个钳子做成一体,但如果发生机械损伤,邻近的两个钳子难免相互干扰,从而影响测量精度。仪器选择:目前市场支持此种方法的仪器有法国CA公司的CA6415钳式接地电阻测试仪,还有华谊仪表的MS2301钳式接地电阻测试仪等,我公司支持此种方法的仪器是ET3000双钳多功能接地电阻测试仪。 三、地桩与钳夹结合法:这种方法又叫选择电极法这种方法的测量原理同四线法,由于在利用欧姆定律计算结果时,其电流值由外置的电流钳测得,而不是象四线法

接地电阻降阻方法

接地电阻降阻方法(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1 引言 变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用,其接地电阻、跨步电压与接触电压是变电站接地系统的重要技术指标,是衡量接地系统的有效性、安全性以及鉴定接地系统是否符合要求的重要参数。然而,有些变电站由于受地理条件的限制,不得不建在高土壤电阻率地区,导致这些变电站的接地电阻、跨步电压与接触电压的设计计算值偏高,无法满足现行标准的要求。近年来,随着电力系统短路容量的增加,由于接地不良引起的事故扩大问题屡有发生,因此接地问题越来越受到重视。在设计施工过程中如何合理确定接地装置的设计方案,降低接地电阻,这是变电站电气设计施工的重点之一。 2 变电站接地网电阻偏高的原因 变电站接地网电阻偏高的原因有多方面的,归纳起来有以下几个方面的原因。 2.1客观条件方面 一是土壤电阻率偏高。特别是山区,由于土壤电阻率偏高,对系统接地电阻影响较大;二是土壤干燥。干旱地区、沙卵石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土壤电阻率偏高。 2.2勘探设计方面 在地处山区复杂地形地段的变电站,由于士壤不均匀,土壤电阻率变化较大,这就需要对每处地网进行认真的勘探、测量。根据地形、地势、地质情况,设计出切合实际的接地装置。如果不根据每处地网的地形、地势情况合理设计接地装置并计算其接地电阻,而是套用一些现成的图纸或典型设计,那么就从设计上就留下了先天性不足,造成地网接地电阻偏高。 2.3施工方面

对于不同地区变电站的接地来说,精心设计重要,但严格施工更重要。因为对于地形复杂,特别是位于山岩区的变电站,接地地网水平接地沟槽的开挖和垂直接地极的打入都十分困难,而接地工程又属于隐蔽工程,如施工过程中不能实行全过程的技术监督和必要的监理,就可能出现如下一些问题:一是不按图施工。尤其是在施工困难的山区,屡有发生水平接地体敷设长度不够,少打垂直接地极等;二是接地体埋深不够。山区、岩石地区,由于开挖困难,接地体的埋深往往不够,由于埋深不够会直接影响接地电阻值;三是回填土的问题,有关规范要求用细土回填,并分层夯实,在实际施工时往往很难做到,尤其是在岩石地段施工时,由于取土不便,往往采用开挖出的碎石及建筑垃圾回填,这样还会加快接地体的腐蚀速度;四是采用木炭或食盐降阻,这是最普遍的做法。采用木炭或食盐降阻,会在短期内收到降阻效果,但这是不稳定的。因为这些降阻剂会随雨水而流失,并加速接地体的腐蚀,缩短接地装置的使用寿命。 2.4运行方面 有些接地装置在建成初期是合格的,但经一定的运行周期后,接地电阻就会变大,除了前面介绍的由于施工时留下的隐患外,以下一些问题也值得注意:一是由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别足在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置;二是在接地引下线与接地装置的连接部分因锈蚀而使电阻变大或形成开路:三是接地引下线接地极受外力破坏时误损坏等。 3 接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式(1)可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容;二是改善地质电学性质,减小地的电阻率和介电系数。 接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种误解,把接地环作为接地的主体,很少使用接地体,在接地要求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接

