第二章 辐射度学及光度学基础
合集下载
辐射度学与光度学基本知识

1.2 辐射度学和光度学
Radiometry and Photometry
辐射度学
• 通过电磁光谱来处理辐射能的测量。 通过电磁光谱来处理辐射能的测量。 • 辐射度学主要研究频率为 ×1011~ 3×1016Hz的 辐射度学主要研究频率为3× × 的 光辐射,对应于0.01~1000µm微米的波长。 微米的波长。 光辐射,对应于 微米的波长 • 波段范围包括红外、可见光、紫外线。 波段范围包括红外、可见光、
光度学
• 与辐射度学类似,但它只处理人眼可感知的光, 与辐射度学类似,但它只处理人眼可感知的光, 即可见光,波长范围为380~780nm纳米。 纳米。 即可见光,波长范围为 ~ 纳米 • 波长450nm对应于蓝色,540nm对应于绿色, 对应于蓝色, 对应于绿色, 波长 对应于蓝色 对应于绿色 659nm对应于红色。 对应于红色。 对应于红色 • 色度学不处理颜色的感知本身,而是研究各种波 色度学不处理颜色的感知本身, 长的感知强度。例如,绿光比红光和蓝光亮。 长的感知强度。例如,绿光比红光和蓝光亮。
入射辐射亮度
• 入射辐射亮度 入射辐射亮度(incoming radiance)定义为: 定义为: 定义为 d 2Φ Lsurf = dA(dω cos θ ) 它用来度量单位平方米单位球面度的瓦特数。其中 为入 它用来度量单位平方米单位球面度的瓦特数。其中θ为入 射光线与表面法向的夹角。 射光线与表面法向的夹角。
辐射能量
• 在辐射度学中,辐射能量Q是基本的能量单位,用J(焦耳 在辐射度学中,辐射能量 是基本的能量单位 是基本的能量单位, 焦耳) 焦耳 来度量。 来度量。 • 每个光子有一定的辐射能量,其大小为Planck常数 每个光子有一定的辐射能量,其大小为 常数 (6.62620× (6.62620×10-34焦耳秒)乘以光速(2.998×108米/秒),再除 焦耳秒)乘以光速 乘以光速(2.998× /秒 ), 以光子的波长。 以光子的波长。 • 等价于每焦耳的光子数目为 等价于每焦耳的光子数目为5.034×1015乘以光子的波长。 × 乘以光子的波长。 例如,在波长为550nm的波段处,每焦耳的光子数目大约 的波段处, 例如,在波长为 的波段处 为2.77×109个。 ×
Radiometry and Photometry
辐射度学
• 通过电磁光谱来处理辐射能的测量。 通过电磁光谱来处理辐射能的测量。 • 辐射度学主要研究频率为 ×1011~ 3×1016Hz的 辐射度学主要研究频率为3× × 的 光辐射,对应于0.01~1000µm微米的波长。 微米的波长。 光辐射,对应于 微米的波长 • 波段范围包括红外、可见光、紫外线。 波段范围包括红外、可见光、
光度学
• 与辐射度学类似,但它只处理人眼可感知的光, 与辐射度学类似,但它只处理人眼可感知的光, 即可见光,波长范围为380~780nm纳米。 纳米。 即可见光,波长范围为 ~ 纳米 • 波长450nm对应于蓝色,540nm对应于绿色, 对应于蓝色, 对应于绿色, 波长 对应于蓝色 对应于绿色 659nm对应于红色。 对应于红色。 对应于红色 • 色度学不处理颜色的感知本身,而是研究各种波 色度学不处理颜色的感知本身, 长的感知强度。例如,绿光比红光和蓝光亮。 长的感知强度。例如,绿光比红光和蓝光亮。
入射辐射亮度
• 入射辐射亮度 入射辐射亮度(incoming radiance)定义为: 定义为: 定义为 d 2Φ Lsurf = dA(dω cos θ ) 它用来度量单位平方米单位球面度的瓦特数。其中 为入 它用来度量单位平方米单位球面度的瓦特数。其中θ为入 射光线与表面法向的夹角。 射光线与表面法向的夹角。
辐射能量
