排水工程知识点整理

排水工程知识点整理
排水工程知识点整理

第一章、概论

1、污水:水在使用过程中受到不同程度的污染,改变了原有的物理、化学成分和性质,失去了特定使用价值,称为污水或者废水。按照来源的不同污水可分为生活污水、工业废水和降水。

2、城市污水:指排入城镇污水排水系统的生活污水和工业废水。合流制排水系统的城市污水还包括生产废水和截流的雨水。城市污水是城市排水管道系统所要收集、输送、处理和处置的主要对象。

3、污水处理:方法:1)物理处理2)化学处理3)生物处理。污水的最终处置:排放水体1)直接排放(雨水和污染较轻)水体2)处理排放3)排海;灌溉农田;回用1)自然回用2)间接回用3)直接回用

4、排水体制:又称排水制度,是指污水的不同的排除方式所形成的排水系统,即生活污水、工业废水和雨水是采用一套管渠系统还是采用两套或两套以上的、各自独立的管渠系统来收集和输送。排水系统体制主要有合流制与分流制两种系统。一般所谓的合流与分流是指对污水与雨水的管道系统是合与分而言。影响排水体制选择的因素:城市规划;环境保护;基建投资;运行管理;综合考虑,因地制宜。

5、合流制排水系统:是将生活污水、工业废水和雨水混和在同一套管渠内排除的系统。直排式合流制排水系统:将生活污水、工业废水和雨水合流于一套排水管渠系统中,不经处理和利用就近直接排入受纳水体。在国内外的旧城市中多采用这种排水方法,它造价较低,管理方便,但污染水体较为严重,现在一般已不采用这种排水体制。完全合流制排水系统:将生活污水、工业废水和雨水合流于一套排水管渠系统中,经处理直接排入受纳水体。这种排水方法与地下建筑矛盾较小,卫生条件好,管网投资也比分流制小,但是工程量大初次投资大,运行管理不便。对污水处理厂的要求较高,一般很少采完全合流制排水系统。截流式合流制排水系统:是在早期建设的直排式合流制基础上,在临河岸边增建一条截流干管,并在截流干管末端设置污水厂,同时在合流干管和截流干管相交处或相交前设置溢流井。晴天和初雨时,所有污水都进入污水厂经处理后排入水体;随着雨量的增加,当水量超过截流干管的输水能力时,出现溢流,部分混合污水经溢流井溢入水体。在一定程度上克服了直排式的不足,但在雨天仍有部分混合污水直接进入水体。一般用于旧城区的改造。

6、分流制排水系统:是将污水和雨水分别在两套或两套以上各自独立的管渠内排除的系统。污水排水系统和雨水排水系统。完全分流制排水系统:雨污水排水系统单独设置。污水通过污水排水系统排至污水厂,经处理后排入水体;雨水通过雨水排水系统直接排入水体。该系统环保效益较好,但有初期雨水污染问题,投资也比截流式合流制排水系统要高。适用场合:新建城市及重要工矿企业、工厂排水系统。不完全分流制排水系统:设有完整的污水排水系统,没有完整的雨水排水系统。污水通过污水排水系统送至污水厂,经处理后排入水体;雨水则通过地面漫流进入不成系统的明沟或小河,然后进入较大的水体。该系统只建污水系统,不建雨水系统,故投资节省。适用场合:地形适宜,有地面水体,可顺利排泄雨水的城镇;发展中的城镇。我国很多工业区、居住区在以往建设中采用了该系统。半分流制排水系统:既有污水排水系统又有雨水排水系统。雨水干管上设雨水跳越井截流初雨和街道冲洗废水进入污水管道。雨水干管流量不大时,雨污水一起入污水厂处理;雨水干管流量超过截流量时,雨水在跳越井内溢流经雨水出流干管排入水体。该系统环保效益好,但投资高。适用场合:生活水平高、

环境质量要求高的城镇。在工业企业中,一般采用分流制排水系统。

7、控制井:为了控制庭院或街坊污水管道并使其良好地工作,在该系统的终点设置检查井,称为控制井。

8、压力管道:压送从泵站出来的污水至高地自流管道或至污水厂的承压管段,称压力管道。

9、污水处理厂:供处理和利用污水、污泥的一系列构筑物及附属构筑物的综合体称污水处理厂。城市污水处理厂一般设置在城市河流的下游地段,并与居民点或公共建筑保持一定的卫生防护距离。

10、出水口:污水排入水体的渠道和出口称出水口,它是整个城市污水排水系统的终点设备。

11、事故排出口:是指在污水排水系统的中途,在某些易于发生故障的组成部分前面,例如在总泵站的前面,所设置的辅助性出水渠,一旦发生故障,污水就通过事故排出口直接排入水体。

12、排水系统:指排水的收集、输送、处理和利用,以及排放污废水的设施以一定方式组合成的总体。排水系统由三部分组成:管道系统——收集和输送废水的工程设施。污水厂——改善水质和回收利用污水的工程设施。出水口——废水排入水体的工程设施。

13、城市污水排水系统的组成:一、室内污水管道系统及设备;二、室外污水管道系统1)居住小区污水管道系统2)街道污水管道系统3)管道系统上的附属构筑物;三、污水泵站及压力管道;四、污水处理厂;五、出水口及事故排放口。

14、工业废水排水系统的组成:车间内部管道系统及设备;厂区管道系统;污水泵站及压力管道;废水处理站;市政污水管网接入口。

15、雨水排水系统的组成:房屋雨水管道系统和设备;街道雨水管渠系统;排洪沟;雨水泵站及压力管;出水口。

16、排水系统平面布置:主要考虑因素:1)城市规划2)自然条件3)环境保护4)技术经济。正交式:在地势向水体适当倾斜的地区,各排水流域的干管可以最短距离沿与水体垂直相交的方向布置,这种布置也称正交布置。优点:干管长度短、管径小,因而经济,污水排出也迅速。缺点:污水未经处理就直接排放,影响环境。适用条件:用于排除雨水。截流式:在正交式的基础上若沿河岸再敷设主干管,并将各干管的污水截流送至污水厂,这种布置形式称截流式布置。优点:对减轻水体污染、改善和保护环境有重大作用。缺点:雨天有部分混合污水泄入水体,造成水体污染。适用条件:适用于合流制污水排水系统,将生活污水及工业废水经处理后排入水体;也适用于区域排水系统,区域主干管截流各城镇的污水送至区域污水厂进行处理。平行式:在地势向河流方向有较大倾斜的地区,为了避免因干管坡度及管内流速过大,使管道受到严重冲刷,可使干管与等高线及河道基本上平行,主干管与等高线及河道成一定斜角敷设,这种布置也称平行式布置。优点:降低敢管埋深,减少工程造价。缺点:为降低主干管坡度,主干管上会设置多个跌水井。分区式:在地势高低相差很大的地区,当污水不能靠重力流流至污水厂时,可采用分区布置形式。分别在高地区和低地区敷设独立的管道系统,高地区的污水靠重力流直接流入污水厂,而低地区的污水用水泵抽送至高地区干管或污水厂。优点:能充分利用地形排水,节省电力。缺点:如果将高地区的污水排至低地区,然后再用水泵一起抽送至污水厂是不经济的。适用条件:个别阶梯地形或起伏很大的地区。分散式:当城市周围有河流,或城市中央部分地势高、地势向周围倾斜的地区,各排水流域的干管常采用辐射状分散布

置,各排水流域具有独立的排水系统。优点:这种布置具有干管长度短、管径小、管道理深可能浅、便于污水灌溉等优点。缺点:污水厂和泵站(如需要设置时)的数量将增多。适用条件:在地形平坦的大城市,采用辐射状分散布置可能是比较有利的。环绕式:近年来,由于建造污水厂用地不足以及建造大型污水厂的基建投资和运行管理费用也较建小型厂经济等原因,故不希望建造数量多规模小的污水厂,而倾向于建造规模大的污水厂,所以由分散式发展成环绕式布置。这种形式是沿四周布置主干管,将各干管的污水截流送往污水厂。优点:污水集中处理,基础投资与运行管理费用较分散处理经济。缺点:主干管管径大,距离长,埋深大,集中处理不利于就近回收利用。适用条件:山地城市,周边有河流。

17、工业废水处理原则:1)改革生产工艺,减少用水,降低废水排放量,加强水的循环使用和再生回用;2)不同废水分类处理,分别回收;3)三废利用,以废治废,提倡清洁生产,建设环境友好企业。

