不等式证明的若干方法大学毕业论文
不等式的证明方法论文1413

不等式的证明方法论文不等式的证明方法摘要不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考.关键词:不等式;证明;方法Methods for Proving InequalityAbstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers.Key words: inequality; proof; method目录1 引言 (1)2 文献综述 (1)2.1 国内外研究状况 (1)2.2 国内外研究评价 (1)2.3 提出问题 (1)3 构造法 (1)3.1 构造几何图形 (1)3.2 构造复数 (2)3.3 构造定比分点 (2)3.4 构造主元,局部固定 (3)3.5 构造概率模型 (3)3.6 构造方差模型 (3)3.7 构造数列 (4)3.8 构造向量 (4)3.9 构造函数 (4)4 换元法 (5)4.1 代数换元 (6)4.2 三角换元 (6)5 放缩法 (6)5.1 添加或舍弃一些正项(或负项) (6)5.2 先放缩再求和(或先求和再放缩) (7)5.3 先放缩,后裂项(或先裂项再放缩) (7)5.4 放大或缩小因式 (7)5.5 固定一部分项,放缩另外的项 (8)5.6利用基本不等式放缩 (8)6 数学归纳法 (8)7 结论 (9)7.1主要发现 (9)7.2启示 (9)7.3 局限性 (9)7.4 努力方向 (9)参考文献 (10)1引言不等式具有丰富的内涵和突出的地位,并且它与数学理论、现实生活、科学研究有着紧密的联系.加之,不等式的形式与结构多种多样,其证明方法繁多,技巧性强,有些不等式用一般的方法(如比较法、分析法、综合法)很难证出来,或者是论证过程很冗长,亦或根本证不出来[1].于是,人们追寻不等式与其它知识的相互联系,构造新颖巧妙的组合,在不同知识体系的交汇处探究问题,逐步提高知识的“整合”能力,把需证明的不等式加以转换,使之以特殊的行之有效的方法得以证明,在此基础上还要注意从不同角度去分析不等式的结构与特征,应用联系、变化、对立统一的观点恰当地将问题转化,从而使不等式的证明化难为易[10].探讨不等式证明的不同方法是一项有意义的工作,下文通过典型的例题,揭示了一些不等式证明方法在解题中的应用,旨在进一步拓宽人们证明不等式的能力.2文献综述2.1国内外研究状况国内许多专家、学者研究过不等式的证明方法.在其一般方法(比较法、分析法、综合法)的基础上.早在1987年,闻厚贵就在文[1]编著了不等式证法,该书将不等式的证明方法整理归类.1990年,严镇军在文[2]中编著了不等式,该书归纳了不等式的性质、证明技巧以及应用.1987年,易康畏在文[3]中编著了不等式的图解、证明及演绎,该论著利用图解的形式详细的分析证明了不同的不等式. 2009年,刘美香在文[4]中讨论了构造概率模型证明不等式.2003年,赵会娟、尹洪武在文[5]中研究了不等式证明的几种特殊方法.2004年,李文标在文[6]中浅谈了证明不等式的几种非常规方法;朱胜强在文[7]中探讨了不等式证明的几类非常规方法.2008年余焌瑞在文[8]中研究了构造法在不等式中的运用.2002王廷文、王瑞在文[9]中讨论了构造函数证明不等式.1997年,王廷文在文[10]中总结了构造法证明不等式.2007年,常椒凤在文[11]中讨论了数学解题中的图形构造法;同年,王保国在文[12]中介绍了不等式证明的六种非常规方法;黄俊峰在文[13]中介绍了利用向量的性质证明不等式. 2008年,谭景宝在文[14]中介绍用构造法证明不等式;在文[15]中周燕华就利用转换视角、构造主元证明不等式的方法给出了系统、详尽的举例论证.2008年,耿道永在文[16]中提出了有关不等式的几种新颖构造性证法.2.2国内外研究评价从查到的国内外文献来看,国内外研究者对不等式证明方法介绍了很多,文献[1-17]分别就不等式的性质、不同证明方法及应用作了论述,文献中阐述一种或几种不等式证明方法,一些文献写理论较多,一些文献写例子较多,理论很少,而且许多方法有名称不一而本质一样的情形,如判别式法、构造函数法在形式上都是根据二次函数的性质来进行分解求解的,因此可以归为构造函数法.所以,有必要重新整理和归纳不等式证明方法,让每一种方法兼具理论与实践性.2.3提出问题不等式的证明问题,就其方法而言,没有定法可套,有较大的灵活性和技巧性.而且不等式证明历来是中学、特别是高中数学教学的一个重点和难点.因此在前人研究不等式证明方法的基础上,试图完整地整理出常用的几类方法,使之系统化,并在此基础上探寻新的证明方法.3构造法所谓构造法,就是指通过对条件和结论充分细致的分析,抓住问题的特征,联想熟知的数学模型,然后变换命题,恰当地构造辅助元素,它可以是图形、函数、方程、或其等价命题等,以此架起一座连接条件和结论的桥梁,从而使问题得以解决的数学方法.构造法本质上是化归思想的运用,但它常常表现出简捷、明快、精巧、新颖等特点,使数学解题突破常规,具有很强的创造性.3.1构造几何图形有些不等式若是按常规的代数方法证明,则繁难无比.若是能揭去不等式抽象的面纱,恰当地赋予几何意义,并构造出相应的几何图形,将题设条件及数量关系直接在图形中得到体现,使条件与结论的关系明朗化,就能直观揭露出不等式问题的内在实质,由此获得具体、形象、简洁的证明方法.构造几何图形证明不等式,关键是构造出恰当的几何图形,把不等式由图形来表示出来.常用到 “两点间直线段最短”,“三角形中大边对大角”,“三角形两边之和大于第三边”,“直角三角形斜边大于直角边”等几何知识.例1已知正数111a b c a b c ,,,,,满足条件111a a b b c c k +=+=+=,求证:2111ab bc ca k ++<.2k 看作边长为k 的正方形的面积,从中构分析:如果我们把1ab ,1bc ,1ca 均看作三个矩形的面积,造出前面的这三个矩形.DF a =,1DG AH b ==,AG BH b ==,证明:构造边长为k 的正方形ABCD (如图1),且令1BE c =,1CF a =,并作出相应的矩形Ⅰ,Ⅱ,Ⅲ.2111ab bc ca k ++<.图1 由ABCD S S S S I II III>++,可得利用数形结合解题的关键是理解代数式的几何意义,把已知条件或要证不等式中的代数量直观化为某个图形中的几何量,即构造出一个符合条件的几何图形,便可应用该图形的性质及相应的几何知识证明不等式.因此,对于函数的图象和常见曲线要熟记,以便在应用时,能够得心应手,信手拈来.3.2构造复数复数之间不存在大小关系,但复数的模、实部、虚部作为实数,它们之间是可以比较大小的,因此复数的模、实部、虚部各自或彼此之间存在一系列不等关系.构造复数证明不等式的思路是,根据待证不等式和已知条件构造复数,然后代入复数模的不等式中,再把模的不等式化为无理不等式或线段不等式.当求证的不等式中出现“平方和的算术根”的形式的时候很容易联想到复数的模.从而可通过构造复数并利用复数模的性质121212Z Z Z Z Z Z +≥+≥-来证明不等式.例2 设a ,b ,c ∈R ,求证:()2222222a b b c c a a b c +++++≥++. 分析:根据求证式的结构特点,联想复数模的性质121212Z Z Z Z Z Z +≥+≥-. 证明:构造复数1Z a bi =+,2Z b ci =+,3Z c ai =+,则221Z a b =+, 222Z b c =+, 223Z c a =+, ()()123Z Z Z a b c b c a i ++=+++++()22a b c a b c =++≥++,而123123Z Z Z Z Z Z ++≥++,所以()2222222a b b c c a a b c +++++≥++.构造复数证明不等式有很大的局限性,只有当不等式出现“平方和算术根”时,我们才考虑构造复数.3.3构造定比分点设1P ,2P 是直线l 上的两点,点P 是l 上不同于1P ,2P 的任意一点,则存在一个实数λ使21PP P P λ=,λ叫做点P 分有向线段21P P 所成的比.