• 在辐射度学中,辐射能量Q是基本的能量单位,用J(焦耳 在辐射度学中,辐射能量 是基本的能量单位 是基本的能量单位, 焦耳) 焦耳 来度量。 来度量。 • 每个光子有一定的辐射能量,其大小为Planck常数 每个光子有一定的辐射能量,其大小为 常数 (6.62620× (6.62620×10-34焦耳秒)乘以光速(2.998×108米/秒),再除 焦耳秒)乘以光速 乘以光速(2.998× /秒 ), 以光子的波长。 以光子的波长。 • 等价于每焦耳的光子数目为 等价于每焦耳的光子数目为5.034×1015乘以光子的波长。 × 乘以光子的波长。 例如,在波长为550nm的波段处,每焦耳的光子数目大约 的波段处, 例如,在波长为 的波段处 为2.77×109个。 ×
辐射度学和光度学基础课件

能源利用效率。
02
医学影像技术
在医学影像技术中,辐射度学的知识可以帮助我们理解影像的形成机制
和优化影像质量;同时,光度学的知识可以帮助我们设计更好的医用光
源和照明系统。
03
视觉科学
光度学的知识在视觉科学中有着广泛的应用,例如人眼的光觉响应、颜
色视觉等;而辐射度学的知识可以帮助我们理解视觉感知的物理基础。
辐射度和光度在照明设计 中的应用
照明设计的基本原则
功能性原则
照明设计应满足人们的 基本照明需求,提供足 够的亮度以适应不同的
活动和环境。
舒适性原则
照明设计应考虑人的视 觉舒适感,避免过强或 过弱的光线造成视觉疲
劳或不适。
经济性原则
照明设计应考虑成本和 能耗,合理选择高效、 节能的照明设备和控制
系统。
研究的范围不同
辐射度学的研究范围涵盖了整个电磁波段,而光度学主要关注可见 光波段。
应用的领域不同
辐射度学在能源、环境、气象等领域有广泛应用,而光度学在照明 、显示、摄影等领域有广泛应用。
辐射度学与光度学的应用领域
01
能源与环境监测
辐射度学的方法可以用于测量和监测环境中的电磁辐射能量,例如太阳
辐射、地球辐射等;光度学的知识可以用于设计合理的照明系统,提高
辐射度学主要研究电磁辐射的能量分布和传输,而光度学则关注光 辐射的度量、测量和应用。
两者有共同的基础概念
例如,辐射通量、辐射照度、辐射亮度等概念在两者中都有涉及。
两者在某些领域有交叉
例如,在照明工程和光环境设计中,光度学的知识和方法常常与辐 射度学的知识相结合。
辐射度学与光度学的区别
研究重点不同
辐射度学更注重电磁辐射的物理特性和传输规律,而光度学更注 重光辐射的视觉感知和应用。
0.2 辐射度学和光度学基础

三、辐射度学和光度学基本物理量的关系
四、黑体辐射
黑体定义: 黑体定义:能全部吸收各种波长的辐射能而不 发生反射,折射和透射的物体称为绝对黑体。 发生反射,折射和透射的物体称为绝对黑体。 简称黑体 黑体的结构:不透明的材料制成带小孔的的空 黑体的结构: 可近似看作黑体。 腔,可近似看作黑体。 研究黑体辐射的 规律是了解一般物体 热辐射性质的基础。 热辐射性质的基础。
辐射出射度Me 辐射出射度Me
W/m2
辐射照度Ee 辐射照度Ee
dΦ Ee= dΦe/dA
W/m2
一、辐射度学和光度学基本物理量
1.5 基本辐射度学物理量的核心量 辐射功率(辐射通量) 辐射功率(辐射通量) 1、共7个物理量 2、辐射功率(辐射通量):单位时间的辐射 辐射功率(辐射通量):单位时间的辐射 ): 能量, e=dQ/dt, 能量,Φe=dQ/dt,瓦(W) 3、其它6个量除辐射能量密度外,5个量都直 其它6个量除辐射能量密度外, 接与辐射功率相联系。辐射能量、 接与辐射功率相联系。辐射能量、辐射强 辐射亮度、辐射出射度、辐射照度。 度、辐射亮度、辐射出射度、辐射照度。
一、辐射度学和光度学基本物理量
1.10 联系辐射度学和光度学的坎德拉