18、工业废水的排放:1)零排放原则;2)处理后排入城市污水系统;3)处理后排入水体;4)排入城市污水排水系统合并处理。

19、工业废水排入城市排水系统的水质应满足以下原则:1)不影响城市排水管渠和污水厂等的正常运行2)不对养护管理人员造成危害;3)不影响污水处理厂出水和污泥的排放和利用。

20、区域排水系统:优点:水厂少,基建和运行费用低,比较经济;占地小,节约土地资源;水质、水量变化小,便于运行管理;利于水资源的统一协调管理。缺点:进入大量工业废水时容易出现运行困难;水厂一旦出现问题,对整个流域的影响巨大;工程规模大,发挥效益慢。

21、排水工程设计和建设的基本程序:可行性研究阶段;计划任务书阶段;设计阶段;组织施工阶段;竣工验收交付使用阶段。设计工作可分为三个阶段(初步设计、技术设计、施工图设计)设计和两个阶段设计(初步设计或扩大初步设计、施工图设计)。大中型基建项目,一般采用两个阶段设计。重大项目和特殊项目,根据需要,可增加技术设计阶段。

22、排水工程规划设计的基本原则:①应符合区域规划以及城市和企业的总体规划;②与临近区域的污水污泥处理处置协调;③分散处理与集中处理;④污水资源的回用;⑤与给水、水利工程的协调;⑥近期设计、远期扩建,以及现有工程改扩建;⑦贯彻执行国家有关标准、规范和规定。

第二章、污水管道系统的设计

1、污水管网设计的内容:1)设计基础数据的确定2)污水管网的平面布置3)管网流量和水力计算4)附属构筑物的设计计算5)管道的竖向布置6)绘制污水管道系统平面布置图和纵剖面图

2、居住区生活污水量标准:为设计期限终了时,每人每日排出的平均污水量。与室内卫生设备的情况、当地气候、生活水平以及生活习惯有关。

3、居民生活污水定额:居民每人每天日常生活中洗涤、冲厕、洗澡等产生的污水量(L/cap.d)。

4、综合生活污水定额:居民生活污水和公共设施(包括娱乐场所、宾馆、浴室、商业网点、学校和机关办公室等)排除污水的总和(L/cap.d)。

5、总变化系数Kz:是最大日最大时污水量与平均日平均时污水量的比值。Kz=Kd*Kh。

6、日变化系数Kd:是一年中最大日平均时污水量与平均日平均时污水量的比值;

7、时变化系数Kh:是最大日最大时污水量与最大日平均时污水量的比值。

8、污水管道的水力学设计:指根据水力学原理确定管道的管径、坡度和高程。

9、污水管道设计的原则:①不溢流:设计流量应为最大流量。②不淤积:设计流速应有最低限值。③不冲刷管壁:设计流速应有最高限值。④要注意通风:非满流设计满足充满度要求。

10、设计充满度:在设计流量下,管道中的水深h和管径D(或渠深H)的比值。我国按不满流设计;这样做的原因如下:为流量增长留有余地;利于通风防爆;便于管道的疏通和管理。明渠,规定超高(设计水面与渠顶间距)不小于0.2m。

11、设计流速:管道中流量达到设计流量时的水流速度。最小设计流速:为防止管道因淤积而堵塞。污水管道:0.6m/s;明渠:0.4m/s。最大设计流速:为防止管道因冲刷而损坏。金属管:10m/s;非金属管:5m/s。

12、最小管径:在管道系统的上游部分流量很小,根据流量计算的管径也很小,但管径过小极易堵塞管道,所以根据经验规定一个允许的最小管径。在街区和厂区内最小管径为200mm,在街道下为300mm。

13、计算管段最小设计坡度:坡度和流速存在着一定的关系,同最小设计流速相应的坡度就是最小设计坡度。相同直径的管道,充满度不同就有不同的最小设计坡度。不计算管段最小设计坡度:不计算管段:因设计流量很小而采用最小管径的设计管段。不计算管段的最小设计坡度:不计算管段不进行水力计算,没有设计流速,因此直接规定管道的最小设计坡度。管径200mm的最小设计坡度0.004;管径300mm的最小设计坡度0.003。

14、管道的埋设深度:管底的内壁到地面的距离。管道埋深的技术经济意义1)施工;2)造价;3)管理。最大埋深:管道越深,造价越贵,施工期越长。所以管道的埋设深度小些好,并有一个最大限值,这个限值称为最大埋深。干燥土壤中,最大埋深不超过7~8m;多水、流沙、石灰岩地层中,不超过5m.

15、管道的覆土厚度:管顶的外壁到地面的距离。最小覆土厚度:管道覆土厚度的最小限值。决定最小覆土厚度的三个因素:1.必须防止管道中的污水冰冻和因土壤冰冻膨胀而损坏管道:无保温措施的生活污水管道或水温和它接近的工业废水管道,管底在冰冻线之上的距离不得大于0.15m。2.必须防止管壁被车辆造成得活荷重压坏:在车行道下,管顶最小覆土厚度一般不小于0.7m。3.必须满足支管在衔接上的要求:气候温暖的平坦地区,管道的最小覆土厚度往往决定于房屋排出管在衔接上的要求。街区或厂区内的污水管道起端埋深受房屋排出管埋深的控制;街道下的污水管道的最小覆土厚度受街区或厂区内的污水管道埋深的控制。房屋排出管的最小埋深通常采用0.55~0.65m。

16、排水区界:是污水排水系统敷设的界限。排水区界由城镇总体规划的设计规模确定。排水流域的划分根据排水区界内地形及城市和工业企业的竖向规划确定1.丘陵和地形起伏地区按照等高线划分分水线,按分水线划分排水流域;2.地形平坦地区按照面积大小划分;3.有河流、管壑和铁路的地区按照自然分区划分。

17、污水管道的定线:在城镇平面图上确定污水管道的位置和走向。管道定线一般按照主干管、干管、支管的顺序进行。定线的基本原则:尽可能在管线较短和埋深较小的情况下,让最大区域的污水自流排出。定线的主要影响因素:1.地形和竖向规划; 2.排水体制和其它管线情况; 3.污水厂和出水口位置;4.水文地质条件;5.道路宽度;6.地下管线和构筑物的位置;7.工业企业和产生大量污水的建筑物的分布情况;8.发展远景和修建顺序。管道系统的最后布置形式受地形的影响最大。

18、污水支管平面布置形式:低侧式;围坊式;穿坊式。

19、控制点:在污水排水区域内,对整个管道系统的埋深起控制作用的点。确定控制点的原则和方法:1.离出水口最远的点通常就是整个系统的控制点;2.控制点的确定应根据规划,保证排水区域中的污水都能够排出,并考虑长远发展;3.不能因为照顾个别控制点而增加整个管道系统的埋深。减小控制点埋深的方法:1.加强管道强度;2.填高控制点处地面高程;3.设置局部泵站提升水位。

20、污水泵站可分为:中途泵站、终点泵站、局部泵站。

21、设计管段:两个检查井之间的污水管段设计流量不变,且采用同样的管径和坡度,称为设计管段。设计管段的设计流量=沿线流量+集中流量。

22、本段沿线流量q1:是从管段沿线街坊流来的污水量;

23、转输沿线流量q2:是从上游管段和旁侧管段街坊流来的污水量;

24、本段集中流量q3:是从本段服务工业企业或者其它大型公共建筑流来的污水量;

25、转输集中流量q4:是从上游管段和旁侧管段服务工业企业或者其它大型公共建筑流来的污水量。一般假定本段流量集中在起点进入设计管段。

26、检查井上下游管段衔接时的原则:1.尽可能提高下游管段的高程,以减少埋深,降低造价;2.避免下游水位高于上游水位在上游管段中形成回水而造成淤积;

3.不允许下游管段的管底高于上游管段的管底。上下游管段衔接的方法:管顶平接;水面平接;管底平接。当管道敷设地区的地面坡度很大时,可根据地面坡度采用跌水连接。

27、管顶平接:是指在水力学计算中,使上下游管段的管顶内壁高程相同。优:上游管段回水的可能性较小。缺:下游管段的埋深增加。适用条件:异径管段常采用管顶平接;同径管段下游管段的充盈深小于上游管段的充盈深时(由小坡度转入陡坡时),也可采用管顶平接。

28、水面平接:是指在水力学计算中,使上下游管段的水面高程相同。缺:常因管道中流量的变化而产生回水。优:下游管段的埋深可以浅些。适用条件:同径管段往往下游管段的充盈深大于上游管段的充盈深,为避免上游管段回水,常采用~;异径管段采用管顶平接发现下游管段水面高于上游管段水面时,应改用~。

