高考数学复习、高中数学 空间直角坐标系与空间向量附答案解析

合集下载

高考立体几何复习三部曲—空间直角坐标系的应用

高考立体几何复习三部曲—空间直角坐标系的应用

高考立体几何复习三部曲—空间直角坐标系的应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学立体几何三部曲—空间之直角坐标系专项一、积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算3、应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:OP=x OM+y OAOP=x OA+(1-x)OB-一、空间向量的简单应用1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是() A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对2.(2012·济宁一模)若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是() A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}3.(教材习题改编)下列命题:①若A 、B 、C 、D 是空间任意四点,则有AB +BC +CD +DA =0; ②若MB =x MA +y MB ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2D .34.在四面体O -ABC 中,OA =a ,OB =b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =________(用a ,b ,c 表示).5.013·大同月考)若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)6已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637 C.607D.657二、利用空间向量证明平行或垂直[例] 已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.方法利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l1的方向向量v1=(a1,b1,c1),l2的方向向量v2=(a2,b2,c2).则l1∥l2⇔v1∥v2⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R).l1⊥l2⇔v1⊥v2⇔a1a2+b1b2+c1c2=0.(2)设直线l的方向向量为v=(a1,b1,c1),平面α的法向量为n=(a2,b2,c2),则l∥α⇔v⊥n⇔a1a2+b1b2+c1c2=0.l⊥α⇔v∥n⇔(a1,b1,c1)=k(a2,b2,c2).(3)设平面α的法向量n1=(a1,b1,c1),β的法向量为n2=(a2,b2,c2),则α∥β⇔n1∥n2,α⊥β⇔n1⊥n2.1.2012·长春模拟)如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.2.如图所示,平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CD=∠C1CB=∠BCD=60°.(1)求证:C1C⊥BD;(2)当CDCC1的值是多少时,能使A1C⊥平面C1BD请给出证明.3.如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E、F、G分别是线段P A、PD、CD的中点.求证:PB∥平面EFG.三、利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a,b所成的角).2.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|e·n| |e||n|.3.求二面角的大小(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB,CD〉.(2)如图2、3,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ=〈n1,n2〉(或π-〈n1,n2〉).1.(教材习题改编)已知向量m,n分别是直线l和平面α的方向向量、法向量,若cos〈m,n〉=-12,则l与α所成的角为()A.30°B.60°C.120°D.150°2.(教材习题改编)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为()A.45°B.135°C.45°或135°D.90°3.在如图所示的正方体A 1B1C1D1-ABCD中,E是C1D1的中点,则异面直线DE与AC 夹角的余弦值为( )A .-1010B .-120C.120D.10104.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.5.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.(一)异面直线所成的角[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13若存在,求出M 点;不存在,说明理由.1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1. .(二)直线与平面所成角[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.2.(2012·宝鸡模拟)如图,已知P A⊥平面ABC,且P A=2,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.(1)求证:PC⊥平面ADE;(2)求直线AB与平面ADE所成角的大小.(三)二面角[例3]在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=5,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;3.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC⊥BE;(2)若二面角C-AE-D的大小为60°,求λ的值.11A1如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(I )证明:11AC A B ⊥;(II )设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.【课后练习题】1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.3.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC , ∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.5.(2012·辽宁高考)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)若二面角A′-MN-C为直二面角,求λ的值.6.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2.将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直说明理由.7.(2013·湖北模拟)如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点.(1)求证:P A⊥EF;(2)求二面角D-FG-E的余弦值.8.(2012·北京西城模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角若存在,确定E 点位置;若不存在,说明理由.9.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.10.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.11.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2. (1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE的长;若不存在,请说明理由.12.(2012·湖北模拟)在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°.(1)若异面直线A1B与B1C1所成的角为60°,求棱柱的高;(2)设D是BB1的中点,DC1与平面A1BC1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.11。