1cd= 1/683 W/sr——坎德拉定义 坎德拉定义 1cd=1lm/sr——流明定义 流明定义 555nm单色波长条件下 单色波长条件下 1lm/sr=1/683 W/sr 1lm=1/683 W (上式约去 ) 上式约去sr) Km=683lm/W (上式同时除以 上式同时除以1/683W) ) ——明视最大流明效率(最大光谱效能)。 明视最大流明效率( 明视最大流明效率 最大光谱效能)。
一、辐射度学和光度学基本物理量
1.2 研究范围
四、黑体辐射
黑体定义: 黑体定义:能全部吸收各种波长的辐射能而不 发生反射,折射和透射的物体称为绝对黑体。 发生反射,折射和透射的物体称为绝对黑体。 简称黑体 黑体的结构:不透明的材料制成带小孔的的空 黑体的结构: 可近似看作黑体。 腔,可近似看作黑体。 研究黑体辐射的 规律是了解一般物体 热辐射性质的基础。 热辐射性质的基础。
辐射出射度Me 辐射出射度Me
W/m2
辐射照度Ee 辐射照度Ee
dΦ Ee= dΦe/dA
W/m2
一、辐射度学和光度学基本物理量
1.5 基本辐射度学物理量的核心量 辐射功率(辐射通量) 辐射功率(辐射通量) 1、共7个物理量 2、辐射功率(辐射通量):单位时间的辐射 辐射功率(辐射通量):单位时间的辐射 ): 能量, e=dQ/dt, 能量,Φe=dQ/dt,瓦(W) 3、其它6个量除辐射能量密度外,5个量都直 其它6个量除辐射能量密度外, 接与辐射功率相联系。辐射能量、 接与辐射功率相联系。辐射能量、辐射强 辐射亮度、辐射出射度、辐射照度。 度、辐射亮度、辐射出射度、辐射照度。
一、辐射度学和光度学基本物理量
1.10 联系辐射度学和光度学的坎德拉
1cd= 1/683 W/sr——坎德拉定义 坎德拉定义 1cd=1lm/sr——流明定义 流明定义 555nm单色波长条件下 单色波长条件下 1lm/sr=1/683 W/sr 1lm=1/683 W (上式约去 ) 上式约去sr) Km=683lm/W (上式同时除以 上式同时除以1/683W) ) ——明视最大流明效率(最大光谱效能)。 明视最大流明效率( 明视最大流明效率 最大光谱效能)。
一、辐射度学和光度学基本物理量
1.2 研究范围
辐射度学与光度学的基础知识课件

总结词
辐射度学的应用领域广泛,包括天文、气象、环保、 能源等领域。
详细描述
辐射度学的应用领域非常广泛。在天文领域,通过对天 体的辐射特性进行研究,可以深入了解天体的组成和演 化过程;在气象领域,通过对地球表面和大气的辐射特 性进行测量和计算,可以预测天气和气候变化;在环保 领域,可以利用辐射度学的方法监测环境污染和评估环 境质量;在能源领域,可以通过研究物质的辐射特性, 实现能源的高效利用和节能减排。此外,辐射度学还在 医学、农业等领域有着广泛的应用。
详细描述
光度量是用来描述光的特性的物理量。其中,光通量表示光的总量,发光强度表示光源在一定方向上 发射光的强度,照度表示光照在物体表面的强度,光色则涉及到人对光的视觉感知。
光度学的应用领域
总结词
光度学的应用领域广泛,包括照明设计、显 示技术、摄影和医学影像等。
详细描述
光度学在各个领域都有重要的应用价值。在 照明设计领域,光度学为提高照明质量和能 效提供了理论支持;在显示技术领域,光度 学帮助优化屏幕亮度和色彩表现;在摄影和 医学影像领域,光度学则有助于获取高质量 的图片和影像。
03
辐射度学与光度学的关系
辐射度学与光度学的联系来自1 2两者都是研究光和辐射的学科
辐射度学主要研究光和电磁辐射的能量和功率, 而光度学则关注光的质量和视觉感知。
共同的理论基础
两者都基于物理光学和电磁理论,研究光和辐射 的传播、吸收、散射和发射等特性。
3
交叉应用领域
在某些领域,如照明工程、光环境评估等,辐射 度学和光度学有交叉应用,相互补充。
04
辐射度学与光度学的应用 实例
辐射度学的应用实例
太阳辐射测量
辐射度学可以用于测量太阳辐射,包括紫外、可见和红外 波段的辐射能量,对于太阳能利用和气象观测具有重要意 义。