29、管底平接:是指在水力学计算中,使上下游管段的管底内壁高程相同。优:上游管段回水的可能性较小。缺:下游管段的埋深增加。适用条件:特殊情况下,下游管段管径小于上游管段管径时(坡度突然变陡时),采用管顶平接或水面平接将造成下游管底高于上游管底,此时采用管底平接;为减小管道埋深,虽下游管段管径大于上游管段管径,有时也可采用管底平接。

30、跌水连接:当管道敷设地区的地面坡度很大时,为了调整管内流速所采用的管道坡度将会小于地面坡度。为了保证下游管段的最小覆土厚度和减少上游管段的埋深,可根据地面坡度采用跌水连接。在旁侧管道与干管交汇处,若旁侧管道的管底标高比干管的管底标高大很多时,为保证干管有良好的水力条件,最好在旁侧管道上先设跌水井后再与干管相接。若干管的管底标高高于旁侧管道的管底标高,为了保证旁侧管能接入干管,干管则在交汇处需设跌水井,增大干管的埋深。

31、管道在街道上的位置要求:管道要求远离房屋,避免因泄漏而影响房屋基础。管道埋深小于2.2m时,离房屋边线水平距离应不小于3.5m;管道埋深大于2.2m 时,离房屋边线水平距离应不小于5~6m;离树木不应过近,以免树根挤坏甚至长入管道。管道埋深小于2.2m时,离行道树水平距离应不小于2m;管道埋深大

于2.2m时,离行道树水平距离应不小于1.5m。地下管线沿建筑红线至道路中央的布置顺序为:电力电缆-电讯电缆-煤气-热力-给水-污水-雨水。32、处理管线交叉的原则:小管让大管,有压管让无压管,新建管线让已建管线,临时管线让永久管线,柔性结构管线让刚性结构管线。处理方式:给水管在污水管之上,电力线、煤气管、热水管、在给水管之上。

33、污水管道设计计算方法和步骤:确定排水区界,划分排水流域;街区编号并计算其面积;管道定线和平面布置的组合;控制点的确定和泵站的设置地点;设计管段及设计流量的确定;水力计算;绘制管道平面图和纵剖面图。

34、城市污水回用系统:城市污水经处理后,达到回用要求的水质标准,而在一定范围内重复使用的供水系统称为~。污水回用的最大用户是工业。城市污水回用系统一般由污水收集系统、再生水厂、再生水输配系统和回用水管理组成。

35、排水工程综合指标:污水工程综合指标;雨水管、渠综合指标;排水泵站综合指标。

第三章、雨水管渠系统的设计

1、降雨历时:是指连续降雨的时段,可以指一场雨全部降雨的时间,也可以指其中个别的连续时段。用t表示,以min或h计。

2、降雨量:是指降雨的绝对量,一段时间(日、月、年)内降落在某一面积上的总水量。用H表示,单位:mm或m3/ha。

3、年平均降雨量:指多年观测所得的各年降雨量的平均值。

4、月平均降雨星:指多年观测所得的各月降雨量的平均值。

5、年最大日降雨量:指多年观测所得的一年中降雨量最大一日的绝对量。

6、暴雨强度:是指在某一连续降雨时段(如10min、20min、30min )内的平均降雨量,即单位时间的平均降雨深度,用i表示。在推求暴雨强度公式时,降雨历时常采用5、10、15、20、30、45、60、90、120min9个时段。

7、瞬时暴雨强度:自记雨量曲线实际上是降雨量累积曲线。曲线上任一点的斜率表示降雨过程中任一瞬时的强度,称为瞬时暴雨强度。

8、降雨面积是指降雨所笼罩的面积。

9、汇水面积是指雨水管渠汇集雨水的面积。用F表示,以ha或km2为单位。

10、暴雨强度的频率:某特定值暴雨强度的频率是指等于或大于该值的暴雨强度出现的次数m与观测资料总项数n之比的百分数,即Pn=m/n×100%。次频率式:若每年选入M个雨样,则Pn=m/NM×100%。水文计算常采用公式Pn=m/N+1×100%计算年频率,用公式Pn=m/NM+1×100%计算次频率。

11、重现期:某特定值暴雨强度的重现期是指等于或大于该值的暴雨强度可能出现一次的平均间隔时间,单位用年(a)表示。重现期P与频率互为倒数,即:P=1/Pn。按年最大值法选样时,第m项暴雨强度组的重现期为其经验频率的倒数,即重现期P=1/Pn=(N+1)/m。按一年多次法选样时,第m项暴雨强度组的重现期P=(NM+1)/mM 。设计重现期P的确定:重现期越长,相应的暴雨强度越大,所设计的管渠的尺寸越大,越安全,但投资也越高;重现期越短,相应的暴雨强度越小,所设计的管渠的尺寸越小,越不安全,但投资也越省;重现期的选用参考以下因素:1.管渠溢流、地区积水将造成的危害(经济损失);2.施工费用。12、产流:随着降雨时间的增长,当降雨强度大于入渗率后,地面开始产生余水,待余水积满洼地后,这时部分余水产生积水深度,部分余水产生地面径流,称为产流。

13、集水时间:从流域中最远一点的雨水流到出口断面的时间称为流域的集流时

间或集水时间τo

极限强度法:当暴雨同时笼罩全汇水面时,使降雨暴雨公式中的历时与汇水面积上最远点的集流时间相等,即t=τo,并且集流时间τ时段内的瞬时暴雨强度恰恰位于暴雨的雨峰时,这时全部汇水面积上的雨水流到集流点,集流点形成最大流量,这就是~。推理公式:Q=ΨqF,q=167A1(1+clgP)/(t+b)^n

14、径流量:降落在地面上的雨水,一部分被植物和地面的洼地截留,一部分渗入土壤,余下的一部分沿地面流入雨水管渠,这部分进入雨水管渠的雨水量称做~。

15、径流系数:径流量与降雨量的比值称径流系数Ψ,其值常小于1。影响径流系数ψ的因素:径流系数的值因汇水面积的地面覆盖情况、地面坡度、地貌、建筑密度的分布、路面铺砌、降雨历时、暴雨强度等情况的不同而异。①屋面为不透水材料覆盖,Ψ值大;②沥青路面的Ψ值也大;③非铺砌的土路面Ψ值就较小。④地形坡度大,雨水流动较快,其Ψ值也大;⑤种植植物的庭园,由于植物本身能截留一部分雨水,其Ψ值就小。⑥降雨历时较长,由于地面渗透损失减少,Ψ就大些;⑦暴雨强度大,其Ψ值也大;⑧最大强度发生在降雨前期的雨型,前期雨大的,Ψ值也大。

16、雨水管渠系统平面布置的特点:充分利用地形,就近排入水体;根据城市规划布置雨水管道;合理布置雨水口,以保证路面雨水排除通畅;雨水管道采用明渠或暗管应结合具体条件确定;设置排洪沟排除设计地区以外的雨洪径流。17、雨水设计充满度:管道设计充满度按满流考虑,即h/D=1。明渠则应有等于或大于0.20m的超高。街道边沟应有等于或大于0.03m的超高。

18、雨水设计流速:为避免雨水所挟带的泥砂等无机物质在管渠内沉淀下来而堵塞管道,雨水管渠的最小设计流速应大于污水管道,满流时管道内最小设计流速为0.75m/s;明渠内最小设计流速为0.40m/s。为防止管壁受到冲刷而损坏,影响及时排水,对雨水管渠的最大设计流速规定为:金属管最大流速为10m/s;非金属管最大流速为5m/s。

19、最小管径和最小设计坡度:雨水管道的最小管径为300mm,相应的最小坡度为0.003,雨水口连接管最小管径为200mm,最小坡度为0.01。

20、雨水管渠系统的设计步骤和水力计算:①收集和整理设计地区的各种原始资料②划分排水流域和管道定线③划分设计管段④划分并计算各设计管段的汇水面积⑤确定各排水流域的平均径流系数⑥确定设计重现期P、地面集水时间t1⑦求单位面积径流量q0⑧列表进行雨水干管的设计流量和水力计算⑨绘制雨水管道平面图及纵剖面图。

第四章、合流制管渠系统的设计

1、截流式合流管渠系统优缺点:优点:管系造价低,管系养护简单,地下管线少,不存在雨水管与污水管误接问题。缺点:晴天流速小,易淤积,污水厂造价高,污水厂处理养护较复杂,卫生上比分流制差,环境污染较严重。

2、截流式合流管渠系统使用条件:①排水区域内有一处或多处水源充沛的水体,其流量和流速都足够大,一定量的混合污水排入后对水体造成的污染危害程度在允许的范围以内。②街坊和街道的建设比较完善,必须采用暗管渠排除雨水,而街道横断面又较窄,管渠的设置位置受到限制时,可考虑选用合流制。③地面有一定的坡度倾向水体,当水体高水位时,岸边不受淹没。污水在中途不需要泵汲。