显然,当点P 在线段12PP 上时,λ>0;当点P 在线段12PP 或21P P 的延长线上时,λ<0.如果这条直线l 就是x 轴,且1P ,P ,2P 在x 轴上的实数分别为1p ,p ,2p (其中12p p <),则12p p p <<的充要条件是λ>0.这样,我们就可以将证明一个不等式的问题转化为对一个实数的符号的判断问题.例3求证:()()()()222341221x x x x ---≤≤++. 分析:此题我们通常用判别式法去证.如果设4-,()()()()2223221x x x x --++,1分别是有向线段上的三点,则可通过定比λ的值确定内、外分点来证得.证明:设4-,()()()()2223221x x x x --++,1分别对应数轴上的点1P ,P ,2P ,P 分有向线段12PP 所成的比为λ,则 ()()()()()()()()()()222222234221312321221x x x x x x x x x x λ--++++==--+-++,所以,0λ≥或λ不存在,故点P 不是21P P 的外分点;当0λ>时,()()()()222341221x x x x ---<<++;当0λ=时,()()()()2223221x x x x --=-4++;当λ不存在时,()()()()22231221x x x x --=++. 综上所述,可知 ()()()()222341221x x x x ---≤≤++. 3.4构造主元,局部固定一些不等式的证明,若从整体上考虑很难入手,则当条件或结论中出现多个变量时,我们可以选取其中一个变量为主元局部固定,抓住这个主元逐一证明不等式.通常是先暂时固定某些变量,而考查个别变量的变化、结果,然后再确定整个问题的结果.例4 设1a ≤,函数()2f x ax x a =+-,求证:当1x ≤时,()54f x ≤. 分析:该问题一般是通过绝对值不等式的几次放缩来证明,但我们若换一个视角,以a 为主元,将题中关于x 的函数看成a 的一次函数,则原命题的陈述方式可改为:一次函数()()21g a x a x =-+的最值不超过54. 证明:设()()21g a x a x =-+,[]1,1a ∈-,[]1,1x ∈-.当210x -=,即1x =±时,()1g a =±.显然()()54f x g a =≤成立. 当210x -≠时,()g a 是a 的一次函数,故只需证明()514g ±≤.因为()22151124g x x x ⎛⎫=+-=+- ⎪⎝⎭,所以()5114g -≤≤,即()11g ≤;而()22151124g x x x ⎛⎫-=-++=--+ ⎪⎝⎭,所以()5114g -≤-≤,即()514g -≤.综上所述, ()54g a ≤,即()54f x ≤. 3.5构造概率模型概率论是研究随机现象的一门数学分支,它既有其独特的概念和方法,又与其它学科分支有着密切的联系.因此在解答有关数学问题时,若能依据题设条件构建概率模型,可使这些数学问题简捷巧妙解决.构造概率模型解题,关键在于要找到恰当的概率模型.一旦运用成功,它能从某些方面体现出问题的本质规律和数学的内在美,往往给人以耳目一新的感觉.例5 已知0,2x π⎡⎤∈⎢⎥⎣⎦,求证:4sin 2214x x π+≥⎛⎫++ ⎪⎝⎭. 分析:原式即42sin cos 21sin cos x xx x+≥++,由条件知0sin 1x ≤≤,0cos 1x ≤≤.于是只需证2sin cos 1sin cos x x x x +≥++,亦只需证sin cos sin cos 1x x x x +-≤成立,显然利用概率模型来证极为简单.证明:设两独立事件A 和B ,即()sin P A x =,()cos P B x =, 则 ()()()()P A B P A P B P AB +=+-sin cos sin cos 1x x x x =+-≤, 于是 2sin cos 1sin cos x x x x +≥++.因为0,2x π⎡⎤∈⎢⎥⎣⎦,故sin 0x ≥,cos 0x ≥.即得42sin cos 21sin cos x x x x +≥++,所以4sin 2214x x π+≥⎛⎫+ ⎪⎝⎭. 对于一类涉及0与1的不等式,常可考虑利用概率性质()01P A ≤≤及加法公式()()()()P A B P A P B P AB +=+-,或()()()()()()()()P A B c P A P B P C P AB P BC P AC P ABC ++=++---+来证.其关键是求证式要符合概率加法公式的基本形式.3.6构造方差模型方差()()()222122n x x x x x xSn-+-++-=(其中x 是n 个数据1x ,2x ,,n x 的平均数),是用于描述数据波动情况的一个量.方差的表达式可以写成()()222212122n n x x x xx x nS n++++++-=.显然有20S ≥(当且仅当12n x xx x ====时等号成立).利用方差这一变式,我们可以通过构造方差来解决一类有关n 个实数的和与其平方和之间的关系问题.例6 设352x ≤≤,证明:.(2003年全国高中联赛试题) 证明:设原不等式的左边为u (0u >)22222244u S +++-=()21114044x u⎡⎤=+-≥⎢⎥⎣⎦,(352x ≤≤) 所以u ≤≤== 故u <,原不等式成立.通过构造方差模型,使得复杂的无理不等式的证证明问题得以简捷解决.3.7构造数列一个不等式有时涉及多个变量.如果能根据题设条件将某些变量看成是数列的项.则可借助数列中项之间的关系来沟通变量间的联系,使问题获解.通过构造等比数列或等差数列.将不等式中出现的多个变量都用公比或公差来表示.实现了化多元为一元.从而简化了不等式证明的难度.有些不等式中含有与自然数有关的变量,这时如果将这一变量看成是某一数列的项数,构造数列,则可结合数列的知识来证明不等式.例7 求证:131212654321+<-⋅⋅n n n .分析:这是一道不等式的证明题,若我们总是在不等式的圈子里转悠,问题不能圆满的解决.跳出这个圈子,我们不难发现这是一个自然数有关的命题,那么,解决它的方法不外乎两种,一是利用数学归纳法;二是构造数列.我们来构一个数列{}n a .证明: 令=n a 132********+⋅-⋅⋅n nn , 则()()()()431213222221+⋅++⋅+=⎪⎭⎫⎝⎛+n n n n a a n n =1419281242028122323>++++++n n n n n n 所以,n n a a >+1,从而有,1121=>>>>--a a a a n n n .因此原不等式得证.3.8构造向量向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁.对于某些不等式的证明,若能依据不等式的条件和结论,将其转化为向量形式,利用向量和及数量积关系式n m n m⋅≤⋅,往往避免复杂的凑配技巧,使证明过程直观而又容易理解.例8 已知,a b R +∈,1a b +=证明:设()1,1=m,(2n a =+,则2m n a ⋅=+2m =,2n=.由m n m n ⋅≤⋅,得≤构造向量时,要充分考虑待证不等式的结构特征,才能有的放矢.3.9构造函数函数揭示了变量之间的对应关系,同样也蕴含着变量之间的不等关系.我们常常利用一次函数的线性性质、二次函数的最值以及函数的单调性等性质证明某些不等式问题.如果能根据题目的条件与所证的不等式的结构特征.合理构造函数,常可使原本复杂的证明变得简便易行.构造函数证明不等式.其关键在于寻找恰当的函数模型.这往往需要将所证的不等式直接改造成函数关系式,或者将其看成某一函数解析式中的系数满足的关系.来探求函数解析式. 3.9.1构造一次函数由一次函数b kx y +=的图像可知,如果()0f m >,()0f n >,则对一切(,)x m n ∈均有()0f x >.我们将这一性质称为一次函数的保号性.利用一次函数的保号性可以证明一些不等式.例9 已知1a <、1b <、1c <,求证:2abc a b c +>++. 分析:首先将不等式化为20abc a b c +--->并整理得(1)20bc a b c -+-->,可将其看成是关于a 的一次函数式.