辐射度学的应用领域广泛,包括天文、气象、环保、 能源等领域。
详细描述
辐射度学的应用领域非常广泛。在天文领域,通过对天 体的辐射特性进行研究,可以深入了解天体的组成和演 化过程;在气象领域,通过对地球表面和大气的辐射特 性进行测量和计算,可以预测天气和气候变化;在环保 领域,可以利用辐射度学的方法监测环境污染和评估环 境质量;在能源领域,可以通过研究物质的辐射特性, 实现能源的高效利用和节能减排。此外,辐射度学还在 医学、农业等领域有着广泛的应用。
详细描述
光度量是用来描述光的特性的物理量。其中,光通量表示光的总量,发光强度表示光源在一定方向上 发射光的强度,照度表示光照在物体表面的强度,光色则涉及到人对光的视觉感知。
光度学的应用领域
总结词
光度学的应用领域广泛,包括照明设计、显 示技术、摄影和医学影像等。
详细描述
光度学在各个领域都有重要的应用价值。在 照明设计领域,光度学为提高照明质量和能 效提供了理论支持;在显示技术领域,光度 学帮助优化屏幕亮度和色彩表现;在摄影和 医学影像领域,光度学则有助于获取高质量 的图片和影像。
03
辐射度学与光度学的关系
辐射度学与光度学的联系来自1 2两者都是研究光和辐射的学科
辐射度学主要研究光和电磁辐射的能量和功率, 而光度学则关注光的质量和视觉感知。
共同的理论基础
两者都基于物理光学和电磁理论,研究光和辐射 的传播、吸收、散射和发射等特性。
3
交叉应用领域
在某些领域,如照明工程、光环境评估等,辐射 度学和光度学有交叉应用,相互补充。
04
辐射度学与光度学的应用 实例
辐射度学的应用实例
太阳辐射测量
辐射度学可以用于测量太阳辐射,包括紫外、可见和红外 波段的辐射能量,对于太阳能利用和气象观测具有重要意 义。
辐射度与光度学基础知识课件

详细描述
辐射度学主要研究电磁波的发射、传播、吸收、散射和转换等过程,以及这些 过程中电磁波的能量分布和传输规律。它涉及到电磁波与物质相互作用的基本 规律,是光学、光谱学、热力学等多个学科的基础。
辐射度学单位
总结词
辐射度学中常用的单位包括瓦特、焦耳、坎德拉等,用于描述电磁辐射的能量、功率和亮度等物理量 。
照明工程中的辐射度和光度学的综合应用
在照明工程中,辐射度和光度学是相 辅相成的两个领域,综合应用可以更 好地满足实际需求。
综合应用还体现在照明设计过程中, 需要综合考虑光源的辐射特性和光照 效果,以及人类视觉感知的需求,以 实现最佳的照明效果。
通过结合辐射度和光度学的原理,可 以更精确地控制光源的辐射特性和光 照效果,提高照明质量和效率。
照明工程中的辐射度学应用
辐射度学是研究光辐射在空间分布、传输和度量的科学,在照明工程中有着广泛的 应用。
利用辐射度学原理,可以精确测量和控制光源的辐射特性,如光谱分布、光强空间 分布、辐射温度等,从而优化照明系统的性能。
辐射度学还用于研究光环境对人类视觉感知的影响,为照明设计提供科学依据,提 高照明质量和舒适度。
详细描述
辐射度学涉及一系列物理量,这些物理量用于描述电 磁波的各种特性。其中包括辐射能量(描述电磁波携 带的能量大小),辐射通量(描述单位时间内通过某 一面积的能量大小),辐射强度(描述光源在某一方 向上发射的光的强度),辐射亮度(描述物体表面反 射或发射光的亮度)。这些物理量在研究电磁波的发 射、传播、吸收、散射和转换等过程中具有重要意义 。
详细描述
流明是光通量的单位,表示单位时间内发出的光的总量。坎德拉是发光强度的单位,表示单位方向上单位立体角 内发出的光的强度。勒克斯是光照强度的单位,表示单位面积上单位立体角内发出的光的强度。这些单位在光度 学中具有重要地位,用于描述光辐射的度量和性质。
辐射度学主要研究电磁波的发射、传播、吸收、散射和转换等过程,以及这些 过程中电磁波的能量分布和传输规律。它涉及到电磁波与物质相互作用的基本 规律,是光学、光谱学、热力学等多个学科的基础。