3、截流式合流管渠系统布置特点:①管渠的布置应使所有服务面积上的生活污水、工业废水和雨水都能合理地排入管渠,并能以可能的最短距离坡向水体。②

沿水体岸边布置与水体平行的截流干管,在截流干管的适当位置上设置溢流井,使超过截流干管设计输水能力的那部分混合污水能顺利地通过溢流井就近排入水体。③必须合理地确定溢流井的数目和位置,以便尽可能减少对水体的污染、减小截流干管的尺寸和缩短排放渠道的长度。④在合流制管渠系统的上游排水区域内,如果雨水可沿地面的街道边沟排泄,则该区域可只设置污水管道。只有当雨水不能沿地面排泄时,才考虑设置合流管渠。

4、截流倍数:不从溢流井泄出的雨水量(截留的雨水量),通常按旱流流量Qf 的指定倍数计算,该指定倍数称为截流倍数n0。

5、合流管渠系统改造途径:改合流制为分流制;保留合流制,修建合流管渠截流管;对溢流的混合污水进行适当处理;对溢流的混合污水量进行控制。

第五章、排水管渠的材料、接口及基础

1、管渠:当管道设计断面较大时,不再采用预制管道而就地按图建造,断面不限于圆形,称为~。管渠有明渠和暗渠之分。暗渠有管道和管渠之分。基本断面形式有:半椭圆形、马蹄形、蛋形、矩形、梯形等。

2、管渠的断面形式要求:排水管渠的断面形式除必须满足静力学、水力学方面的要求外,还应经济和便于养护。在静力学方面,管道必须有较大的稳定性,在承受各种荷载时是稳定和坚固的。在水力学方面,管道断面应具有最大的排水能力,并在一定的流速下不产生沉淀物。在经济方面,管道单长造价应该是最低的。在养护方面,管道断面应便于冲洗和清通淤积。

3、对管渠材料的要求:①排水管渠必须具有足够的强度,以承受外部的荷载和内部的水压。②排水管渠应具有抵抗污水中杂质的冲刷和磨损的作用,也应该具有抗腐蚀性的性能,以免在污水或地下水的侵蚀作用下很快损坏。③排水管渠必须不透水,以防止污水渗出或地下水渗入。④排水管渠的内壁应整齐光滑,使水流阻力尽量减小。⑤排水管渠应就地取材,并考虑到预制管件及快速施工的可能,以便尽量降低管渠的造价及运输和施工的费用。

4、管道:是预制的圆形管子。圆形断面的优点:水利性能好,便于预制,使用材料经济,能承受较大荷载,运输和养护方便。管道的材质:绝大多数采用非金属管:混凝土管、钢筋混凝土管、陶土管、低压石棉水泥管、瓦管、沥青混凝土管、木材或竹材制成的临时性管道。特殊情况下采用金属管。

5、管道接口:应具有足够的强度、不透水、能抵抗污水或地下水的浸蚀并有一定的弹性。根据接口的弹性,一般分为柔性、刚性和半柔半刚性3种接口形式。

6、排水管道的基础:一般由地基、基础和管座3部分组成。

最新建筑给排水知识点总结资料

一、建筑内部给水系统 三种给水系统:生活给水系统生产给水系统消防给水系统; 生活给水系统:生活饮用水系统直饮水系统杂用水系统;给水系统的组成:1引入管(室外给水管网的接管点引入建筑物内的管段)2水表节点(设在引入管上的水表及其前后的阀门和泄水装置的总称)3给水管网:干管(总干管,是浆水从引入管输送至建筑物各区域的管段),立管,支管,分支管(配水支管,将水从支管输送至各用水设备的管段。我国给水管道常用钢管铸铁管塑料管复合管)4给水附件:截止阀(关闭严密水流阻力大局部阻力系数和管径成正比),闸阀(全开时水流直线通过水流阻力小有杂质落入易磨损),蝶阀(阀板在90°翻转范围内起调节、节流和关闭作用,操作扭矩小启闭方便结构紧凑体积小),止回阀(阻止管道中水反向流动)5配水设施(生活生产和消防给水系统管网上终端用水点的设施)6增压和贮水设备7水表;给水方式的基本形式:依靠外网压力1直接给水方式2设水箱的给水方式;依靠水泵升压1设水泵的给水方式2设水泵水箱的给水方式3气压给水方式(变压式定压式)4分区给水方式5分质给水方式;管道布置基本要求:1确保供水安全和良好水力条件力求经济合理2 保护管道不受损害3不影响生产安全和 建筑物的使用4便于安装维修。一般采用枝状布置:上行下给,下行上给,中分式给水管道敷设有明装和暗装两种。明装即管道外露优点是安装维修方便造价低但影响美观表面结露积灰尘。暗装即管道隐蔽,如设在墙中,不影响室内美观整洁但施工复杂维修困难造价高;管道防护:防腐;防冻防露;防漏;防振; 二、建筑内部给水系统的计算 设计秒流量:建筑物内卫生器具按最不利情况出流时的最大瞬时流量;气压给水设备:利用密闭罐中压缩空气的压力变化调节和压送水量,在给谁系统中起增压和调节作用。分类和组成:按输水压力的稳定性分为变压式和定压式;按气水接触方式分为补气式和隔膜式;优点:灵活性大设置位置不受限制便于隐蔽安装拆卸都很方便成套设备都在工作生产现场集中组装占地面积小工期短土建费用低,实现了自动化操作便于维护管理,水质不易被污染还有助于消除水锤的影响;缺点:调节容积小贮水量少一般调节水量只占总容积%20-30压力容器制造加工难度大变压式压力变化较大对给水附件使用寿命影响较大;耗电量大;使用范围:适用于有升压要求但又不适宜设置水塔或高位水箱的小区或建筑物内的给水系统,小型简易和临时性给水系统和消防给水系统。回流污染:无防倒流污染措施时非饮用水和其他液体倒流入生活给水系统污染水质。水箱的配管:进水管出水管溢流管泄水管通气管水位信号装置。高层建筑给水系统竖向分区的基本形式:串联式(各区分设水箱和水泵,低区的水箱作上区的水池。优点:无需设置高压管线和高压水泵,水泵可保持在高效区工作能耗较少管道布置简单节省耗材。缺点是供水不够安全下区供水故障将影响上层供水,水箱等分散设置不方便管理且占用一定的建筑面积,容积较大造成结构符合和造价)减压式(建筑用水由设在底层的水泵一次提升至屋顶水箱,再通过各区减压装置依次向下供水优点:水泵数量减少占地面积小集中设置便于维修管理管线简单投资省,共同缺点:各区用水均需提升至屋顶水箱但水箱容积大对建筑物结构和抗震不利同时增加了电耗供水不够安全局部故障将影响各区供水)并联式(各区生涯设备集中在底层或者 精品文档

(完整word版)道路工程材料知识点考点总结

道路工程材料知识点考点 绪论 ● 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结 构形式。 ● 路面结构由下而上有:垫层,基层,面层。 ● 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。 第一章 ● 砂石材料是石料和集料的统称 ● 岩石物理常数为密度和孔隙率 ● 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。 ● 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛 体积的质量。 ● 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。 ● 吸水性:岩石吸入水分的能力称为吸水性。 ● 吸水性的大小用吸水率与饱和吸水率来表征。 ● 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。 ● 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。 ● 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。 ● 集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。 ● 表观密度:是指在规定条件下,烘干集料矿质实体包括闭口空隙在内的表观单位体积的质量。 ● 级配:是指集料中各种粒径颗粒的搭配比例或分布情况。 ● 压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。1000 1?='m m Q a (1m :试验后通过2.36mm 筛孔的细集料质量) ● 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层 的关键指标。 ● 冲击值:反映粗集料抵抗冲击荷载的能力。由于路表集料直接承受车轮荷载的冲击作用,这一指标 对道路表层用料非常重要。 ● 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。 ● 级配参数: ?? ???分率。质量占试样总质量的百是指通过某号筛的式样通过百分率和。筛分级筛余百分率之总分率和大于该号筛的各是指某号筛上的筛余百累计筛余百分率率。量占试样总质量的百分是指某号筛上的筛余质分级筛余百分率i i i A a ρ 沥青混合料 水泥混合料 粗集料 >2.36mm >4.75mm 细集料 <2.36mm <4.75mm