证明:构造函数()(1)2f x bc x b c =-+--,这里1b <、1c <、1x <,则1bc <. 因为(1)12(1)(1)(1)0f bc b c bc b c -=-+--=-+-+->,(1)12(1)(1)0f bc b c b c =-+--=-->,所以,一次函数()(1)2f x bc x b c =-+--,当(1,1)x ∈-时,图象在x 轴的上方.这就是说,当1a <、1b <、1c <时,有(1)20bc a b c -+-->,即2abc a b c +>++.从上例的证明可以看出,构造一次函数证明不等式时,可按下列步骤进行: ⑴将不等式先移项使右边为零;⑵将不等号左边的式子整理成关于某一未知数x 的一次式()0f x >;⑶根据x 的取值范围(,)m n ,确定()f m 与()f n 的符号,确定当(,)x m n ∈时()f x 的符号进而证得不等式.构造一次函数证明不等式,其实质是将一个不等式的证明问题转化为确定解析式某个变量在两个特殊值处的符号问题,从而收到了以简驭繁的效果. 3.9.2构造二次函数通过对所证不等式的观察、分析,构造出二次方程.证明中借助于二次方程的判别式,从而使不等式得证.),0(x f 2>++=a c bx ax )(设二次函数则02≥++c bx ax 恒成立的充要条件是,0ac 4-b 2≤=∆,根据这一等价关系,我们可以将关于其中一个不等式的证明转化为对另一个不等式的证明.例10 若b a 10<<,求证:112+<-a b b . 分析:结论即0112>++-a b b ,可将左式看成是以b 为主元的二次函数(其中a a 10<<),再予以证明. 证明:令x b =,由b a 10<<,得)1,0(a b x ∈=.构造二次函数)1,0(,11)(2a x a x x x f ∈++-=.其对称轴为21=x . ⑴当211≤a ,即2≥a 时,f(x)在(0,a1)上单调递减.于是 )(x f >)(a 1f =)1(1111122+=++-a a a a a >0⑵当211>a ,即20<<a 时, 有 041-11)21()(>+=〉a f x f 综上,当)1,0(a x ∈时,011)(2>++-=a x x x f 恒成立,即不等式112+<-a b b 成立.4换元法通过对所证不等式添设辅助元素,使原来的未知量(或变量)变换成新的未知量(或变量),从而更容易达到证明的目的,这种证明不等式的方法称之为换元法.换元法多用于条件不等式的证明,换元法分为代数换元和三角换元.此法证明不等式的一般步骤是:(1)认真分析不等式,合理换元;(2)证明换元后的不等式;(3)得证后,导出原不等式.4.1代数换元对于那些具有一定结构特点的代数式,可以巧设某些代数式换元,把冗长而又复杂的不等式化为简单明了的代数式,则可简洁明快的解决问题.例11 设,,,+∈R c b a 求证:()()()c b a b a c a c b abc -+⋅-+⋅-+≥.分析:经过观察,我们发现,把c b a ,,中的两个互换,不等式不变,说明这是一个对称不等式,如果我们令=-+=y a c b x ,,b a c -+,c b a z -+=则原不等式可化为:()()()xyz x z z y y x 8≥+⋅+⋅+.这是一个较简单而且容易与已知不等式联系的不等式,因而可以按上述换元证明不等式. 证明:令c b a z b a c y a c b x -+=-+=-+=,,,则()z y a +=21,(),21z x b +=()y x c +=21. ,,,+∈R c b a 0<∴xyz 当时,有()()()xyz x z z y y x 8≥+⋅+⋅+;当0>xyz 时,有+∈R z y x ,,(否则z y x ,,中必有两个不为正值,不妨设0≤x ,0≤y ,则0≤c ,这与0>c 矛盾),因此02>≥+xy y x ,,02>≥+yz z y ,02>≥+zx x z()()()xyz x z z y y x 8≥+⋅+⋅+,综上所述,恒有,()()()xyz x z z y y x 8≥+⋅+⋅+把z y x ,,代入上式得: ()()()c b a b a c a c b abc -+⋅-+⋅-+≥4.2三角换元三角换元除了要正确换元外,还要熟练掌握三角函数的诱导公式以及三角函数的有界性等必要知识.对于含有根式的不等式或带有绝对值符号的不等式,可用三角换元法.把问题变成了熟悉的求三角函数值域.为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要.如变量x 、y 适合条件)(0r r y x 222>=+时,则可作三角代换θrcos x =、θrsin y =化为三角问题.例12 若,122≤+y x 求证:2222≤-+y xy x .分析:由,122≤+y x 知点()y x ,在圆122=+y x 的内部或边界上,因此可以考虑变换:,sin θr x =θcos r y = ()πθ20,10<≤≤≤r . 证明:设,sin θr x =θcos r y = ()πθ20,10<≤≤≤r , 则222y xy x -+θθ2sin 2cos 2+=r ⎪⎭⎫ ⎝⎛-≤42cos 22πθr 22r ≤2≤.5放缩法在不等式证明中,经常用“舍掉一些正(负)项”而使不等式的各项变小(大),或在分式中利用放大或缩小分式的分子、分母,从而达到证明的目的.这种证明不等式的方法称之为放缩法.在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果.但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象.因此,使用放缩法时,如何确定放缩目标尤为重要.要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点.掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法.5.1添加或舍弃一些正项(或负项)若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.例13 已知*21().n n a n N =-∈求证:*122311...().23n n a a an n N a a a +-<+++∈证明:111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+- 1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 本题在放缩时就舍去了22k -,使分式值变小,从而使和式得到化简.5.2先放缩再求和(或先求和再放缩)若分子, 分母同时存在变量, 要设法使其中之一变为常量.分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.具体可根据题目特征,选择先放缩再求和(或先求和再放缩).例14 函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 分析:此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-)(2121)2141211(41*11N n n n n n ∈-+=++++-=+- .评注:本题通过左边的合理变形和放缩,最终和右边式子的结构特征一致,轻松得到了所证结果.5.3先放缩,后裂项(或先裂项再放缩)若不等式证明中涉及较复杂的分式,可根据题目特征,对分式作适当的放缩,以便于裂项化简分式(或先裂项再放缩),达到证明目的.例15 已知a n =n ,求证:∑n k=1 k a 2k<3. 证明:∑nk=12ka =∑nk=1<1+∑nk=21(k -1)k (k +1)<1+∑nk=22(k -1)(k +1) ( k +1 +k -1 ) =1nk =+=1+ ∑n k=2 (1(k -1) -1(k +1)) =1+1+2-1(n +1) <2+2<3.