辐射度学单位
总结词
辐射度学中常用的单位包括瓦特、焦耳、坎德拉等,用于描述电磁辐射的能量、功率和亮度等物理量 。
照明工程中的辐射度和光度学的综合应用
在照明工程中,辐射度和光度学是相 辅相成的两个领域,综合应用可以更 好地满足实际需求。
综合应用还体现在照明设计过程中, 需要综合考虑光源的辐射特性和光照 效果,以及人类视觉感知的需求,以 实现最佳的照明效果。
通过结合辐射度和光度学的原理,可 以更精确地控制光源的辐射特性和光 照效果,提高照明质量和效率。
照明工程中的辐射度学应用
辐射度学是研究光辐射在空间分布、传输和度量的科学,在照明工程中有着广泛的 应用。
利用辐射度学原理,可以精确测量和控制光源的辐射特性,如光谱分布、光强空间 分布、辐射温度等,从而优化照明系统的性能。
辐射度学还用于研究光环境对人类视觉感知的影响,为照明设计提供科学依据,提 高照明质量和舒适度。
详细描述
辐射度学涉及一系列物理量,这些物理量用于描述电 磁波的各种特性。其中包括辐射能量(描述电磁波携 带的能量大小),辐射通量(描述单位时间内通过某 一面积的能量大小),辐射强度(描述光源在某一方 向上发射的光的强度),辐射亮度(描述物体表面反 射或发射光的亮度)。这些物理量在研究电磁波的发 射、传播、吸收、散射和转换等过程中具有重要意义 。
详细描述
流明是光通量的单位,表示单位时间内发出的光的总量。坎德拉是发光强度的单位,表示单位方向上单位立体角 内发出的光的强度。勒克斯是光照强度的单位,表示单位面积上单位立体角内发出的光的强度。这些单位在光度 学中具有重要地位,用于描述光辐射的度量和性质。
1.2 辐射度学与光度学基本知识

V适光
555
适暗性(微光)视见函数:
505 V适暗
表2 标准适光性视见函数值
辐射颜色 紫 紫 紫 紫 蓝 蓝 青 青 青 青 绿 绿 绿 波长/nm 400 410 420 430 440 450 460 470 480 490 500 510 520 V(l) 0.0004 0.0012 0.0040 0.0116 0.0230 0.0380 0.0600 0.0910 0.1390 0.2080 0.3230 0.5030 0.7100 辐射颜色 绿 绿 黄 黄 黄 黄 黄 黄 橙 橙 橙 橙 橙 波长/nm 530 540 550 555 560 570 580 590 600 610 620 630 640 V(l) 0.8620 0.9540 0.9950 1.0000 0.9950 0.9520 0.8700 0.7570 0.6310 0.5030 0.3810 0.2650 0.1750 辐射颜色 橙 红 红 红 红 红 红 红 红 红 红 红 波长/nm 650 660 670 680 690 700 710 720 730 740 750 760 V(l) 0.1070 0.0610 0.0320 0.0170 0.0082 0.0041 0.0021 0.00105 0.00052 0.00025 0.00012 0.00006
四、光照度
(1) 光照度的定义——E 光照度的定义:受照面单位面积上接收到的或投射到受照面单位面积上的光 通量。 光照度的数学表述:对于给定的受照面面元dS',其上所接收到的或投射到 其上的光通量 dF' ,与该面元大小成正比,相应的比 例系数正是该面元上的光照度,即
d ' E d S'
应用光学辐射度学和光度学基础

4r2 4
r2
即整个空间等于4 π球面度。
8
立体角是平面角向三维空间的推广。 在二维空间,2π角度覆盖整个单位 圆。
在三维空间, 4π的球面度立体角 覆盖整个单位球面。
9
第二节 辐射度学中的基本量
(1)辐射能 Qe ➢ 光辐射是一种能量的传播形式。 ➢度量辐射能的单位:焦耳(J)