2019年一级建造师市政知识点总结-给水排水工程

四、城市给水排水工程 lK414010 给水排水厂站工手呈结构与特点 lK414011 厂站王程结构与施工方法 一、给水排水场站工程结构特点 (一)场站构筑物组成(2018年单选题) (1)给水处理构筑物包括:调节池、调流阀井、格栅间及药剂间、集水池、取水泵房、混凝沉淀池、 澄清池、配水井、混合井、预臭氧接触油、主臭氧接触池、滤池及反冲洗设备间、紫外消毒间、膜 处理车间、清水池、调蓄清水池、配水泵站等。 污水处理构筑物包括:污水进水闸井、进水泵房、格栅间、沉砂池、初次沉淀池、二次沉淀池、曝气池、配水井、调节池、生物反应池、氧化沟、消化池、计量刷、闸井等。 (2)工艺辅助构筑物,指主体构筑物的走道平台、梯道、设备基础、导流墙(椭)、支架、盖板、栏杆等的细部结构工程,各类工艺井(如吸水井、泄空井、浮渣井)、管廊桥架、闸槽、水槽(廊)、穿孔、孔口等。 (3)辅助建筑物,分为生产辅助性建筑物和生活辅助性建筑物。生产辅助性建筑物指各项机电设备的建筑厂房如鼓风机房、污泥脱水机房、发电机房、变配电设备房及化验室、控制室、仓库、料库、 机修(电修)间等。生活辅助性建筑物包括综合办公楼、食堂、浴室、职工宿台、车库等。 (二)构筑物结构形式与特点 (1)水处理(调蓄)构筑物和泵房多数采用地下或半地下钢筋混凝土结构,特点是构件断面较薄,属于薄板或薄壳型结构,配筋率较高,具有较高抗渗性和良好的整体性要求。少数构筑物采用土膜结构 如稳定塘等,面积大且有一定深度,抗渗性要求较高。 (2)工艺辅助构筑物多数采用钢筋混凝土结构,特点是构件断面较薄,结构尺寸要求精确;少数采用 钢结构预制,现场安装,如出水堰等。 (5)工艺管线中给水排水管道越来越多采用水流性能好、抗腐蚀性高、抗地层变位性好的PE管、球 墨铸铁管等新型管材。 二、构筑物与施工方法 (一)全现浇混凝土施工 (1)水处理(调蓄)构筑物的钢筋混凝土池体大多采用现浇混凝土施工。浇筑混凝土时应依据结构形式分段、分层连续进行,浇筑层高度应根据结构特点、钢筋疏密决定,一般为: 1)采用振动棒进行振捣时,混凝土分层振捣最大厚度运振捣器作用部分长度的1.25倍,且最大不超 过500mm 。 2)采用平板振动器进行振捣时,混凝土分层振捣最大厚度运200mm 。 3)采用附着振动器进行振捣时,混凝土分层振捣最大厚度,要根据附着振动器的设置方式,通过试验确定。 现浇混凝土的配合比、强度和抗渗、抗冻性能必须符合设计要求,构筑物不得有露筋、蜂窝、麻面、孔洞、夹渣、疏松、裂缝等质量缺陷,且整个构筑物混凝土应做到颜色一致、棱角分明、规则,体 现外光内实的结构特点。 (2)水处理构筑物中圆柱形混凝土池体结构,当池壁高度大(12-18m) 时宜采用整体现浇施工,支模 方法有:满堂支模法及滑升模板法。前者模板与支架用量大,后者宜在池壁高度不小于15m时采用。(3)污水处理构筑物中卵形消化池,通常采用无粘结预应力筋、曲面异型大模板施工。消化池钢筋混凝土主体外表面,需要做保温和外饰面保护。 (二)单元组合现浇混凝土施工

土木工程材料知识点归纳版

1.弹性模量:用E表示。材料在弹性变形阶段内,应力和对应的应变的比值。反映材料抵抗弹性变形能力。其值 越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小,抵抗变形能力越强 2.韧性:在冲击、振动荷载作用下,能吸收较大能量产生一定变形而不致破坏的性质。 3.耐水性:材料长期在饱和水作用下不被破坏,强度也不显著降低的性质,表示方法——软化系数:材料在吸水 饱和状态下的抗压强度与干燥状态下的抗压强度之比K R = f b/f g 软化系数大于0.8的材料通常可以认为是耐水材料;对于经常位于水中或处于潮湿环境中的材料,软化系数不得低于0.85;对于受潮较轻或次要结构所用的材料,软化系数不宜小于0.75 4.导热性:传导热量的能力,表示方式——导热系数,材料的导热系数越小,材料的绝热性能就越好。影响导热性 的因素:材料的表观密度越小,其孔隙率越大,导热系数越小,导热性越差。由于水与冰的导热系数较空气大,当材料受潮或受冻时会使导热系数急剧增大,导致材料保温隔热方式变差。所以隔热材料要注意防潮防冻。 5.建筑石膏的化学分子式:β-CaSO4˙?H2O 石膏水化硬化后的化学成分:CaSO4˙2H2O 6.高强石膏与建筑石膏相比水化速度慢,水化热低,需水量小,硬化体的强度高。这是由于高强石膏为α型半水石膏, 建筑石膏为β型半水石膏。β型半水石膏结晶较差,常为细小的纤维状或片状聚集体,内比表面积较大;α型半水石膏结晶完整,常是短柱状,晶粒较粗大,聚集体的内比表面积较小。 7.石灰的熟化,是生石灰与水作用生成熟石灰的过程。特点:石灰熟化时释放出大量热,体积增大1~2.5倍。应 用:石灰使用时,一般要变成石灰膏再使用。CaO+H2O Ca(OH)2+64kJ 8.陈伏:为消除过火石灰对工程的危害,将生石灰和水放在储灰池中存放15天以上,使过火灰充分熟化这个过程 叫沉伏。陈伏期间,石灰浆表面应保持一层水,隔绝空气,防止发生碳化。 9.石灰的凝结硬化过程:(1)干燥结晶硬化:石灰浆体在干燥的过程中,因游离水分逐渐蒸发或被砌体吸收,浆体 中的氢氧化钙溶液过饱和而结晶析出,产生强度并具有胶结性(2)碳化硬化:氢化氧钙与空气中的二氧化碳在有水分存在的条件下化合生成碳酸钙晶体,称为碳化。由于空气中二氧化碳含量少,碳化作用主要发生在石灰浆体与空气接触的表面上。表面上生成的CaCO3膜层将阻碍CO2的进一步渗入,同时也阻碍了内部水蒸气的蒸发,使氢氧化钙结晶作用也进行的缓慢。碳化硬化是一个由表及里,速度相当缓慢的过程。

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

建筑给水排水事业单位考试知识点

建筑给水排水事业单位考试知识点第一章 1、给水的用途 2、根据排水系统所接纳的废水的来源 种类型。 3、给水排水系统应具备以下三项主要功能

给水排水管网系统均应具有以下功能 4、给水排水系统可划分为以下子系统 5、城市用水量分类:居民生活用水量、公共设施用水量、工业企业生产用水量和工作人员生活用水量、消防用水量、市政用水量,主要道路和绿地浇洒用水量、未预见用水量及给水管网漏失水量。上述各类用水量总和称为城市综合用水量;居民生活用水量和公共设施用水量之和称为城市综合生活用水量。 6、平均日用水量(Q ad):即规划年限内,用水量最多的年总用水量除以用水天数。该值一般作为水资源规划和确定城市设计污水量的依据。 7、最高日用水量(Q d):即用水量最多的一年内,用水量最多的一天的总用水量。该值一般作为取水工程和水处理工程规划和设计的依据。

8、最高日平均时用水量:(Q d/24):即最高日用水量除以24小时,得到最高日小时平均用水量。 9、最高日最高时用水量(Q h):用水量最高日的24小时中,用水量最大的1小时用水量、该值一般作为给水管网工程规划与设计的依据。 10、用水量日变化系数(K d):最高日用水量与平均日用水量的比值。 K d=365Q d/Q y(Q d——最高日用水量(m3/d);Q y——全年用水量(m3/a)) 11、时变化系数(K h):最高时用水量和平均时用水量的比值。 K h=24Q h/Q d(Q h——最高时用水量(m3/h)) 12.水头:位能与压能之和称为测压管水头,工程上又称为压力水头,或简称水头。 13、给水管网系统的构成

土木工程材料知识点整理(良心出品必属精品)