评注:本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.5.4放大或缩小因式若因式中存在变量时,可以选择适当放缩使其中一部分变为常量,具体可根据题目特征选择放大或缩小因式.例16 已知数列{}n a 满足2111,0,2n na a a +=<≤求证:1211().32nk k k k a a a ++=-<∑证明22112131110,,,.2416n n a a a a a a +<≤=∴=≤≤2311,0,16k k a a +∴≥<≤≤当时 1211111111()()().161632nn k k k k k n k k a a a a a a a ++++==∴-≤-=-<∑∑评注:本题通过对因式2k a +放大,而得到一个容易求和的式子11()nk k k a a +=-∑,最终得出证明.例17 设)1(433221+++⨯+⨯+⨯=n n a n求证:2)1(2)1(2+<<+n a n n n 证明:∵ n n n n =>+2)1( 212)21()1(2+=+<+n n n n ∴ 212)1(+<+<n n n n ∴ 2)12(31321++++<<++++n a n n , ∴2)1(2)1(2+<<+n a n n n评注:本题利用212n n +<,对n a 中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的. 5.5固定一部分项,放缩另外的项一些不等式的证明,如若从整体考虑很难入手,通常可以先暂时固定某些项,而通过放缩个别项来达到化简和证明的目的. 例18 求证:2222111171234n ++++< 证明:21111(1)1n n n n n <=--- 2222211111111151171()().1232231424n n n n ∴++++<++-++-=+-<- 评注:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处.5.6利用基本不等式放缩针对一些特殊形式的不等式,我们可以运用基本不等式(例:m n a a +)进行放缩求解.例19 已知54n a n =-1对任何正整数m n ,都成立.1,只要证 51mn m n a a a >++因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++,故只要证 5(54)12520()16mn mn m n ->+-+++即只要证 202037m n +->因为558m n a a m n +=+-558(151529)m n m n <+-++-202037m n =+-,所以命题得证.评注:本题通过化简整理之后,再利用基本不等式由m n a a +放大即可.6数学归纳法一个与自然数n 有关的数学命题,如果:(1)能证明当0k n =(0k 是使命题成立的最小整数)时,命题成立;(2)假设当k n =(0k k ≥的任意正整数)时,命题成立,证明当1k n +=时,命题成立.那么可以断言,这个数学命题对所有自然数n 都成立.这种证明不等式的方法称之为数学归纳法.例20 证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++. 那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k .这就是说,当n =k +1时,不等式成立.综上所述:由①、②可知,原不等式对任意自然数n 都成立.评注:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .7结论7.1主要发现不等式的证明问题,就其方法而言,没有定法可套,有较大的灵活性和技巧性.而且不等式证明历来是中学、特别是高中数学教学的一个重点和难点.本文系统地归纳整理了几大类不等式的证明方法.如若学生在掌握不等式的基础知识以后,能够灵活应用文中几类方法,以其为指导,不等式问题将能够迎刃而解,使得解决不等式问题时思路清晰,运算简便.尤其是应用构造法,架起一座连接条件和结论的桥梁,在解决一些非常规不等式时作用很大.7.2 启示从文中可以看出不等式与几何图形、复数、概率、方差、数列、向量、函数有着密切的联系,在处理不等式问题时,若能灵活运用这些思想与方法,则会取得事半功倍的效果.教师在讲解具体数学内容和方法时,应该高度重视不等式方法的挖掘和渗透,重视理论和实践的结合,让学生切实领悟其价值,滋生应用的意识.同时学生在解题和学习的过程中也应认真思考,发现和归纳不等式的新方法.7.3局限性本文把理论和实践相结合,归纳了几类不等式证明的方法在解题中的应用,其中主要工作属归结概括,在一些方面存在局限性,一是在不同知识体系间寻求“交汇”跨度大、难度高,不易发现其中的本质联系;二是由于本文整理归纳了较多不等式的证明方法,多则不精,广而不深.7.4努力方向不等式的证明方法种类繁多,不同知识体系间的跨度大、难度高.在教学实践中,并不是短时间可以全部学习掌握的,需要长期学习并积累,而对于不等式的证明方法新的研究与发展,则要在大量的实践中不断摸索.。
不等式证明毕业论文

不等式证明毕业论文本篇论文主要研究不等式的证明,介绍了不等式的基本概念和证明方法,并详细阐述了几种常用不等式的证明过程,并对证明过程中需要注意的细节进行了分析。
一、不等式的基本概念不等式是数学中的一类常见且极其重要的结论形式,它与等式类似,都是表示一个值与另一个值之间的关系,但不等式却不一定要求这两个值相等,而只需要它们满足一定的大小关系。
常见的不等式有单变量不等式、双变量不等式、多变量不等式等。
二、不等式的证明方法证明不等式的方法一般分为数学归纳法、数学分析法、构造法、反证法、代数法、几何法等多种,而选择不同的证明方法往往取决于不同的不等式性质。
1. 数学归纳法数学归纳法是一种非常常用的证明方法,它通过证明一个基本条件成立,再证明该基本条件成立时下一步也成立,反复循环这个过程最终达到证明整个结论的目的。
这种证明方法对于很多不等式问题非常有效,因为它可以将整个证明过程分成逐步推进的几个步骤,每个步骤都是简单且显然成立的。
例如,我们考虑证明以下的不等式:$$1+2+3+...+n\\leq\\frac{n(n+1)}{2}(n\\in N^*)$$首先,我们将该式子称之为P(n),即需要证明P(n)成立。
接着,我们通过证明P(1)为真来展开证明,即证明1的结论成立:$$1\\leq\\frac{1(1+1)}{2}$$证明上述结论后,我们进入下一步,假设P(k)成立,即$$1+2+3+...+k\\leq\\frac{k(k+1)}{2}$$接下来,我们考虑P(k+1)成立,即$$1+2+3+...+k+(k+1)\\leq\\frac{(k+1)(k+2)}{2}$$将等式两边加上(k+1)即可得到$$1+2+3+...+k+(k+1)\\leq\\frac{(k+1)(k+2)}{2}$$于是,我们通过数学归纳法证明了该不等式。
2. 数学分析法数学分析法通常适用于一些比较复杂的不等式,该方法能够通过对数学表达式的一些基本性质进行分析,从而推导出结论。
证明不等式的方法论文

证明不等式的方法李婷婷摘要: 在我们数学学科中,不等式是十分重要的内容。
如何证明不等式呢?在本文中,我主要介绍了不等式概念、基本性质和一些从初等数学中总结出的证明不等式的常用方法,分别有比较法、综合法、放缩法、数学归纳法、换元法、判别式法、分解法方法。
证明不等式的方法多种多样,在这里我就只例举这些方法。
证明不等式方法因题而异,灵活多变,技巧性强。
通过学习这些证明方法,使我们进一步掌握不等式证明,可以帮我们解决生活中的许多实际问题。
关键字:不等式;数学归纳法;函数;单调性不等式作为一个重要的分析工具和分析的手段,在数学中具有举足轻重的地位,不等式的证明可分为推理性问题和探索性问题,推理性问题是指在特定条件下,阐释证明过程,解释内在规律,基本方法有比较法,综合法;探索性问题大多是与自然数有关的证明问题,常采用观察—归纳—猜想—证明的方法思路,以数学归纳法完成证明,不等式证明还有其他方法:换元法,放缩法等。
不等式的证明没有固定的程序,证法因题而易,技巧性强。
希望通过这些方法的学习。