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解

高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解

高考总复习含详解答案高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解一、选择题1.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为()A .平行四边形B .梯形C .平面四边形D .空间四边形[答案]D [解析]∵AB →·BC →>0,∴∠ABC>π2,同理∠BCD>π2,∠CDA>π2,∠DAB >π2,由内角和定理知,四边形ABCD 一定不是平面四边形,故选 D. 2.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为()A .0B .1C .0或1D .任意实数[答案]C [解析]AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选 C. 3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,N 为BB 1的靠近B 的三等分点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则MN →等于()A .-12a +12b +13c B.12a +12b -13c C.12a -12b -13c D .-12a -12b +23c [答案] C。

高考数学一轮复习课时作业四十空间直角坐标系空间向量及其运算作业课件苏教版ppt

高考数学一轮复习课时作业四十空间直角坐标系空间向量及其运算作业课件苏教版ppt

【加练备选·拔高】 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为12 的小正方体堆积成的正方体),其中白点 代表钠原子,黑点 代表氯原子.建立空 间直角坐标系 O-xyz 后,图中最上层中心的钠原子所在位置的坐标是( )K
A.(12 ,12 ,1) B.(0,0,1) C.(1,21 ,1) D.(1,12 ,21 )
标为( )
A.12,34,13
B.12,32,34
C.34,34,83
D.43,43,73
【解析】选 C.设 Q(x,y,z),由点 Q 在直线 OP 上,可得存在实数 λ 使得O→Q =λO→P , 即(x,y,z)=λ(1,1,2),可得 Q(λ,λ,2λ), 所以Q→A =(1-λ,2-λ,3-2λ), Q→B =(2-λ,1-λ,2-2λ), 则Q→A ·Q→B =(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=2(3λ2-8λ+5), 根据二次函数的性质,可得当 λ=43 时,取得最小值-23 ,此时 Q43,43,83 .
设A→P =mA→B +nA→C (m,n∈R),即O→P -O→A =m(O→B -O→A )+n(O→C -O→A ), 即O→P =(1-m-n)O→A +mO→B +nO→C ,即 x=1-m-n,y=m,z=n,这组数显 然不止 2,-3,2. 故“x=2,y=-3,z=2”是“P,A,B,C 四点共面”的充分不必要条件.
一、选择题2),b=(6,2u-1,2λ),若 a∥b,则 λ 与 u 的值可以是( )
A.2,12
B.-13 ,21
C.-3,2
D.2,2
【解析】选 A.由题意知(λ+1)·2λ=2×6,可得 λ=-3 或 2,由 0·2λ=2(2u-1) 得 u=12 ,分析选项知 A 正确.

2025年高考数学一轮复习课件第七章立体几何-7.5空间向量与立体几何-第1课时空间向量及基本应用

2025年高考数学一轮复习课件第七章立体几何-7.5空间向量与立体几何-第1课时空间向量及基本应用

, = 1 − + 或 = + ,这里 + = 1.对空间四点,,
,,可通过证明下列结论成立来证明四点共面:① = + ;②对空间
任一点, = + + ;③对空间任一点, = + + ,
条件是存在唯一的有序实数对 , ,使 =_________
空间向量基本定理
不共面,
如果三个向量,,__________那么对任意一个空间向量,
, ,
存在唯一的有序实数组________,使得
= + +
返回至目录
2.空间向量及其运算的坐标表示
(1)空间向量运算的坐标表示.
位置关系
向量表示
直线1,2的方向向量分别为
1//2
1//2 ⇒ 1 = 2
1,2
1 ⊥ 2
1 ⊥ 2 ⇔ 1 ⋅ 2 = 0
直线的方向向量为,平面 的
//
⊥ ⇔ ⋅ = 0
法向量为

// ⇔ =
//
// ⇔ =
1
4
1
4
1
2
1
4
1
4
1
2
1
+
4
1− 2来自A. + −
B. − −
1
C.−
4
3
D.−
4