接地电阻的测量方法

接地电阻的测量方法 一般来讲,接地装置的阻抗是复数阻抗,包含电阻分量、电容分量和电感分量。对大地网来说,电感分量要大得多,对工频接地电路,接地电阻特别起作用,所以一般称工频接地阻抗为接地电阻。 一般接地电阻测试仪测量出来的数值都是工频接地电阻。冲击电阻值一般是由工频接地电阻值换算得出,换算方法见本标准附录E。也可直接用冲击接地电阻测量仪测得。 A.1 接地电阻的测量方法 接地装置的工频接地电阻值的测量方法有两点法(电流表-电压表法)、三点法、比较法、多级大电流法和故障电流法、电位降法等,通常实用的方法是电位降法,接地电阻测试仪也是用的电位降法。本附录只介绍电位降法。 A.2 电位降法 原理图见图F.1 图中三个接线端子E、P、C分别接到接地体、电流探针和电位探针。其中E 端子连接接地体G,P端子连接电位探针,C端子连接电流探针。测量时,在C 端子产生一个恒定电流,该电流经电流探针—地—接地体—E,形成电流回路。只要x和d足够长,且具有合适的比例关系,通过测量G、P之间的电压U,其

电压U和电流I的比值就是接地电阻R G,即: R G=U/I (1) A.1 几种标准测量方法 方法一:直线法,见图F.2。 图 F.2 直线法 方法二:补偿法, 见图F.3。 图 F.3 补偿法 方法三:三角形法,见图F.4。 图 F.4 三角形法 A.2 测量中需要注意的问题 P点至E点的距离要大于10米,小于10米测量结果误差较大。 测量时,要根据现场情况仔细选择C点,E点至C点所在直线的延长线一定要通过地网的中心点G,即CE连线要垂直于地网边缘。 P点要选在C点至地网的中间,若对测量的数据有疑问时,可多选几个P点进行测量,再对数据进行分析,以便得出较准确的测量结果。 测量时,测试线一般要求不要互相缠绕。

ETAP接地网计算

接地网计算培训讲稿 一、关于接地网的基本知识。 在电力系统中,为了保护设备和人身的安全,接地现象是非常常见的。将电气装置、设施该接地部分经接地装置与大地做良好的电气连接称为接地。接地根据用途可以分为工作接地、保护接地、防雷接地和防静电接地。接地装置由接地体和接地线两部分组成。 埋入地中并且与大地直接接触的金属导体称为接地体;把电气装设施该接地部分经接地体连接起来的金属导体称为接地线。接地体又分为人工接地体和自然接地体。兼作接地体用的直接与大地接触的各种金属构件、非可燃气体或液体的金属管道、建筑物中的钢筋、电缆外皮、电杆基础上的避雷线和中性线等都是自然接地体;为满足接地装置接地电阻要求而专门埋设的接地体称为人工接地体。我们所研究的接地网就是一种人工接地体,接地网由由水平接地体和垂直接地体,接地网的材料一般有钢管、角钢、圆钢、扁钢和铜带,接地网祈祷的作用有泻放电流和均压作用。 不同形状接地体周围土壤电位分布演示。 电流经接地体流入大地,在大地表面形成分布电位。接地体和大地零电位点间的电压称为接地装置的对地电压(或对地电位)。接地线电阻和接地体的对地电阻(电流自接地体向外散流所遇到的电阻,又称散流电阻或扩散电阻)之和成为接地装置的接地电阻。接地线电阻基本上很小,所以可以认为接地电阻就等于扩散电阻。接地电阻数值上等于对地电位与从接地体流入大地电流的比值。按流过接地体的电流是工频电流求得的电阻称为工频接地电阻;按流过接地体的电流是冲击电流求得的电阻称为冲击接地电阻。接地电阻和土壤电阻率、接地体规格有关。所以改变接触电阻的主要手段就是改变土壤电阻率和改变接地体敷设。土壤的电阻率大小主要取决于土壤中导电离子的浓度和水分含量。干燥的土壤是不导电的,有时候为了降低土壤电阻率还会采用降阻济。 评估接地网是否满足要求的指标除了接地电阻和对地电位外,还有接触电压和跨步电压。人站在地面上里设备水平距离0.8米处手触到设备外壳、构架离地面1.8米处,加于人手与脚之间的电压称为接触电压;人在分布电位区域中沿散流方向行走,步距为 0.8米时两脚间的电压称为跨步电压。在大接地短路电流系统中接触电压和跨步电压应 满足: ;

接地电阻测试方法和及其详细测试步骤

接地系统接地电阻测试方法和步骤(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤 2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

接地电阻测试方法(带图)

接地电阻测试方法(带图) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 ZC-8型接地电阻测试仪 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台