我们可以很好的认识数学的一些特点,从而开扩我们的数学视野。
1不等式概念及基本性质1.1不等式的概念:表示不相等关系的式子。
实数集内的任意两个数b a ,总是可以比较大小的,如果b a -是正数,则b a >;如果b a -是零,则b a =;如果b a -是负数,则b a <。
反过来也对。
即有a ≧b 0≥-⇔b a 这里符号⇔表示等价于。
这个定义虽然简单,实际它反映不等式的性质。
许多不等式的证明,是从这个定义出发。
首先,根据不等式的定义,容易证明下述不等式的简单性质,这些性质是证明其他不等式的基本工具。
1.2不等式基本性质1.2.1b a >a b <⇔(对称性)1.2.2若b a >,c b >,则c a >(传递性)1.2.3若b a >,则c b b a +>+(加法保序性)1.2.4若b a >,0>c ,则bc ac >(乘正数保序性)1.2.5若b a >,d c >,则.a c b d +>+若b a >,d c <,d b c a ->-.0>>b a ,0>>d c ,则bd ac >.1.2.6若b a >,0>ab ,则.11b a <1.2.7若0>>b a ,0>>c d ,则.d b c a >1.2.8若0>>b a ,.,N n n n n b a b a n >>∈,则1.2.9若0>>b a ,m ,.,N nm n m n m n m b a b an --<>∈,则 1.2.10含绝对值的不等式 ()()()........4.3.0)2((1)1212222n n a a a a a b a b a b a a x a x a x a a x ba xb a a b x ax a a x a x ++≤++++≤±≤--≤≥⇔≥⇔>≥-≤≤--⇔≤+<<-⇔<⇔≤或1.2.11若,R ,∈b a 则().0,022≥-≥b a a 1.2.12若,+∈R ,b a 则.2ab b a ≥+符号当且仅当b a =时成立。
不等式证明的若干方法

`学科分类号110本科毕业论文题目不等式证明的若干方法姓名朱虹霞学号51院(系)数学与计算机科学学院专业数学与应用数学年级 2011级指导教师晟职称副教授二○一五年五月师学院本科毕业论文诚信声明本人重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业论文作者签名:年月日目录摘要 (1)Abstract (2)1 常用的不等式证明方法 (3)1.1 作差比较法 (3)1.2 作商比较法 (4)1.3 分析法 (5)2 假设法证明不等式 (5)2.1 反证法 (5)2.2 数学归纳法 (6)3 构造法证明不等式 (7)3.1 代换法 (7)3.2 构造复数 (8)4 利用微分中值定理证明不等式 (9)4.1 利用拉格朗日中值定理 (9)4.2 利用柯西中值定理证明不等式 (10)4.3 利用泰勒展开式证明不等式 (11)5 利用积分定理证明不等式 (12)5.1 利用定积分定义证明不等式 (12)5.2 利用定积分性质证明不等式 (13)6 一题多解 (14)结语 (17)参考文献 (18)致 (19)摘要不等式是数学学习过程当中一个根本的问题,它浸透于数学研究的各个方面,因而不等式证明在数学中有着至关重要的作用和地位。
在本文中,我主要从不同方面总结了一些证明不等式的方法。
尤其是在初等数学中不等式证明,经常会使用到比较法,假设法,反证法等等。
在高等数学中还会用到中值定理、积分定理等等。
于是,一个更完美的不等式的证明,有助于我们进一步的探索研究。
经过去掌握这些证明方法,可能会帮助我们去解决一些数学题目。
关键词:比较法;中值定理;积分定理AbstractInequality is the mathematical learning process is a fundamental issue, it soaked in all aspects of mathematical research, which proves inequality has a crucial role and position in mathematics. In this article, I mainly summarizes some different aspects to prove inequality. Especially proving inequalities in elementary mathematics, is often used to compare methods, assumptions law, reductio ad absurdum, and so on. Higher Mathematics will be used in the mean value theorem, integral theorem and so on. Thus, a more perfect proof of inequality, helping us to further exploration and research. After prove to master these methods may help us to solve some math problems.Keywords: Comparative Law; value theorem; integral theorem引言在数学学习过程中,不等式是基本的数学关系,不等式的证明也证明了它是数学领域一个非常重要的容,然而,这些容在初等数学与高等数学中又有一个很好的体现。
毕业论文完整论文【范本模板】

新疆财经大学本科毕业论文题目 : 微分和积分在不等式中的应用学号: 2005101412 学生姓名:阿卜杜瓦哈普·阿卜杜热西提院部:应用数学学院专业:应用数学年级:数学06-2班指导教师姓名职称:阿孜古丽·伊克木(讲师)完成日期:年月日摘要微积分和不等式都是数学中极为重要的内容,本文在回顾了几种常用的证明不等式的初等方法后,利用微分中值定理、泰勒公式、函数的单调性、极(最)值的判定法、定积分的性质等一些微积分知识探讨不等式的证明方法,最后指出了微积分在不等式证明中的具体应用.微积分是数学中的重要组成部分,是研究函数的性质,证明不等式,探求函数的极值、最值,求曲线的斜率和解决一些物理问题的有力工具.微积分的应用为解决数学问题提供了新的思路,新的方法和新的途径,可以说微积分是打开数学知识大门的一把钥匙.微积分在实际生活中的应用非常广泛,在不等式证明中也发挥着巨大的作用。
不等式的证明方法很多,灵活地运用微积分的性质及相关定理是解决许多不等式证明问题的关键.本篇论文归纳和总结了一些证明不等式的方法与技巧,利用微积分证明不等式的基本思想和基本方法,提出了运用这些方法和技巧能够使不等式的求解过程更为简单的思路..关键词:微积分;不等式;微分中值定理;泰勒公式;函数的单调性;极(最)值的判定法;目录前言 (1)第一章微积分 (2)§1微积分的发展 (2)§2微积分的概念 (3)第二章不等式 (7)§1不等式的定义和性质 (7)§2常用的证明不等式的方法 (8)第三章微积分在不等式中的应用 (12)§1利用微分证明不等式 (12)§2利用积分证明不等式 (19)结论 (23)参考文献 (24)致谢 (25)前言在高等数学中常常要证明一些不等式.而不等式的证明方法很多,在以往多采用代数或几何方法,现在可借助于微积分的知识,这是普遍应用的一种方法。
不等式证明方法的探毕业论文究