1

4
+
1

2
)
解:由已知,得1 = 1 = , = = , = = ,
=
+
1
1
2
+

高考数学专题复习题:空间向量运算的坐标表示

高考数学专题复习题:空间向量运算的坐标表示

高考数学专题复习题:空间向量运算的坐标表示一、单项选择题(共8小题)1.已知两平行直线的方向向量分别为(42,1,1)a m m m =−−−,(4,22,22)b m m =−−,则实数m 的值为( )A .1B .3C .1或3D .以上答案都不正确 2.已知空间中两点(,1,2)A x,(2,3,4)B ,且AB =x 的值是( ) A .6−B .2−或6C .4−D .4−或23.如果点(3,1,4)A −,(7,1,0)B ,那么线段AB 的中点M 在yOz 平面上的射影点的坐标一定是( ) A .(0,1,2)B .(2,1,2)C .(2,1,2)−D .(2,1,2)−−4.若点()(),,0P x y z xyz ≠关于xOy 的对称点为A ,关于z 轴的对称点为B ,则A 、B 两点的对称是( ) A .关于xOz 平面对称 B .关于x 轴对称 C .关于y 轴对称D .关于坐标原点对称5.如图,在直三棱柱111ABC A B C −中,190,1,,,BAC AB AC AA G E F ∠=︒===分别是棱111,A B CC 和AB 的中点,点D 是线段AC 上的动点(不包括端点).若GD EF ⊥,则线段AD 的长度是( )A .14B .12C .34D .136.已知()4,2,5a =−,()2,1,b x =−,且a b ⊥,则x =( ) A .1B .2C .3D .47.设,x y ∈R ,如果向量(),1,1a x =,()1,,1b y =,()2,4,2c =−,且a b ⊥,//b c ,那么a b +等于( ) A .B C .3D .48.已知向量()1,,2AB a =−与()2,4,AC b =−共线,则a b +=( ) A .2−B .0C .2D .6二、填空题(共3小题)9.已知()()2,3,0,,0,3,,120=−==a b k a b ,则k =________.10.若正方体1111ABCD A B C D −的棱长为1,则AB 在1AC uuu r上的投影向量的模为________. 11.在空间直角坐标系中,已知()1,2,2A t ,(),0,31B t t −,则AB的最小值是________.三、解答题(共2小题)12.如图,在棱长为1的正方体1111ABCD A B C D −中,以正方体的三条棱所在直线为轴建立空间直角坐标系O xyz −.(1)若点P 在线段1BD 上,且满足13BP BD =,试写出点P 的坐标,并写出点P 关于y 轴的对称点P '的坐标.(2)在线段1C D 上找一点M ,使得点M 到点P 的距离最小,求出点M 的坐标.13.已知向量()()1,1,0,1,0,2a b ==−. (1)若2a kb a b ++()∥(),求实数k . (2)若向量a kb +rr与2a b +所成角为锐角,求实数k 的范围.。