2、辅助接地棒二根 3、导线5m、20m、40m各一根 常用工器具 五、仪表好坏检查: 1、外观检查。 先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。 三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向; 四端钮的接地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。

3、短路检查。不管是三端钮的仪表还是四端钮的仪表,均将所有端钮连接起来,然后轻摇摇表,摇表的指针偏往“0”的方向。 通过上述三个步骤的检查后,基本上可以确定仪表是完好的。 六、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、

接地电阻计算要求

标准接地电阻规范要求 一、规范值; 1、独立的防雷保护接地电阻应小于等于(≤)10欧; 2、独立的安全保护接地电阻应小于等于(≤)4欧; 3、独立的交流工作接地电阻应小于等于(≤)4欧; 4、独立的直流工作接地电阻应小于等于(≤)4欧; 5、防静电接地电阻一般要求小于等于(≤)100欧。 6、共用接地体(联合接地)应不大于接地电阻1欧。 【避雷针的地线属于防雷保护接地,如果避雷针接地电阻和防静电接地电阻都是按要求设置的,那么就可以将防静电设备的地线与避雷针地线接在一起,因为避雷针的接地电阻比静电接地电阻小10倍,因此发生雷电事故时,大部分雷电将从避雷针地泄放,经过防静电地的电流则可以忽略不计。】 二、接地分三种 1、保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下。 2、防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3、防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。

注意的是.三种接地要分离设置. 三、接地线的标识: 区分线别接地体规定 保护接地线黄绿双色线三种接地体间的距离必须大于20米 防静电接地线绿色线 防雷接地线镀锌圆钢 四、接地要求: 交流电气装置的接地应符合下列规定: 1 、当配电变压器高压侧工作于小电阻接地系统时,保护接地网的接地电阻应符合下式要求: R≤2000/I (12.4. 1-1) 式中 R――考虑到季节变化的最大接地电阻(Ω); I――计算用的流经接地网的人地短路电流(A)。 2、当配电变压器高压侧工作于不接地系统时,电气装置的接地电阻应符合下列要求: 1)高压与低压电气装置共用的接地网的接地电阻应符合下式要求,且不宜超过4Ω: R≤120/I (12.4.1-2) 2)仅用于高压电气装置的接地网的接地电阻应符合下 式要求,且不宜超过100,: 尺≤250/I (12.4.1-3) 式中 R――考虑到季节变化的最大接地电阻(Ω);

接地电阻测量原理与方法

接地电阻测量原理 梁子斌 对从事地电学工作,对接地电阻的概念并不陌生,然并非能完全理解。这里想跟大家聊聊其概念和测量原理。 1.接地电阻概念,接地装置在输变电工程中是个特殊的项目,属隐蔽工程。对新安装的接地装置,它包括埋入地中直接与大地接触的金属导体,或称接地体,以及连接接地体与电气设备接地部分的接地线。为了确保其是否符合设计或规程要求必须经过检验才能正式投入运行。接地电阻就是当有电流由接地体流入土壤中将呈现有电阻,这就是接地电阻。 接地电阻本质是由土壤产生的电阻,是接地装置泄放电流时表现出来的电阻。由高斯定 理知道,在全空间中,一半径为R的导体球其接地电阻为ρ地= ρ 4πR ,如在地表无限半 空间中其接地电阻大一倍ρ地= ρ 2πR ,埋在地下某深度中,则在两者之间,对均匀介质, 也可以解析得到。还有不同形状的接地体,圆盘形、棍形,环形等都有公式可以计算。 其等效电路如下图:其中U为接地体对大地零电位参考点的电位差,I为流过接地体的电流U/I即为接地电阻。 接地电阻测量原理 看视很简单,通过电压的电流的测量就可以得到电阻值,可实际上并不容易。试想想,在工作现场去哪能找到大地零电位的参考点那?哎呀,有思路了,我们可以临时做一个啊,再做一个接地,可这临时的接地电阻值也不知道,我们可以知道这两个电阻之和,一个方程,两个位知数!好办,再加一个辅助接地电极,这样我们两两进行测量,三个方程,三个未知接地电阻,简单解方程就可以啦!呵呵,还不明白呀,看下面示意图。 我们分别将RR1,RR2,R1R2做环路供电,电压和电流我们都会测的,测得后容易得到R+R1,R+R2,R1+R2,更不用说现在都有万用表了,真接可以测出的,多大的阻值,万用表都能测得,别担心。接地电阻也和收音机里的电阻一样,道理没什么不同。好了,写方程吧。