土木工程材料复习整理 1.土木工程材料的定义 用于建筑物和构筑物的所有材料的总称。 2.土木工程材料的分类 (一)按化学组成分类:无机材料、有机材料、复合材料 (二)按材料在建筑物中的功能分类:承重材料、非承重材料、保温和隔热材料、吸声和隔声材料、防水材料、装饰材料等(三)按使用部位分类:结构材料、墙体材料、屋面材料、地面材料、饰面材料等 3.各级标准各自的部门代号列举 GB——国家标准 GBJ——建筑行业国家标准 JC——建材标准 JG——建工标准 JGJ——建工建材标准 DB——地方标准 QB——企业标准 ISO——国际标准 4.材料的组成是指材料的化学成分、矿物成分和相组成。 5.材料的结构 宏观结构:指用肉眼或放大镜能够分辨的粗大组织。其尺寸在10-3m级以上。 细观结构:指用光学显微镜所能观察到的材料结构。其尺寸在10-3-10-6m级。 微观结构:微观结构是指原子和分子层次上的结构。其尺寸在10-6

-10-10m 级。微观结构可以分为晶体、非晶体和胶体三种。 6.材料的密度、表观密度、堆积密度、密实度与孔隙率、填充率与空隙率的概念及计算 密度:材料在绝对密实状态下,单位体积的质量。(质量密度) 密实体积:不含有孔隙和空隙的体积(V)。 g/cm3 表观密度:材料在自然状态下,单位体积的质量。(体积密度) 表观体积:含有孔隙但不含空隙的体积(V0)。(用排水法测得的扣除了材料内部开口孔隙的体积称为近视表观体积,也称视体积。 ㎏/m3或g/cm3 堆积密度:材料在堆积状态下,单位体积的质量。(容装密度) 堆积体积:含有孔隙和空隙的体积(V0’)。 ㎏/m3 密实度:密实度是指材料体积内,被固体物质所充实的程度。 v m = ρv o m = 0ρ' 00 v m ='ρ00100%100%V D V ρρ =??=%100101??-=W V V m m W ρ

高等代数与中学数学的联系

目录 摘要................................................................................ I Abstract........................................................................... I 1 引言 (1) 2 知识方面的联系 (1) 2.1多项式理论的应用 (1) 2.2行列式的应用 (2) 2.3柯西不等式的应用 (3) 2.4二次型的应用 (4) 3 思想方面的联系 (4) 3.1符号化思想 (4) 3.2分类思想 (5) 3.3化归与转化思想 (5) 3.4结构思想 (6) 3.5公理化方法 (6) 3.6坐标方法 (6) 3.7构造性方法 (7) 4 观念方面的联系 (7) 结束语 (8) 参考文献 (8)

致谢 (10)

摘要:运用高等代数的理论、方法、思想与观点剖析和阐述中学数学相关内容的若干问题,通过若干典型试题的解析,从知识方面、思想方面以及观念方面研究了高等代数与中学数学的联系,探索高等数学观点对中学数学一些教学内容的理论依据,深化与发展高等代数在中学数学的相关内容,促进高等代数在中学数学领域的应用,探求二者的内在的联系,以便高等代数能与中学数学完美的结合. 关键词:高等代数;中学数学;数学思想方法;应用 Abstract: The problems related to elementary mathematics are analyzed and explained by using the theory,method,thoughts and views of higher algebra.Through analyzing some typical test questions,the relation between higher algebras and elementary mathematics are investigated from the aspects of knowledge、thought and idea. Exploring the higher mathematics view to middle school mathematics some teaching content theory and model,deepening and development in higher algebra in middle school mathematics related content,and promote higher algebra in the middle school mathematics field of application,and to explore the inner link,so that higher algebra can be combined with the middle school closely.Keywords: higher Algebra;middle school mathematics;mathematical thinking;application

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

给水排水管网系统知识点整理

给水排水管网系统知识点整理 1、给水的用途有:生活用水、工业生产用水和市政消防用水三大类。 2、给水排水官网系统的组成: (1)给水管网系统一般由:输水管(渠)、配水管网、水压调节设施(泵站、减压阀)及水量调节设施(清水池、水塔、高位水池)等构成。 (2)排水管网系统一般由:废水收集设施、排水网管、水量调节池、提升泵站、废水输水管(渠)和排放口等构成。 3、居民用水:指居民家庭生活中饮用、烹饪、洗涤等用水,是保障居民日常生活、身体健康、清洁卫生和生活舒适的重要条件。 4、公共设施用水:指籍贯、学校、医院、宾馆、车站、公共浴场等公共建筑和场所的用水供应,要求用水量大、用水地点集中,水质要求与居民生活用水相同。 5、工业企业生活用水:工业企业区域内从事生产和管理工作的人员 在工作时间内的饮用、烹饪等生活用水,水质要求与居民生活用水一样。 6、工业生产用水:指工业生产过程中为满足生产工艺和产品质量要 求的用水,可分为产品用水、工艺用水、辅助用水。 7、市政和消防用水:是指城镇或工业企业区域内的道路清洗、绿化浇灌、公共清洁卫生和消防的用水。 8排水工程:用于废水收集、处理和排放工程设施。废水分为:生活污

水、工业废水和雨水三种,其中含有大量有机物污染物是废水处理的重点对象。 9、城市供水系统需要具备充足的水资源、取水设施、水质处理设施 和输水及配水管道网络系统。 10、给水排水系统的水质关系:原水水质标准—给水水质标准—排放 水质标准。 11、给水官网系统分类:(1)按水源分类:单水源和对水源给水管网系 统。(2)按系统构成分:统一给水官网系统和分区给水管网系统。 (3)按输水方式分:重力输水管网系统和压力输水管网系统。 12、排水体制:不同排除方式所形成的排水系统称为排水体制。分为合流制和分流制两种。 第2章 1、地形是影响污水管道定线的主要因素。 2、区域排水系统:将两个以上城镇地区的污水统一排除和处理的系 统,称为区域排水系统。 3、试诉区域排水系统的有何优缺点: (1)优点:污水厂数量少,处理设施大型化集中化,每单位水量 的基建和运行管理费用低,比较经济;污水厂占地面积小,节省土地;水质、水量变化小,有利于运行管理;④河流等水资源利用与 污水排放的体系合理化,而且可能形成统一的水资源管理体系等。 (2)缺点:当排入大量工业废水时,可能使污水处理发生困难;工程设施规模大,组织与管理要求高,而且一旦污水厂运行管理不当,

工程材料知识点总结

第一章 1.三种典型晶胞结构: 体心立方: Mo 、Cr 、W 、V 和 α-Fe 面心立方: Al 、Cu 、Ni 、Pb 和 β-Fe 密排六方: Zn 、Mg 、Be 体心立方 面心立方 密排六方 实际原子数 2 4 6 原子半径 a r 4 3= a r 4 2= a r 21= 配位数 8 12 12 致密数 68% 74% 74% 2.晶向、晶面与各向异性 晶向:通过原子中心的直线为原子列,它所代表的方向称为晶向,用晶向指数表示。 晶面:通过晶格中原子中心的平面称为晶面,用晶面指数表示。 (晶向指数、晶面指数的确定见书P7。) 各向异性:晶体在不同方向上性能不相同的现象称为各向异性。 3.金属的晶体缺陷:点缺陷、线缺陷、面缺陷 4.晶体缺陷与强化:室温下金属的强度随晶体缺陷的增多而迅速下降,当缺陷增多到一定数量后,金属强度又随晶体缺陷的增加而增大。因此,可以通过减少或者增加晶体缺陷这两个方面来提高金属强度。 5..过冷:实际结晶温度Tn 低于理论结晶温度To 的现象称为过冷。 过冷度 n T T T -=?0 过冷度与冷却速度有关,冷却速度越大,过冷度也越大。 6.结晶过程:金属结晶就是晶核不断形成和不断长大的过程。 7.滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿着原子排列最密的晶面和晶向发生了相对滑移,滑移面两侧晶体结构没有改变,晶格位向也基本一致,因此称为滑移变形。 晶体的滑移系越多,金属的塑性变形能力就越大。 8.加工硬化:随塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度显著提高,塑性和韧性显著降低,这称为加工硬化。 9.再结晶:金属从一种固体晶态过渡到另一种固体晶态的过程称为再结晶。 作用:消除加工硬化,把金属的力学和物化性能基本恢复到变形前的水平。 10.合金:两种或两种以上金属元素或金属与非金属元素组成的具有金属特性的物质。 11.相:合金中具有相同化学成分、相同晶体结构并有界面与其他部分隔开的均匀组成部分称为“相”。 分类:固溶体和金属间化合物 第二章 1.铁碳合金相图(20分) P22