10
(2)辐射通量 Φe ➢ 单位时间内发射、传输或接收的辐射能。
36
(二)、硅光电池
即常说的太阳能电池。 (三)、硅光二极管
利用P-N结单向导电的结型光电器件。 当有光照时,会产生电流。其特点是响应 频率非常高,理论上可以达到几个G
37
(四)、硅光三极管
结构与晶体三极管相似,但基极不接导线, 是一个较大的光接受面。与光电二极管相 比具有放大作用。响应频率不如二极管, 还与负载有关 RL=1KΩ 时,f=100kHz
2、光源照射到物体上所产生的客观效果,称为光 源的显色性。
34
光源的光谱能量分布情况是决定该光源色 表与显色性的重要因素。如果能量分布连 续而均与,则色表和显色性一定好,反之 则较差。 四、光的接收器
设计一个光学系统,其最终的目的是使接收 器接受到所需的信号。
人眼是光学系统最重要的接收器。
很多现代光学仪器采用光电探测器作为接收 器,将光信号转换为电信号。
但是波长在380nm,780nm以外区域的辐 射能,不管有多大功率的辐射通量进入人眼, 将是感觉不到的。
20
第四节 光度学中的基本量
(1)光通量( Φ )
标度可见光对人眼的视觉刺激程度的量。 光通量的单位:流明(lm)
光源发出555nm波长的光,如果功率为1W , 则其光通量为683lm
r2
即整个空间等于4 π球面度。
8
立体角是平面角向三维空间的推广。 在二维空间,2π角度覆盖整个单位 圆。
在三维空间, 4π的球面度立体角 覆盖整个单位球面。
9
第二节 辐射度学中的基本量
(1)辐射能 Qe ➢ 光辐射是一种能量的传播形式。 ➢度量辐射能的单位:焦耳(J)
10
(2)辐射通量 Φe ➢ 单位时间内发射、传输或接收的辐射能。
36
(二)、硅光电池
即常说的太阳能电池。 (三)、硅光二极管
利用P-N结单向导电的结型光电器件。 当有光照时,会产生电流。其特点是响应 频率非常高,理论上可以达到几个G
37
(四)、硅光三极管
结构与晶体三极管相似,但基极不接导线, 是一个较大的光接受面。与光电二极管相 比具有放大作用。响应频率不如二极管, 还与负载有关 RL=1KΩ 时,f=100kHz
2、光源照射到物体上所产生的客观效果,称为光 源的显色性。
34
光源的光谱能量分布情况是决定该光源色 表与显色性的重要因素。如果能量分布连 续而均与,则色表和显色性一定好,反之 则较差。 四、光的接收器
设计一个光学系统,其最终的目的是使接收 器接受到所需的信号。
人眼是光学系统最重要的接收器。
很多现代光学仪器采用光电探测器作为接收 器,将光信号转换为电信号。
但是波长在380nm,780nm以外区域的辐 射能,不管有多大功率的辐射通量进入人眼, 将是感觉不到的。
20
第四节 光度学中的基本量
(1)光通量( Φ )
标度可见光对人眼的视觉刺激程度的量。 光通量的单位:流明(lm)
光源发出555nm波长的光,如果功率为1W , 则其光通量为683lm
第二章辐射度光度基础

朗伯(J. H. Lambert)定律——余弦定律
• 按照cos 规律发射光通量的规 律,叫朗伯定律; • 余弦辐射体可以是自发光面, 也可以是透射或反射体; • 黑体,太阳和平面灯丝钨丝等 可视为余弦辐射体; • 一个均匀的球形余弦发射体, 从远处的观察者看来,与同样 半径同样亮度的圆盘无疑。
XV Km
780
380
X e ( )V( )d
人眼的光视效能K (lm/W)
V K m 0 V ( ) e ( ) d K K mV e ( ) d
0
e
V ( )视效率
常见光源的光视效能