接地电阻的计算与测量

接地电阻的计算与测量(转贴) 2003-2-28 路灯设施的接地保护事关国家财产和人民生命安全的大事。为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻。 理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全。但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体。由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资。 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω。而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω。因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω。 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等。此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算。 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得:Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m深处。若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电位和有利施工。这样,电流流入每根接地体时,由于相邻接地体之间的磁场作用而阻止电流扩散,即等效增加了每根接地体的电阻值,因而接地体的合成电阻值并不等于各个单根接地体流散电阻的并联值,而相差一个利用系数,于是接地体合成电阻为Rg=Rgo/(ηL*n) 式中,Rgo—单根垂直接地体的接地电阻(Ω); ηL—接地体的利用系数; n—垂直接地体的并联根数。 接地体的利用系数与相邻接地体之间的距离a和接地体的长度L的比值有关,a/L值越小,利用系数就越小,则散流电阻就越大。在实际施工中,接地体数量不超过10根,取a/L=3,那么接地体排列成行时,ηL在0.9-0.95之间;接地体排列成环形时,ηL约为0.8。 2、水平埋设接地体的散流电阻 一般水平埋设接地体采用扁钢、角钢或圆钢等制成,其人工接地电阻按下式求得: Rsp=(ρ/2πL)*[Ln(L2/dh)+A]

接地电阻测量原理与方法

接地电阻测量原理与方 法 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

接地电阻测量原理 梁子斌 对从事地电学工作,对接地电阻的概念并不陌生,然并非能完全理解。这里想跟大家聊聊其概念和测量原理。 1.接地电阻概念,接地装置在输变电工程中是个特殊的项目,属隐蔽工程。对新安装的接地装置,它包括埋入地中直接与大地接触的金属导体,或称接地体,以及连接接地体与电气设备接地部分的接地线。为了确保其是否符合设计或规程要求必须经过检验才能正式投入运行。接地电阻就是当有电流由接地体流入土壤中将呈现有电阻,这就是接地电阻。 接地电阻本质是由土壤产生的电阻,是接地装置泄放电流时表现出来的电阻。由高斯定理知道,在全空间中,一半径为R的导体球其接地电阻为 ,如在地表无限半空间中其接地电阻大一倍,埋在地下 某深度中,则在两者之间,对均匀介质,也可以解析得到。还有不同形状的接地体,圆盘形、棍形,环形等都有公式可以计算。 其等效电路如下图:其中U为接地体对大地零电位参考点的电位差,I为流过接地体的电流U/I即为接地电阻。 接地电阻测量原理 看视很简单,通过电压的电流的测量就可以得到电阻值,可实际上并不容易。试想想,在工作现场去哪能找到大地零电位的参考点那哎呀,有思路了,我们可以临时做一个啊,再做一个接地,可这临时的接地电阻值也不知道,我们可以知道这两个电阻之和,一个方程,两个位知数!好办,再加一个辅助接地电极,这样我们两两进行测量,三个方程,三个未知接地电阻,简单解方程就可以啦!呵呵,还不明白呀,看下面示意图。