知识点总结高等代数

第二章行列式知识点总结 一行列式定义 1、n 级行列式1112121 22 212 n n ij n n n nn a a a a a a a a a a = (1)等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (2)的代 数和,这里12n j j j 是一个n 级排列。当12 n j j j 是偶排列时,该项前面带正号;当12 n j j j 是奇排列时,该项前 面带负号,即: 12 1212 1112121222() 1212 (1)n n n n n j j j ij j j nj n j j j n n nn a a a a a a a a a a a a a τ= = -∑ 。 2、等价定义 121212() 12(1)n n n i i i ij i i i n n i i i a a a a τ = -∑和12 1211221212 ()() (1)n n n n n n i i i j j j ij i j i j i j n i i i j j j a a a a ττ+= -∑ 和 3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项(不算元素本身所带的负号)各占一半。 4、常见的行列式 1)上三角、下三角、对角行列式 11 11 11 222222 112200nn nn nn nn a a a a a a a a a a a a *===* 2)副对角方向的行列式 111(1)21 2,1 2,1 2 12,111 1 1 0(1) n n n n n n n n n n n n n n a a a a a a a a a a a a -----* ===-* 3)范德蒙行列式: 1222212 11 1112 111() (2) n n i j j i n n n n n a a a a a a a a a a a n ≤<≤---= -≥∏ 二、行列式性质 1、行列式与它的转置行列式相等。

给排水的知识点

3.1给排水、采暖、燃气工程系统概述 3.2给排水安装工程施工技术 3.3 给排水、采暖、燃气管道工程量清单计价 3.4给排水工程计价实例 ①直接给水方式 特点:系统简单,投资省,可充分利用外网水压。但是一旦外网停水,室内立即断水。 适用场所:水量、水压在一天内均能满足用水要求的用水场所。 ②设水箱的给水方式 特点:供水可靠,系统简单,投资省,可充分利用外网水压。缺点是增加了建筑物的荷载,容易产生二次污染。适用场所:供水水压、水量周期性不足时采用。 二、常用金属材料(了解) 1.无缝钢管 2.有缝钢管 3.铸铁管 4.不锈钢管 5.铜管 三、常用非金属管材(了解) 1.硬聚氯乙烯塑料管(UPVC管) 2.聚乙烯塑料管材(PE管) 3.聚丙烯塑料管(PP-R管) 4.铝塑复合管 5.塑料波纹管(HDPE管) 6.聚丁烯塑料管(PB管) 3.3.1给排水、采暖、燃气工程计价定额概述 一、本计价定额适用范围 《第十册給排水、采暖、燃气工程》适用于新建、扩建项目中的生活用给水、排水、燃气、采暖热源管道以及附件配件安装、小型容器制作安装 四、本册定额与其他各册定额的关系 1.工业管道、生产生活共用的管道、锅炉房和泵类配管以及高层建筑物内加压泵间的管道执行《第八册工业管道工程》相应项目。 2.刷油、防腐蚀、绝热工程执行《第十一册刷油、防腐蚀、绝热工程》相应项目; 五、关于下列各项费用的规定: 1.脚手架搭拆费按人工费的5%计算,其中人工工资占25%。 2.采暖工程系统调整费按采暖工程人工费的15%计算,其中人工工资占20%。 3.空调水工程系统调试,按空调水系统(扣除空调凝结水系统)人工费的13%计算,其中人工工资占25%。 4.高层建筑增加费(指高度在6层或20m以上的工业与民用建筑)按下表 层数9层以下 (30m) 12层以下 (40m) 15层以下 (50m) 18层以下 (60m) 21层以下 (70m) 24层以下 (80m) 27层以下 (90m) 按人工费的(%)12172227313540 其中人工工资 占(%) 17181822262933机械费占(%)83828278747167

工程材料总复习知识点

第二章材料的性能 一、1)弹性和刚度 弹性:为不产生永久变形的最大应力,成为弹性极限 刚度:在弹性极限范围内,应力与应变成正比,即:比例常数E称为弹性模量,它是衡量材料抵抗弹性变形能力的指标,亦称为刚度。 2)强度 屈服点与屈服强度是材料开始产生明显塑性变形时的最低应力值,即: 3)疲劳强度:表示材料抵抗交变应力的能力,即: 脚标r 为应力比,即: 对于对称循环交变应力,r= —1 时,这种情况下材料的疲劳代号为 4)裂纹扩展时的临界状态所对应的应力场强度因子,称为材料的断裂韧度,用K IC表示 二、材料的高温性能: 1、蠕变的定义:是指在长时间的恒温下、恒应力作用下,即使应力小于该温度下的屈服点,材料也会缓慢的产生塑性变形的现象,而导致的材料断裂的现象称为蠕变断裂 2、蠕变变形与断裂机理:材料的蠕变变形主要通过位错滑移、原子扩散及晶界滑动等机理进行的;而蠕变断裂是由于在晶界上形成裂纹并逐渐扩展而引起的,大多为沿晶断裂。 3、应力松弛:指承受弹性变形的零件,在工作中总变形量应保持不变,但随时间的延长而发生蠕变,从而导致工作应力自行逐渐衰减的现象 4、蠕变温度:指金属在一定的温度下、一定的时间内产生一定变形量所能承受的最大应力 5、持久强度:指金属在一定温度下、一定时间内所能承受最大断裂应力 第三章:金属结构与结晶 三种常见金属晶格:体心立方晶格,面心立方晶格、密排六方晶格 晶格致密度和配位数 晶面和晶向分析 1、晶面指数 2、晶向指数 3、晶面族和晶向族 4、晶面和晶向的原子密度第四章:二元合金相图(计算组织组成物的相对含量及相的相对量) 1、二元合金相图的建立 2、二元合金的基本相图 1)匀晶相图(枝晶偏析:由于固溶体一般都以树枝状方式结晶,先结晶的树枝晶轴含高熔点的组元较多;后结晶的晶枝间含低熔点组元较多,故把晶内偏析又称为枝晶偏析) 2)共晶相图 3)包晶相图 4)共晶相图 3、铁碳合金 铁碳合金基本相 1)铁素体 2)奥氏体 3)渗碳体 4)石墨 第五章金属塑性变形与再结晶 1、单晶体塑性变形形式 1)滑移 2)孪生 2、加工硬化:随着变形程度的增加,金属的强度、硬度上升而塑性、韧性下降,即为冷变形强化,也称加工硬化。 3、铁的最低再结晶温度为4500C,故即使它在4000C的加工变形仍应属于冷变形;铅的再结晶温度在00C以下,故它在室温的加工变形为热变形 第六章:金属热处理及材料改性 1、本质粗晶粒钢:对于碳素钢,奥氏体晶粒随加热温度升高会迅速长大,这类钢称为本质粗晶粒钢 2、马氏体类型的转变 1)马氏体组织形态和性能:马氏体组织形态主要有两种基本类型:一种是板条状马氏体,也称低碳马氏体;另一种是在片状马氏体,也称高碳马氏体。 2)马氏体性能:马氏体塑性韧性主要取决于碳的过饱和度和亚结构。低碳板条状马氏体的韧性塑性相当好。 3、过冷奥氏体连续转变 曲线图CCT曲线与TTT曲线比较:共析钢和过共析钢连续冷却时,由于贝氏体转变孕育期大大增长,因而有珠光体转变区而无贝氏体转变

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

排水工程知识点整理演示教学

排水工程知识点整理

第一章、概论 1、污水:水在使用过程中受到不同程度的污染,改变了原有的物理、化学成分和性质,失去了特定使用价值,称为污水或者废水。按照来源的不同污水可分为生活污水、工业废水和降水。 2、城市污水:指排入城镇污水排水系统的生活污水和工业废水。合流制排水系统的城市污水还包括生产废水和截流的雨水。城市污水是城市排水管道系统所要收集、输送、处理和处置的主要对象。 3、污水处理:方法:1)物理处理2)化学处理3)生物处理。污水的最终处置:排放水体1)直接排放(雨水和污染较轻)水体2)处理排放3)排海;灌溉农田;回用1)自然回用 2)间接回用 3)直接回用 4、排水体制:又称排水制度,是指污水的不同的排除方式所形成的排水系统,即生活污水、工业废水和雨水是采用一套管渠系统还是采用两套或两套以上的、各自独立的管渠系统来收集和输送。排水系统体制主要有合流制与分流制两种系统。一般所谓的合流与分流是指对污水与雨水的管道系统是合与分而言。影响排水体制选择的因素:城市规划;环境保护;基建投资;运行管理;综合考虑,因地制宜。 5、合流制排水系统:是将生活污水、工业废水和雨水混和在同一套管渠内排除的系统。直排式合流制排水系统:将生活污水、工业废水和雨水合流于一套排水管渠系统中,不经处理和利用就近直接排入受纳水体。在国内外的旧城市中多采用这种排水方法,它造价较低,管理方便,但污染水体较为严重,现在一般已不采用这种排水体制。完全合流制排水系统:将生活污水、工业废水和雨水合流于一套排水管渠系统中,经处理直接排入受纳水体。这种排水方法与地