不等式证明方法的探毕业论文究目录一.不等式的概念:................................... - 1 - 二.不等式的证明方法................................. - 1 -1.比较法:........................................ - 1 -2.综合法:........................................ - 2 -3.分析法: ......................................... - 3 -4.数学归纳法: ..................................... - 4 -5.反证法: ......................................... - 6 -6.换元法: ......................................... - 7 -7.放缩法: ......................................... - 7 -8.利用单调函数法:................................ - 9 -9.利用微分中值定理:.............................. - 9 -10、利用不等式定理:............................. - 10 -11、利用泰勒公式:............................... - 11 -12、利用函数的极值法:........................... - 11 -13、中值定理法:................................. - 12 -14.利用函数的凹凸性:............................ - 12 -15.利用定积分理论:.............................. - 13 - 小结: ............................................... - 14 - 参考文献:.......................................... - 15 -一.不等式的概念:用不等号把两个数学式子连结起来而得到的式子叫做不等式。
数学论文【不等式的证明方法】(汉)

黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。
其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。
1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。
主要依据是实数的运算性质与大小顺序关系。
即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。
(1)作商比较法。
当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。
当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。
(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。
所以222(2)5a b a b +≥--成立。
例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。
浅议不等式的证明 数学专业毕业论文

摘要在初等数学中,证明不等式的常用方法有比较法、综合法、分析法、反证法、放缩法、判别式法、换元法、数学归纳法等等,但是所用的都是初等数学知识。
本文利用高等数学中的有关知识,给出几种不等式的证明方法:单调性,辅助函数,凹凸性,中值定理,最值、极值定理,泰勒公式,定积分性质,柯西施瓦茨。
关键词不等式高等数学中值定理泰勒公式柯西施瓦茨AbstractIn the elementary mathematics, Common methods used on proof of inequality are comparation, synthesis, analysis, negative approach, discriminant law, substitution of variables, mathematical induction and so on, All of them belong to elementary mathematics knowledge. In this article based on higher mathematics, Some methods to prove inequality have been given: monotonicity,auxiliary function, convex-concave,value theorem,extreme value、extreme value theorem, taylor formula, definite integral,cauchy schwartz.Key words inequality higher mathematics value theorem taylor formula cauchy schwartz目录1、引言 (1)2、利用函数的单调性证明不等式 (1)3、利用函数的凹凸性证明不等式 (2)4、利用拉格朗日中值定理证明不等式 (2)5、利用函数的最值、极值定理证明不等式 (3)6、利用泰勒公式证明不等式 (4)7、利用定积分的性质证明不等式 (5)8、利用柯西不等式证明不等式 (5)参考文献 (6)浅议不等式的证明1引言用不等号连接起来的两个解析式所成的式子叫不等式,证明不等式就是根据不等式的性质证明对于式中字母所容许的数值,不等式恒成立.不等式证明在中学里占有重要的地位,是进一步学习数学的基础,例如在讨论方程或方程组的解中,研究函数的定义域、值域、单调性、最值等问题中都要用到.然而,不等式证明又是中学里的一个重点、难点.其特点是方法灵活多样,技巧性很强,这使得它成为高考中的一个热门问题.证明不等式的途径是对原不等式作代数变形,在初等数学中,常用的方法有比较法、综合分析法、反证法、放缩法、数学归纳法、判别式法、换元法等等.然而,现在高中课本中又增加了一些高等数学知识,我们思考能否用高等数学中的有关知识来证明某些使用初等方法证明比较困难或暂时还无法证明的不等式,使之过程更加简洁、易懂,答案是肯定的,因此讨论高等数学知识在某些初等数学不等式中的应用是非常重要的,同时初等数学中的许多问题往往蕴含着高等数学中的一些方法,因而将高等数学中的某些原理、方法应用于初等数学中的证明,不仅可以开拓学生的视野,而且可以使学生体会到用高等数学的原理、方法解决初等数学问题时居高临下,驾轻就熟的感觉,进而了解高等数学与初等数学密不可分的关系.本文着重阐述了用高等数学中的有关知识来证明某些初等不等式,使之用初等方法证明比较困难或暂时还无法证明的不等式得到解决.高等方法主要适用于中学里的函数不等式.2利用函数、辅助函数的单调性证明不等式2.1函数单调性证明定理1[1] 若函数f 在区间),(b a 内可导,则f 在),(b a 内递增(递减)的充要条件是()()()00≤'≥'x f x f ,),(b a x ∈不等式与函数有着密切的关系,因此,根据求证的不等式构造函数,利用函数的单调性可巧证一些不等式,此方法尤其适用于中学里的函数不等式的证明.例2.1.1 证明:当0>x 时,)1ln(22x x x +<-.证明:设()2)1ln(2x x x x f +-+=,()()x x x x x f f +=+-+='=1111,002则,所以当0>x 时,()()][()()()0,000,012>=>>+='x f f x f x x f xx x f 即上单,在从而,也即2)1ln(2>+-+x x x ,故)1ln(22x x x +<-.2.2辅助函数单调性证明辅助函数方法比较常用,其主要思想是将不等式通过等价变形,找到一个辅助函数,通过求导确定函数在所给区间上的单调性,即可证明出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013届毕业生毕业论文课题名称:不等式证明的若干方法教学系:数学系专业:数学教育班级:10级数学教育(4)班学号:131002162姓名:李亚军指导教师:连玉平时间:2013年5月15日定西师范高等专科学校10 级数学系毕业论文开题报告目录摘要 (3)关键词 (3)前言 (3)第一章常用方法 (3)1.1比较法(作差法) (3)1.2作商法 (4)1.3分析法(逆推法) (4)1.4综合法 (4)1.5反证法 (5)1.6迭合法 (5)1.7放缩法 (6)1.8数学归纳法 (6)1.9换元法 (7)1.10三角代换法 (7)1.11判别式法 (7)第二章利用函数证明不等式 (8)2.1函数极值法 (8)2.2单调函数法 (8)2.3中值定理法 (9)2.4利用拉格朗日函数 (9)第三章利用著名不等式证明 (10)3.1利用均值不等式[ (10)3.2利用柯西不等式 (12)3.3利用赫尔德不等式 (12)3.4利用詹森不等式 (12)参考文献 (13)摘 要:无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等式的证明则是不等式知识的重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯.关键词 不等式 比较法 数学归纳法 函数前 言在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的认识要比方程要迟的多.直到17世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论的一个重要组成部分.在研究数学的不等式过程中,有许多的内容都十分的有用,如:不等式的性质、不等式的证明方法和不等式的解法. 在本文中,我们就不一一说明了,而主要的介绍一些证明不等式的常用方法、利用函数证明不等式的方法和利用一些著名不等式证明不等式的方法.希望通过这些方法的学习,我们可以很好的认识数学的一些特点.从而开拓一下我们的数学视野,深化一下我们对不等式证明方法的认识,以便于可以站在更高的角度来研究数学不等式.第一章 常用方法1.1比较法(作差法)在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 证明 02)(2222≥-=-+=-+b a ab b a ab b a ,故得 ab b a ≥+2. 1.2作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<ba 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1). 例2 设0>>b a ,求证:a b b a b a b a >.证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a ,故 a b b a b a b a >.1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:15175+>+.证明 要证15175+>+,即证1521635212+>+,即15235+>,1541935+>,16154<,415<,1615<.由此逆推即得 15175+>+.1.4综合法证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法.例4 已知:a ,b 同号,求证:2≥+ab b a . 证明 因为a ,b 同号,所以 0>b a ,0>ab ,则 ,22=⨯≥+ab b a a b b a 即 2≥+ab b a . 1.5反证法先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的.例5 已知0>>b a ,n 是大于1的整数,求证:n n b a >.证明 假设 n n b a ≤,则 1≥na b , 即 1≥ab , 故 a b ≥, 这与已知矛盾,所以n n b a >.1.6迭合法把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证.例6 已知:122221=+++n a a a ,122221=+++n b b b ,求证:12211≤+++n n b a b a b a . 证明 因为122221=+++n a a a ,122221=+++n b b b ,所以 122221=+++n a a a ,122221=+++n b b b .由柯西不等式,11122221222212211=⨯=+++⨯+++≤+++n n n n b b b a a a b a b a b a所以原不等式获证.在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例7 求证: 01.0100009999654321<⨯⨯⨯⨯ . 证明 令,100009999654321⨯⨯⨯⨯= p 则 ,10000110001111000099991431211000099996543212222222222222<=-⨯⨯-⨯-<⨯⨯⨯⨯= p所以 01.0<p .1.8数学归纳法对于含有)(N n n ∈的不等式,当n 取第一个值时不等式成立,如果使不等式在)(N n k n ∈=时成立的假设下,还能证明不等式在1+=k n 时也成立,那么肯定这个不等式对n 取第一个值以后的自然数都能成立.例8 已知:+∈R b a ,,N n ∈,1≠n ,求证:11--+≥+n n n n ab b a b a .证明 (1)当2=n 时,ab ab ab b a 222=+≥+,不等式成立;(2)若k n =时,11--+≥+k k k k ab b a b a 成立,则111111)()(+--++++-+≥+-+=+k k k k k k k k k k b ab ab b a a b ab b a a b a=k k k k k k k k k k ab b a b a b ab b a b ab b a ab b a +≥-++=+-++-+-21112)()2(, 即k k k k ab b a b a +≥+++11成立.根据(1)、(2),11--+≥+n n n n ab b a b a 对于大于1的自然数n 都成立.在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化.例9 已知:1=++c b a ,求证:31≤++ca bc ab . 证明 设t a -=31,)(31R t at b ∈-=,则t a c )1(31++=, ⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++t a t t a at at t ca bc ab )1(3131)1(31313131 ,31)1(3122≤++-=t a a 所以 31≤++ca bc ab . 1.10三角代换法借助三角变换,在证题中可使某些问题变易.例10 已知:122=+b a ,122=+y x ,求证:1≤+by ax .证明 设θsin =a ,则θcos =b ;设ϕsin =x ,则ϕcos =y所以 1)cos(cos cos sin sin ≤-=+=+ϕθϕθϕθby ax .1.11判别式法通过构造一元二次方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式.例11 设R y x ∈,,且122=+y x ,求证:21a ax y +≤-.证明 设ax y m -=,则m ax y +=代入122=+y x 中得 1)(22=++m ax x ,即 0)1(2)1(222=-+++m amx x a因为R y x ∈,,012≠+a ,所以0≥∆,即 0)1)(1(4)2(222≥-+-m a am ,解得 21a m +≤,故21a ax y +≤-.第二章 利用函数证明不等式2.1函数极值法通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例18 设R x ∈,求证:812sin 32cos 4≤+≤-x x . 证明 81243sin 2sin 3sin 21sin 32cos )(22+⎪⎭⎫ ⎝⎛--=+-=+=x x x x x x f 当43sin =x 时, ;812)(max =x f 当1sin -=x 时, .4)(min -=x f故 812sin 32cos 4≤+≤-x x . 