接地电阻测量方法

接地电阻测量方法 影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的,接地电阻的测量方法可分为:电压电流表法;比率计法;电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法;钳形地阻表法;电压电流表法;三极法;四极法。在此主要介绍电压电流表法。 一、电压电流表法 电压电流表测量接地电阻法见图 4.图中的电流辅助极是用来与被测接地电极构成电流回路,电压辅助极是用来测得被测接地电位。采用该方法保证测量准确度的关键在于电流辅助极和电压辅助极的位置要选择适合。如在辅助电流极以前,电压表已有读数,说明存在外来干扰。 按DL475-92《接地装置工频物性参数的测量导则》规定,当大型接地装置如110kV 以上变电所接地网,或地网对角线D≥60m需要采用大电流测量,施加电流极上的工频电流应≥30A,以排除干扰减少误差。 (一) 电压电流三极直线法。电压电流三极直线法是指电流极和电压极沿直线布置,三极是:被测接地体、测量用电压极和电流极,其原理接线如图 5所示。一般d13=(4~5)D,d12=(0.5~0.6)d13,D为被测接地装置最大角线长度,点2可以认为是处于的零点位。根据测量导则(DL475-92),如d13取(4~5)D有困难,而接地装置周围的土壤电阻率又比较均匀时,d13可以取2Dd12取D值。测量步骤如下: ①按图4接线。 ②记录初始的电压值V0. ③通电后,记录电流值I1、电压值V1. ④将电压极沿接地体和电流极连接方向前后移动3次,每次移动的距离为d13的5%,记录每次移动后的电流和电压数值,取3次记录的电压和电流值的算术平均值,作为计算接地体的接地电阻的电压和电流值。 (二)电压电流三极三角形法。电极如图6所示布置,一般取d13=d12≥2D,夹角θ≈30度(或d23=1/2d12),测量步骤与电压电流三极直线法相同。 ④将电压极沿接地体和电流极连接方向前后移动3次,每次移动的距离为d13的5%,记录每次移动后的电流和电压数值,取3次记录的电压和电流值的算术平均值,作为计算接地体的接地电阻的电压和电流值。 二、手摇式地阻表测量原理 手摇式地阻表是一种较为传统的测量仪表,它的基本原理是采用三点式电压落差法,其测量手段是在被测地线接地极(暂称为X)一侧地上打入两根辅助测试极,要求这两根测试极位于被测地极的同一侧,三者基本在一条直线上,距被测地极较近的一根辅助测试极 (称为Y)距离被测地极20米左右,距被测地极较远的一根辅助测试极(称为Z)距离被测地极40米左右。测试时,按要求的转速转动摇把,测试仪通过内部磁电机产生电能,被测地极X和较远的辅助测试极(称为Z)之间“灌入”电

综合接地电阻计算

接地电阻计算方法 单根垂直接地体(棒形):RE1≈σ/l 单根水平接地体:RE1≈2σ/l 多根放射形水平接地带(n≤12,每根长l≈60m): RE≈0.062σ/n+1.2 环形接地带: RE≈0.6σ/√A σ值(参考): 土壤类别Ω.m 较湿时较干时 黑土、田园土50 30~100 50~300 粘土60 30~100 50~300 砂质粘土、可耕地100 30~300 80~1000 黄土200 100~200 250 含砂粘土、砂土300 100~1000 >1000 多石土壤400 砂、砂砾100 250~1000 1000~2500 接地体及接地线的最小尺寸规格 类别材料及使用场所最小尺寸 接地体圆钢直径10mm 角钢厚度4mm 钢管壁厚3.5mm 扁钢截面48mm2 厚度4mm 接地线圆钢室内直径6mm 室外直径8mm

扁钢室内截面48mm2 厚度3mm 室外截面48mm2 厚度4mm 垂直接地体根数确定:n≥RE1/ηRE 垂直接地体的利用系数η值(环形敷设) 根数10 20 30 1 0.52~0.58 0.44~0.50 0.41~0.47 垂直接地体的间距与其长度比 2 0.66~0.71 0.61~0.66 0.58~0.63 3 0.74~0.78 0.68~0.73 0.66~0.71 满足热稳定的最小截面:Smin=4.52I(1)k

接地电阻的计算与测量 路灯设施的接地保护事关国家财产和人民生命安全的大事.为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻.理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全.但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到.在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体.由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资. 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω.而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω.因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω. 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等.此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算. 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得: Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m 深处.若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电

T2000钳形接地电阻测试原理、方法

钳形接地电阻测试仪的原理与方法 意大利HT测试仪器-中国 针对目前防雷设施检测工作中出现的问题,从接地电阻测量的原理入手,提出几种测试方法和注意事项,以指导检测人员正确测量接地电阻,提高防雷检测机构的检测能力,增强检测人员的技术水平。 HT-T2000钳形接地电阻测试仪,采用夹钳接地电阻测试技术,无辅助极测试方法,不需要接地棒,也不用查找适合放置辅助接地棒的位置。大大提高测试效率,使用户可以在无法使用其他技术的地点(如建筑物内部或电线塔上)执行接地回路电阻测试。 一.测量原理 1、电阻测量原理 HT-T2000系列钳形接地电阻仪测量接地电阻的基本原理是测量 回路电阻。见下图。钳表的钳口部分由电压线圈及电流线圈组成。电 压线圈提供激励信号,并在被测回路上感应一个电势E。在电势E的 作用下将在被测回路产生电流I。钳表对E及I进行测量,并通过下面 的公式即可得到被测电阻R。 R=E/I 2、电流测量原理 HT-T2000钳形接地电阻仪测量电流的基本原理与电流互感器的测量原理相同。见下图。被测量导线的交流电流I,通过钳口的电流磁环及电流线圈产生一个感应电流I1,钳表对