• 光通量:光源在单位时间内,向周围空间辐射出的、使人 光视效能 光视效能 光源类型 光源类型 眼产生光感觉的能量,称为光通量,用符号Φv表示,单 (lm/W) (lm/W) 位为流明 (lm)。 钨丝灯 (真空) 8~9.2 1W电功率所发出的流明数 日光灯 27~41 • 人们通常以电光源消耗 (lm/W) 钨丝灯 (充气) 9.2~21 高压水银灯 34~45 来表征电光源的特性,称为发光效率,简称光效。电光源 的光效越高越好。 石英卤钨灯 30 超高压水银灯 40~47.5
的余弦变化。
朗伯余弦辐射体
发光强度的空间分布满足 的发光表面叫做余弦辐射体。
I0为发光面在法线方向的发光强度, Iθ为和法线成任意 角度θ方向的发光强度。发光强度向量Iθ端点的轨迹是一个与 发光面相切的球面,球心在法线上,球的直径为I0。
上图为用向量表示的余弦辐射体在通过法线的任意截面 内的光强度分布。
朗伯辐射体的辐射出射度与亮度的关系
dΦ L cos dSd LdS cos d LdS d 2 sin cos d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3 光谱辐射量与光子辐射量
第一节介绍的六个基本辐射量反映了辐射功率的 几何分布特性:表面密度分布和空间角分布。
任何辐射均有一定的波长分布范围:辐射的光谱特 性。那么,基本辐射量都应该有相应的光谱辐射量。
一,光谱辐射量
任一基本辐射量X,它包含了波长范围0~∞的全 部辐射量,因此也叫全辐射量。
对于基本辐射量X在波长范围λ~λ+Δλ内相应 的辐射量为Δ X,
对于一个给定顶点O 和一个随意方向的微小面积
dS
,它们对应的立体角为:
d
dS cos
R2
一,辐射能
以电磁波形式发射、传输或接收的能量辐射能密度:辐射场内单位体积中的辐射能。
w Q V
二,辐射功率
单位时间内发射,传输或接收到的辐射能。
P Q t
扩展源的辐射功率:
P A M xdA
如果扩展源表面的发射是均匀的:
P MA
五,辐射亮度(辐亮度)
辐射亮度L:描述扩展源表面不同位置沿空间不同方 向的辐射功率分布特性
物理描述: 辐射源在给定方向
上的辐射亮度,是源在 该方向单位投影面积上、 单位立体角内发出的辐 射功率。
数学描述:
图2-4
面积元△A向小立体角△Ω内发射的辐射功率是 二阶小量△(△P)=△2P;
L M 1
cos
M Lcosd 2
小面源(面积ΔA)
可以近似看作点源,也可以用辐射强度描述:
I P
L I 1
A cos
I LdAcos A
由于ΔA很小,一般不考虑辐射亮度L在ΔA中不同 位置上的变化,小面源的辐射强度等于该面源的辐射 亮度乘以小面源在该方向上的投影面积:
I LAcos
光谱带辐射功率:
P
2 1
P d
全辐射功率:
P 0 Pd
人类最先认识的是可见光,创立了光能测量的技 术——光度学。
光度学与辐射度学:对光能进行定量研究的科学.
光度学:只限于可见光范围,包含人眼特性。
属于心理物理学方法 辐射度学:规律适用于从紫外到红外波段(光能的大
小是客观的).甚至适用于整个电磁波谱。
纯粹的物理学方法,辐射量是纯粹的物理量
辐射度学是建立在几何光学的基础上的:
在θ方向看到的源面积是△A的投影面积 △Aθ=△Acosθ
在θ方向上观测到的 源表面上该位置的辐 亮度就定义为△2P与 △Aθ及△Ω之比的极 限值
L
liAm00
2 P A
2P A
2P
A cos
单位:w/(㎡·Sr) 瓦/(平方米·球面度)
辐出度M和辐亮度L的关系
M P A
L 2P
A cos
时,也将是一个立体空间问题。
在光辐射测量中,常用的几何量就是立体角。
定义:一个任意形状椎面所包含的空间称为立体角。
符号:Ω
单位:Sr (球面度)
立体角
△A是半径为R的球面的 一部分,△A的边缘各 点对球心O连线所包围 的那部分空间叫立体角
图2-1
立体角的数值为部分球面面积△A与球半径平方之比:
A R2
数学描述: 点辐射源在小立体角△Ω内的辐图射2-2功率为△P,
则△P与△Ω之比的极限值定义为辐射强度.