2015届高考数学总复习第八章 第七节空间坐标系、空间向量的概念及运算课件 理

2015届高考数学总复习第八章 第七节空间坐标系、空间向量的概念及运算课件 理

自主解答:
解析:(法一)如图所示取PC的中点E, → =EN → -EM →. 连接NE,则MN 1 → 1→ 1→ → ∵EN=2CD=2BA=-2AB, 2→ 1→ 1→ → → → EM=PM-PE=3PC-2PC=6PC, → =AC → -AP → =AB → +AD → -AP →, 连接AC,则PC 1→ 1 → → → → ∴MN=-2AB-6(AB+AD-AP) 2→ 1 → 1→ =-3AB -6AD+6AP. 2 1 1 ∴x=-3,y=-6,z=6.
1→ 2→ → → → (法二)MN=PN-PM=2PD-3PC= 1→ → 2→ → 2(PA+AD)-3(PA+AC)= 1→ 1 → 2 → → → -2AP+2AD-3(-AP+AB+AD)= 2→ 1 → 1→ -3AB-6AD+6AP, 2 1 1 ∴x=-3,y=-6,z=6.
点评:(1)平面向量是空间向量的一种特殊情况,因此 平面向量的重要运算法则及解题方法均可引申到空间向量 中来. (2)在向量的加减法运算中应注意其几何意义的应用. (3)应注意数形结合的数学思想和方法.
பைடு நூலகம்
空间向量的基本运算与空间向量的基本 定理
【例2】 已知矩形ABCD,P为平面ABCD外一点,且PA⊥ → =2 MC → , PN →= 平面ABCD,M,N分别为PC,PD上的点,且 PM → ,求满足MN → =xAB → +yAD → +zAP → 的实数x,y,z的值. ND → 出发,利用向量运算法则 思路点拨:结合图形,从向量 MN → , AD → , AP → 表示出来,即可 不断进行分解,直到全部向量都用 AB 求出x,y,z的值.
解析:(1)点A(2,-3,5)关于坐标平面xOy的对称点是 B(2,-3,-5),