2.2单调函数法当x 属于某区间,有0)(≥'x f ,则)(x f 单调上升;若0)(≤'x f ,则)(x f 单调下降.推广之,若证)()(x g x f ≤,只须证)()(a g a f =及)),((),()(b a x x g x f ∈'≤'即可.例 19 证明不等式x e x +>1,.0≠x证明 设,1)(x e x f x --=则.1)(-='x e x f 故当0>x 时,f x f ,0)(>'严格递增;当f x f x ,0)(,0<'<严格递减.又因为f 在0=x 处连续,则当0≠x 时,,0)0()(=>f x f从而证得.0,1≠+>x x e x2.3中值定理法利用中值定理:)(x f 是在区间],[b a 上有定义的连续函数,且可导,则存在ξ,b a <<ξ,满足))(()()(a b f a f b f -'=-ξ来证明某些不等式,达到简便的目的.例20 求证:y x y x -≤-sin sin .证明 设 x x f sin )(=,则ξξcos )(n si )(sin sin y x y x y x -='-=-故 y x y x y x -≤-≤-ξcos )(sin sin .2.4利用拉格朗日函数例 21 证明不等式,)111(331abc cb a ≤++- 其中c b a ,,为任意正实数. 证明 设拉格朗日函数为对).1111(),,,(rz y x xyz z y x L -+++=λλ 对L 求偏导数并令它们都等于0,则有02=-=x yz L x λ, 02=-=y zx L y λ, 02=-=x xy L z λ, .01111=-++=rz y x L λ 由方程组的前三式,易的.111μλ====xyz z y x 把它代入第四式,求出.31r =μ从而函数L 的稳定点为.)3(,34r r z y x ====λ 为了判断3)3()3,3,3(r r r r f =是否为所求条件极小值,我们可把条件rz y x 1111=++看作隐函数),(y x z z =(满足隐函数定理条件),并把目标函数),(),(),,(y x F y x xyz z y x f ==看作f 与),(y x z z =的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:,22x z z x -=,22y z z y -=,2x yz yz F x -=,2y xz xz F y -= ,2,232233xy z x z y z z F xyz F xy xx +--==.233yxz F yy =当r z y x 3===时,,3,6r F F r F xy yy xx ===.02722>=-r FF F xyyy xx由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式).1111,0,0,0()3(3rz y x z y x r xyz =++>>>≥ 令,,,c z b y a x ===则,)111(1-++=cb a r 代入不等式有31])111(3[-++≥cb a abc或 ).0,0,0()111(331>>>≤++-c b a abc cb a第三章 利用著名不等式证明3.1利用均值不等式[设n a a a ,,,21 是n 个正实数,则nn n a a a na a a 2121≥+++,当且仅当n a a a === 21时取等号.例22 证明柯西不等式 ).)(()(121221∑∑∑===≤ni i n i i n i i i b a b a证明 要证柯西不等式成立,只要证 ∑∑∑===≤ni in i i ni i i ba b a 12121 (1)令 ,,212212B b A a n i i ni i==∑∑== (2)式中,0,0>>B A 则(1)即ABb a ni ii ≤∑=1即11≤∑=ABba ni ii (3)下面证不等式(3),有均值不等式,2221221222121B b A a B A b a +≤, 即 221221112BbA a AB b a +≤,同理 222222222BbA a AB b a +≤, ,22222B b A a AB b a n n n n +≤.将以上各式相加,得2122121)(2B b Aa b a AB ni ini ini i i ∑∑∑===+≤ (4)根据(2),(4)式即2)(21≤∑=ni i i b a AB . 因此不等式(3)成立,于是柯西不等式得证.3.2利用柯西不等式例23 设R a i ∈,1=i ,2,…,n .求证:21121⎪⎭⎫⎝⎛≥∑∑==n i i ni i a n a .证明 由柯西不等式∑∑∑∑∑======⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛ni i n i n i i n i i n i i a n a a a 121212212111.两边除以n 即得.说明:两边乘以n 1后开方得∑∑==≤n i i n i i a n a n 12111.当i a 为正数时为均值不等式中的算术平均不大于平方平均.3.3利用赫尔德不等式例24 设,a b 为正常数,02x π<<,n N ∈,求证:222222sin cos n n n n n a b x x ab+++⎛⎫+≥+ ⎪⎝⎭证明 22sin cos n n nab x x +⎛⎫+ ⎪⎝⎭= 22sin cos n n nab x x +⎛⎫+ ⎪⎝⎭()222sin cos n n x x ++()()22222222sin cos sin cos n n n n n n n na b x x x x ++++⎛⎫⎛⎫≥+ ⎪⎪⎝⎭⎝⎭= 2222n n ab+++即222222sin cos n n n n n a b x x ab+++⎛⎫+≥+ ⎪⎝⎭3.4利用詹森不等式例 25 证明不等式,)(3c b a c b a c b a abc ≤++ 其中c b a ,,均为正数.证明 设 .0,ln )(>=x x x x f 由)(x f 的一阶和二阶导数xx f x x f 1)(,1ln )(=''+=' 可见,x x x f ln )(=在0>x 时为严格凸函数.依詹森不等式有)),()()((31)3(c f b f a f c b a f ++≤++ 从而),ln ln ln (313ln 3c c b b a a c b a c b a ++≤++++ 即.)3(c b a cb ac b a c b a ≤++++ 又因,33cb a abc ++≤所以 .)(3c b a c b a c b a abc ≤++参考文献[1]李长明,周焕山.初等数学研究[M].北京:高等教育出版社,1995,253-263. [2]叶慧萍.反思性教学设计-不等式证明综合法[J].数学教学研究,2005,10(3):89-91.[3]胡炳生,吴俊.现代数学观点下的中学数学[M].北京:高等教育出版社,1998,45-50.[4]宋庆.一个分式不等式的再推广[J].中等数学,2006,45(5):29-31.[5]蒋昌林.也谈一类分式不等式的统一证明[J].数学通报,2005,15(2):75-79. [6]匡继昌.常用不等式[M].济南:山东科技出版社,2004,23-34. [7]张新全.两个不等式的证明[J].数学通报,2006,45(4):54-55.[9]李铁烽.构造向量证三元分式不等式[J].数学通报,2004,(2):101-102.[12]胡如松.垂足三角形的几个有趣性质及其猜想[J].福建中学数学,2004,(5):23-25.[13]马雪雅.加权几何平均不等式[J].数学杂志,2006,26(3):319-322.[14]数学分析.华东师范大学数学系(第三版)[M].北京:高等教育出版社,1999,87.[15]施咸亮.与几何平均有关的两个不等式[J].浙江师范大学学报,1980,1(1):21-25.[16]李家熠.用均值不等式证明不等式[J].数学教学通讯,2005,11(4):130-133. [17]霍连林.著名不等式[M].北京:中国物质出版社,1994,123-124.。