lim P P
I
0
单位:W/Sr (瓦/球面度)
点源是向全空间辐射能量的,点源的辐射功率:
P Id
对于各向同性的辐射源,辐射强度为常数:
P 4I
四,辐射出射度(辐出度)
辐射出射度是描述扩展源辐射特性的辐射量。
第二章 辐射度学与光度学基础
§2.1 引言
光是电磁波,是一种传播着的能量。
在研究光(辐射)的产生、传输和探测等光辐 射与物质相互作用时,需要对辐射量进行度量和定 量研究。
辐射度学就是一门研究电磁辐射能测量的科学 与技术,对整个电磁波谱范围都适用。
在电磁波谱范围内,不同的波段各有其特殊性 质,有不同的测量方法与手段,我们现在限于讨论 光学波段(涵盖红外和紫外)的辐射能测量。
辐射强度是描述点辐射源特性的辐射量。
1,点辐射源与扩展源
这是一个相对概念,辐射源与观测点之间距离 大于辐射源最大尺寸10倍时,可当做点源处理,否 则称为扩展源(有一定面积).
如果观测中使用了光学系统,当源的像小于探测 器,就可以看成是点源。
2,辐射强度
物理描述: 点辐射源在某一方向上
的辐射强度,是指辐射源在 包含该方向的单位立体角内 所发出的辐射通量。
物理描述:
P
扩展源单位面积
向半球空间发射的功 率(或辐射通量)。
x A
数学描述:
图2-3
若辐射源的x处微小面积元△A向半球空间的辐
射功率为△P,则△P与△A之比的极限值定义为x处
的辐射出射度.
lim P P
M
A0 A A
单位:w/㎡ (瓦/米2)
如果扩展源表面的发射不是均匀的:
M Mx
辐射出射度描述了扩展源辐射功率在源表面的 分布特性。
1,辐射按直线传播,辐射的波动性不会使辐射 能的空间分布偏离几何光线所规定的光路;
2,辐射能是不相干的,不考虑干涉效应。
红外物理学就是从光是一种能量出发,定量地 讨论光的计算和测量问题(当然可以扩展到整个光 学谱区).
§2.2 常用辐射量
任一光源发射的光能量都是辐射在它周围的一 定空间内。因此,在进行有关光辐射的讨论和计算
单位:W(瓦)
辐射通量:单位时间内通过某一面积的辐射能。 因此,对同一表面:
P Q t
辐射功率以及由它派生出来的几个辐射度学中的 物理量,属于基本物理量。它们的量值都可以用专门 的红外辐射计在离开辐射源一定的距离上进行测量。 所以其他辐射量都是由辐射功率(或称为辐射通量) 定义的。
三,辐射强度
上述结论对扩展源上的小面积元同样适用。
扩 小面积元 展 源
挡光板
图2-5
六,辐射照度
受照物体表面的单位面积上接收到的辐射功率称
辐射照度.
P
x
图2-6
A
lim E
P P
A0 A A
单位:w/㎡ (瓦/米2)
和辐射出射度的表达式相同,但物理意义完全不同。
辐射照度E,可以是多个辐射源辐照的结果,也可以 是特定方向的一个立体角中投射的辐射功率。
定义光谱辐射量(也叫单色辐射量):
lim X
0
X
X
X
图2-7
1 2
(全)辐射量:
X 0 X d
光谱带辐射量: X
2 1
X d
1,光谱辐射功率(光谱辐射通量)
辐射源在λ+△λ波长间隔内发出的辐射功率, 称为在波长λ处的光谱辐射功率(或单色辐射功 率)
P
lim
0
P
P
单位:W/μm (瓦/微米)