下建筑矛盾较小,卫生条件好,管网投资也比分流制小,但是工程量大初次投资大,运行管理不便。对污水处理厂的要求较高,一般很少采完全合流制排水系统。截流式合流制排水系统:是在早期建设的直排式合流制基础上,在临河岸边增建一条截流干管,并在截流干管末端设置污水厂,同时在合流干管和截流干管相交处或相交前设置溢流井。晴天和初雨时,所有污水都进入污水厂经处理后排入水体;随着雨量的增加,当水量超过截流干管的输水能力时,出现溢流,部分混合污水经溢流井溢入水体。在一定程度上克服了直排式的不足,但在雨天仍有部分混合污水直接进入水体。一般用于旧城区的改造。 6、分流制排水系统:是将污水和雨水分别在两套或两套以上各自独立的管渠内排除的系统。污水排水系统和雨水排水系统。完全分流制排水系统:雨污水排水系统单独设置。污水通过污水排水系统排至污水厂,经处理后排入水体;雨水通过雨水排水系统直接排入水体。该系统环保效益较好,但有初期雨水污染问题,投资也比截流式合流制排水系统要高。适用场合:新建城市及重要工矿企业、工厂排水系统。不完全分流制排水系统:设有完整的污水排水系统,没有完整的雨水排水系统。污水通过污水排水系统送至污水厂,经处理后排入水体;雨水则通过地面漫流进入不成系统的明沟或小河,然后进入较大的水体。该系统只建污水系统,不建雨水系统,故投资节省。适用场合:地形适宜,有地面水体,可顺利排泄雨水的城镇;发展中的城镇。我国很多工业区、居住区在以往建设中采用了该系统。半分流制排水系统:既有污水排水系统又有雨水排水系统。雨水干管上设雨水跳越井截流初雨和街道冲洗废水进入污水管道。雨水干管流量不大时,雨污水一起入污水厂处理;雨水干管流量超过截流量时,雨水在跳越井内溢流经雨水出流干管排入水体。该系统环保效益好,但投

《土木工程材料》知识点

《土木工程材料》重要知识点 关注各章习题:选择题、判断题、是非题 一、材料基本性质 (1)基本概念 1.密度:材料在绝对密实状态下单位体积下的质量; 2.体积密度:材料在自然状态下单位体积(包括材料实体及开口孔隙、闭口孔隙)的质量,俗称容重; 3.表观密度:单位体积(含材料实体及闭口孔隙体积)材料的干质量,也称视密度; 4.堆积密度:散粒状材料单位体积(含物质颗粒固体及其闭口孔隙、开口孔隙体积以及颗粒间孔隙体积)物质颗粒的质量; 5.孔隙率:材料中的孔隙体积占自然状态下总体积的百分率 6.空隙率:散粒状材料在堆积体积状态下颗粒固体物质间空隙体积(开口孔隙与间隙之和)占堆积体积的百分率; 7.强度:指材料抵抗外力破坏的能力(材料在外力作用下不被破坏时能承受的最大应力) 8.比强度:指材料强度与表观密度之比,材料比强度越大,越轻质高强; 9.弹性:指材料在外力作用下产生变形,当外力取消后,能够完全恢复原来形状的性质; 10.塑性:指在外力作用下材料产生变形,外力取消后,仍保持变形后的形状和尺寸,这种不能恢复的变形称为塑性变形; 11.韧性:指在冲击或震动荷载作用下,材料能够吸收较大的能量,同时也能产生一定的变形而不破坏的性质; 12.脆性:指材料在外力作用下,无明显塑性变形而突然破坏的性质; 13.硬度:指材料表面抵抗其他物体压入或刻划的能力; 14.耐磨性:材料表面抵抗磨损的能力; 15.亲水性:当湿润角≤90°时,水分子之间的内聚力小于水分子与材料分子之间的相互吸引力,这种性质称为材料的亲水性; 16.憎水性:当湿润角>90°时,水分子之间的内聚力大于水分子与材料分子之间的吸引力,这种性质称为材料的憎水性;

《工程材料基础》知识点汇总

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。 2.零维材料:是指亚微米级和纳米级(1—100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料; 一维材料:线性纤维材料,如光导纤维; 二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜; 三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等; 3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。 4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性; 陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性; 高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能; 半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。 5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c(晶格常数)和三条棱边的夹角α、β、γ这六个参数来描述晶胞的几何形状和大小。 6.晶体结构主要分为7个晶系、14种晶格; 7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw]; 晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)。 8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。 9.实际金属结晶温度Tn总要偏低理论结晶温度T0一定的温度,结晶方可进行,该温差ΔT=T0—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。 10.通过向液态金属中添加某些符合非自发成核条件的元素或它们的化合物作为变质剂来细化晶粒,就叫变质处理;如钢水中常添加Ti、V、Al等来细化晶粒。 11.加工硬化是指随着塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度明显提高,塑性和韧性明显降低,也即形变强化;加工硬化是一种重要的强化手段,可以提高金属的强度并使金属在冷加工中均匀变形;但金属强度的提高往往给进一步的冷加工带来困难,必须进行退火处理,增加了成本。 12.金属学以再结晶温度区分冷加工和热加工:在再结晶温度以下进行的塑性变形加工是冷加工,在再结晶温度以上进行的塑性变形加工即热加工;热加工可以使金属中的气孔、裂纹、疏松焊合,使金属更加致密,减轻偏析,改善杂质分布,明显提高金属的力学性能。 13.再结晶是指随加热温度的提高,加工硬化现象逐渐消除的阶段;再结晶的晶粒度受加热温度和变形度的影响。 14.相:是指合金中具有相同化学成分、相同晶体结构并由界面与其他部分隔开的均匀组成部分; 合金相图是用图解的方法表示合金在极其缓慢的冷却速度下,合金状态随温度和化学成分的变化关系; 固溶体:是指在固态下,合金组元相互溶解而形成的均匀固相; 金属间化合物:是指俩组元组成合金时,产生的晶格类型和特性完全不同于任一组元的新固相。 15.固溶强化:是指固溶体的晶格畸变增加了位错运动的阻力,使金属的塑性和韧性略有下降,强度和硬度随溶质原子浓度增加而略有提高的现象; 弥散强化:是指以固溶体为主的合金辅以金属间化合物弥散分布,以提高合金整体的强度、硬度和耐磨性的强化方式。 16.匀晶反应:是指两组元在液态和固态都能无限互溶,随温度的变化,形成成分均匀的液相、固相或满足杠杆定律的中间相的固溶体的反应; 共晶反应:是指由一种液态在恒温下同时结晶析出两种固相的反应; 包晶反应:是指在结晶过程先析出相进行到一定温度后,新产生的固相大多包围在已有的固相周围生成的的反应; 共析反应:一定温度下,由一定成分的固相同时结晶出一定成分的另外两种固相的反应。 17.铁素体(F):碳溶于α-Fe中形成的体心立方晶格的间隙固溶体;金相在显微镜下为多边形晶粒;铁素体强度和硬度低、塑性好,力学性能与纯铁相似,770℃以下有磁性; 奥氏体(A):碳溶于γ-Fe中形成的面心立方晶格的间隙固溶体;金相显微镜下为规则的多边形晶粒;奥氏体强度和硬度不高,塑性好,容易压力加工,没有磁性; 渗碳体(Fe3C):含碳量为6.69%的复杂铁碳间隙化合物;渗碳体硬度很高、强度极低、脆性非常大; 珠光体(P):铁素体和渗碳体的共析混合物;珠光体强度较高,韧性和塑性在渗碳体和铁素体之间; 莱氏体(Ld):奥氏体和渗碳体的共晶混合物;莱氏体中渗碳体较多,脆性大、硬度高、塑性很差。 18.包晶反应:1495℃时发生,有δ-Fe(C=0.10%)、γ-Fe(C=0.17%或0.18%,图中J点)、液相(C=0.53%或0.51%,图中B点)三相共存;δ-Fe(固体)+L(液体)=γ-Fe(固体) 共晶反应:1148℃时发生,有A(C=2.11%)、Fe3C(C=6.69%)、液相L(C=4.3%)三相共存;Ld→Ae+Fe3Cf(恒温1148℃) 共析反应:727℃时发生,有A(C=0.77%)、F(C=0.0218%)、Fe3C(C=6.69%)三相共存;As→Fp+Fe3Ck(恒温727℃)

相关文档
最新文档