I1进行测量,通过下面的公式即可得到被测电流I。 I=n·I1 其中:n为副边与原边线圈的变比系数。 二.接地电阻测量方法 1、多点接地系统 对多点接地系统(例如输电系统杆塔接地、通信电缆接地系统、某些建筑物等),它们通过架空地线(通信电缆的屏蔽层)连接,组成了接地系统。见下图。当用钳表测量时,其等效电路如下: 其中:R1为预测的接地电阻。 R0为所有其它杆塔的接地电阻并联后的等效电阻。 虽然,从严格的接地理论来说,由于有所谓的“互电阻”的存在,R0并不是通常的电工学意义上的并联值(它会比电工学意义上的并联值稍大),但是,由于每一个杆塔的接地半球比起杆塔之间的距离要小得多,而且毕竟接地点数量很大,R0要比R1小得多。因此,可以从工程角度有理由地假设R0=0。这样,我们所测的电阻就应该是R1了。 多次不同环境、不同场合下与传统方法进行对比试验,证明上述假设是完全合理的。 2、有限点接地系统 这种情况也较普遍。例如有些杆塔是5个杆塔通过架空地线彼此相连;再如某些建筑物

接地电阻的测量方法

接地电阻的测量 1.接地电阻的概念 与大地紧密接触并形成电气连接的一个或一组导体,叫接地极。通过接地极与大地相连接,称接地。接地,按用途分,有防雷接地,防静电接地,防触电接地,工作接地,零线的重复接地,还有逻辑接地。 工频电流或冲击电流从接地极向周围大地流散时,土壤呈现的电阻称为接地电阻。 通过接地极流入大地的电流作半球形散开,半球形的球面,在距接地极越远,电阻越小,20M以外的地方,已无电阻的存在。也就无电压降了。20M以外的地方,电位等于零,我们称为电气上的零电位,也称地电位。在接地体分布密集的地方很难找到电气上的地。 电子设备中各级电路中,有一个参考电位,这个电位称为逻辑地。它可以是电子设备的机壳、底座、印刷电路版的地线,建筑物内总接地端子,接地干线。逻辑地,可以与大地相连接,也可以不连接。 逻辑地没有接地电阻的概念。 接地电阻的数值等于接地极的对地电位与通过接地极的接地短路电流的比。所谓接地电阻是表征工频电流或冲击电流通过接地极向周围大地流散的能力。接地电阻愈小,流

散愈快。接地电阻不能用从接地极到大地某点的电阻来表达,因此,不能用欧姆表测量接地电阻。 可以认为,接地电阻虽然具有直流电阻相同的量纲,但实际上是土壤电阻率ρ与电容的比率乘以介电系数ε,因此,确切的说,接地电阻应称为接地阻抗。同时,由于接地电阻R含有电容C这一分量。因此,测量时,不能使用直流电源。也不宜使用功率表法来测量,用功率法的指示值只反映电阻分量。而且一般功率表法的误差与功率因数COSΦ有关。随着COSΦ的降低,误差较大。接地电阻的阻抗角一般都是在Φ=COS—1(0.5-0.7)之间,因此,不宜使用功率表法来测量,因误差较大。由此可见,接地电阻与一般导体的电阻R=Ρl/S的物理概念是不一样的。其值与土壤电阻率ρ和介电系数ε的乘积成正比,与电容C成反比,而与接地装置内部的引线长度无关。 2.测量方法 1)测量原理 接地装置工频接地电阻的数值,等于接地装置的对地电压与通过接地装置流入地中的工频电流的比值因此,测量接地电阻必须测量接地装置的对地电压和流入地中的工频电流接地装置的对地电压是指接地装置与地中电流场的实际的零电位区之间的电位差。因此,必须在接地体中通过流入地中的工频电流,电源的一端接接地装置上,另一端接在能与被测接地极构成回路的辅助电

相关文档
最新文档