(全国通用)高考数学一轮复习第七章立体几何第六节空间直角坐标系、空间向量及其运算习题理【含答案】

(全国通用)高考数学一轮复习第七章立体几何第六节空间直角坐标系、空间向量及其运算习题理【含答案】

第六节空间直角坐标系、空间向量及其运算[基础达标]一、选择题(每小题5分,共25分)1.已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,则DE与D1F的位置关系是()A.平行B.相交且垂直C.异面且垂直D.既不平行也不垂直1.C【解析】建立空间直角坐标系后,求得=0,所以,即DE与D1F垂直且DE与D1F是异面直线.2.两个非零向量a=(x1,y1,z1),b=(x2,y2,z2),则是a∥b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.A【解析】a∥b且一个坐标为0是不能得到,所以必要性不满足,即是a∥b的充分不必要条件.3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N是BC的中点, =a,=b, =c,则=() A. a+b-c B.- a+b+cC. a-b+cD. a+b-c3.B【解析】∵点M在线段OA上,且OM=2MA,点N为BC的中点, +()++()+)=-,∵=a, =b, =c,∴=-a+b+c.4.已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是()A.B.C.D.4.D【解析】选项A,当四边形ADD1A1为正方形时,可得AD1⊥A1D,而A1D∥B1C,可得AD1⊥B1C,此时有=0;选项B,当四边形ABCD为正方形时,可得AC⊥BD,可得AC⊥平面BB1D1D,故有AC⊥BD1,此时有=0;选项C,由长方体的性质可得AB⊥平面ADD1A1,可得AB⊥AD1,此时必有=0;选项D,由长方体的性质可得BC⊥平面CDD1C1,可得BC⊥CD1,△BCD1为直角三角形,∠BCD1为直角,故BC与BD1不可能垂直,即≠0.5.在边长为1的正方体ABCD-A1B1C1D1中,E,F分别是D1D,BD的中点,点G在棱CD上,且CG=CD,H是C1G的中点,则||为() A.B.C.D.5.D【解析】如图,以D为原点建立空间直角坐标系,则F,C1(0,1,1),G.因为H是C1G的中点,所以H,所以=-,则||=.二、填空题(每小题5分,共15分)6.已知向量a=(-4,2,4),b=(-6,3,-2),则a·b=;|a|=.6.226【解析】a·b=(-4)×(-6)+2×3+4×(-2)=22,|a|==6.7.已知空间四点A(-2,3,1),B(2,-5,3),C(10,0,10),D(8,4,a),如果四边形ABCD为梯形,则实数a的值为.7.9【解析】因为=(4,-8,2), =(8,5,7), =(2,-4,10-a), =(10,1,a-1),四边形ABCD为梯形,则,解得a=9,此时不平行.8.正方体ABCD-A1B1C1D1中,P为A1B1上任意一点,则DP与BC1始终.8.垂直【解析】因为=()·=()·=0,所以,即DP与BC1始终垂直.三、解答题(共20分)9.(10分)如图,正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB内一点,=(2m,-2m,-m)(m<0),证明:HC1⊥平面EDB.9.【解析】设正方体的棱长为a,则=(a,a,0),所以=(2m,-2m,-m)·=0,=(2m,-2m,-m)·(a,a,0)=0,所以,又DE∩DB=D,所以HC1⊥平面EDB.10.(10分)如图,在四棱锥P-ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.求证:MN∥平面PAD.10.【解析】取DP的中点E,连接AE,EN,则,所以,所以共面,且MN不在平面PAD上,所以MN∥平面PAD.[高考冲关]1.(5分)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(0,1,1),(1,0,1),(1,1,0),该四面体的体积为()A.B.C.1 D.21.A【解析】在空间直角坐标系中作出四面体的四个顶点,可知该四面体是棱长为的正四面体,所以体积为.2.(5分)设P(2,3,4)在三个坐标平面上的射影分别为P1,P2,P3,则向量:①(6,-3,-4);②(4,-3,-4);③(0,-3,4);④(2,-6,4).其中与平面P1P2P3平行的向量有().A.1个B.2个C.3个D.4个2.C【解析】由题意可知,P1,P2,P3的坐标分别为(2,3,0),(2,0,4),(0,3,4),可以求得平面P1P2P3的一个法向量为(6,4,3),①不与该法向量垂直,所以不与平面P1P2P3平行,②③④与该法向量垂直,所以与平面P1P2P3平行.3.(5分)在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=a,则MN 与平面BB1C1C的位置关系是() A.在平面上B.相交C.平行D.以上都不正确3.C【解析】建立如图所示的空间直角坐标系,则点M a,,N,所以=-,0,-与平面BB1C1C的法向量=(0,a,0)垂直,且MN不在平面BB1C1C上,所以MN与平面BB1C1C的位置关系是平行.4.(5分)已知空间四边形ABCD中, =a-2c, =5a+6b-8c,对角线AC,BD的中点分别为E,F,则=.4.3a+3b-5c【解析】=3a+3b-5c.5.(5分)已知空间图形A-BCD,E,F,G,H,M,N分别是AB,BC,CD,DA,AC,BD的中点,求证:EG,FH,MN交于一点且互相平分.5.【解析】设P1,P2,P3分别为EG,FH,MN的中点,又设=a, =b, =c,则)=)=(a+b+c).同理可证 (a+b+c),(a+b+c),∴P1,P2,P3三点重合.从而原命题得证.6.(10分)已知正方体ABCD-A1B1C1D1的棱长为1,M是棱AA1的中点,点O是对角线BD1的中点.(1)求证:BD1⊥AC;(2)求证:OM是异面直线AA1与BD1的公垂线.6.【解析】(1)以D为原点,DC,DA,DD1所在的直线分别为x,y,z轴,建立空间直角坐标系,则D(0,0,0),C(1,0,0),B(1,1,0),D1(0,0,1),M,O.∴=(-1,-1,1), =(1,-1,0),∴=(-1)×1+(-1)×(-1)+1×0=0,∴,即BD1⊥AC.(2) =(0,0,1), =(-1,-1,1),∵=0, =0,∴OM⊥AA1,OM⊥BD1,即OM是异面直线AA1与BD1的公垂线.7.(10分)已知正三棱柱ABC-A1B1C1的侧棱长为2,底面边长为1,M是BC的中点.在直线CC1上是否存在一点N,使得MN⊥AB1?若存在,请你求出它的位置;若不存在,请说明理由.7.【解析】假设在直线CC1上存在一点N,使得MN⊥AB1.如图,建立空间直角坐标系,有A(0,0,0),B,M,0,N(0,1,z),B1,∴.∵,∴=-+2z=0,解得z=,N,即CN=时,AB1⊥MN.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8节 空间直角坐标系与空间向量
基础巩固题组 (建议用时:40分钟)
一、单项选择题
1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2
B.-4
C.4
D.-2
2.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行
C.异面
D.相交但不垂直
3.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|P A |=|PB |,则P 点坐标为( ) A .(3,0,0) B .(0,3,0) C .(0,0,3)
D .(0,0,-3)
4.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A.a 2
B.1
2
a 2 C.1
4
a 2 D.34
a 2 5.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )
A.3-225
B.2-26
C.12
D.32
6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =
2a
3
,则MN 与平面BB 1C 1C 的位置关系是( )
A.斜交
B.平行
C.垂直
D.MN 在平面BB 1C 1C 内
二、多项选择题
7.已知ABCD -A 1B 1C 1D 1为正方体,则下列结论中正确的是( ) A. (A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; B.A 1C →·(A 1B 1→-A 1A →)=0;
C.向量AD 1→与向量A 1B →的夹角是60°;
D.正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →
=(4,2,0),AP →
=(-1,2,-1),则下列结论中正确的是( ) A. AP ⊥AB B. AP ⊥AD
C. AP →∥BD →
D.AP →
是平面ABCD 的法向量
三、填空题
9.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →
=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.
10.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________. 四、解答题
11.方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .
12.如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:
(1)P A ⊥BD ;
(2)平面P AD ⊥平面P AB .
能力提升题组 (建议用时:20分钟)
13.有下列命题:①若p =x a +y b ,则p 与a ,b 共面;②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面;④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →.其中真命题的个数是( ) A.1
B.2
C.3
D.4
14.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )
A.(1,1,1)
B.⎝⎛

⎫23,23,1 C.⎝⎛
⎭⎫22,22,1 D.⎝⎛⎭
⎫24,24,1
15.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.
16.如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .
(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;
(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BP
BC 的值;如果不存在,请说
明理由.
第8节 空间直角坐标系与空间向量
1.C
2.B 3.C 4.C 5.A 6.B 7.AB 8.ABD 9.25
7
10. 2
11.证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.
设正方体的棱长为1,则
D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫1
2,1,1, 于是MN →=⎝⎛⎭⎫12
,0,12,DA 1→=(1,0,1),DB →
=(1,1,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),
则n ·DA 1→=0,且n ·DB →
=0,得⎩
⎪⎨⎪⎧x +z =0,x +y =0.
取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).
又MN →
·n =⎝⎛⎭⎫12
,0,12·(1,-1,-1)=0, 所以MN →
⊥n .
又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .
12.证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .
以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.
不妨设CD =1,则AB =BC =2,PO = 3.
∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →
=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .
(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12
,-1,3
2.
∵DM →=⎝⎛⎭⎫32
,0,32,PB →
=(1,0,-3),
∴DM →·PB →=3
2×1+0×0+32
×(-3)=0,
∴DM →⊥PB →
,即DM ⊥PB .
∵DM →·P A →=3
2×1+0×(-2)+32
×(-3)=0,
∴DM →⊥P A →
,即DM ⊥P A .
又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB . 13.B 14.C 15.1
16.解 (1)AB ∥平面DEF ,理由如下:
在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB . 又因为AB ⊄平面DEF ,EF ⊂平面DEF , 所以AB ∥平面DEF .
(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1), 故DE →
=(0,3,1).
假设存在点P (x ,y ,0)满足条件, 则AP →=(x ,y ,-2),AP →·DE →=3y -2=0,
所以y =23
3
.
又BP →=(x -2,y ,0),PC →=(-x ,23-y ,0),BP →∥PC →, 所以(x -2)(23-y )=-xy ,所以3x +y =2 3.
把y =233代入上式得x =43,所以BP →=13
BC →,
所以在线段BC 上存在点P 使AP ⊥DE ,此时BP BC =1
3
.。

相关文档
最新文档