OLED有机LED显示器 QLED量子点显示器
【E课堂】OLED、ULED、QLED、GLED介绍

【E课堂】OLED、ULED、QLED、GLED介绍
不知道从什么时候开始,液晶电视逐渐一统电视圈的江山,过去卖场里各种电视百花齐放的的场面是见不到了。
不过如果你认为现在选电视不会那么纠结,那可就大错特错了。
现在电视机的各种概念可是一点都不比之前少,什么4色4K、量子点,各种新兴概念层出不穷。
而最让人头疼的,莫过于电视的各种“X”LED的概念了。
不光长相上差不多,而且商家的描述也是玄之又玄,让普通消费者摸不着头脑。
今天小编带着各位一起去伪存真,详细说说各种“X”LED之前的区别。
LED
LED电视的鼎鼎大名相信所有想买电视的消费者都应该很熟悉了,现在市面上绝大多数的电视都属于LED电视。
LED全称Light-EmitTIngDiode,英文看上去高大上得很,其实翻译过来就是发光二极管。
有些朋友可能要问了,LED电视不是液晶电视吗,怎么成了发光二极管了呢?
不知道大家还记不记得前几年的“LCD”电视,其实LCD代表的才是液晶电视(LiquidCrystalDisplay)的意思,而LED电视,指的是采用液晶面板作为显示介质,采用发光二极管作为背光模组的电视。
现在的LED电视其实也是
LCD电视,而过去的“LCD”电视,其实应该叫做CCFL电视(冷阴极荧光灯管(ColdCathodeFluorescentLamp)),至于LCD电视的叫法,只能说是厂家与商家的一种误传了。
ULED
ULED是海信电视上搭载的一种显示技术。
严格意义上说来,其实ULED并不是一种技术,而是海信LED电视上搭载的各种显示技术融合而实现。
电脑显示器比较LEDvsLCDvsOLED

电脑显示器比较LEDvsLCDvsOLED 电脑显示器比较:LED vs LCD vs OLED电脑是现代社会中不可或缺的工具,而电脑显示器则是电脑系统中重要的组成部分。
随着科技的进步,LED、LCD和OLED这三种不同类型的显示器逐渐崭露头角。
今天,我们将比较这三种显示器的特点和优劣势,以帮助您更好地了解选择合适的显示器。
一、LED显示器LED(发光二极管)显示器是现在最常见的一种,它采用了发光二极管作为背光源。
LED可以提供更高的亮度和更高的对比度,使显示图像更清晰锐利。
此外,LED显示器具有更广的色域,能够呈现更饱满的色彩。
这使得它在图形设计和媒体行业中得到广泛应用。
此外,LED显示器在能耗方面也表现出色。
相对于传统的液晶显示器,LED显示器使用LED作为背光源,能够实现更低的能耗,并且更加环保。
另外,LED显示器具有较长的使用寿命,节省了维修和更换背光源的成本。
然而,LED显示器也存在一些不足之处。
例如,价格较高,相对于LCD显示器和OLED显示器来说,成本更高。
此外,LED显示器在黑色表现和对比度方面相对较弱,可能会出现明暗不均的情况。
二、LCD显示器LCD(液晶显示器)是广泛应用于电脑和电视领域的一种显示技术。
它通过液晶层的电场调制来控制光的传递,从而实现图像的显示。
相对于LED显示器,LCD显示器的价格更为亲民,是较为常见的一种选择。
LCD显示器优点在于其成本效益和可靠性。
它们的制造成本相对较低,因此价格通常较为合理。
此外,LCD显示器在可靠性方面表现出色,具有较长的使用寿命。
然而,LCD显示器也存在一些缺点。
首先,LCD显示器需要背光源来提供光照,这使得其亮度和对比度相对较低。
其次,LCD显示器的色彩表现相对较差,无法呈现饱满的色彩。
三、OLED显示器OLED(有机发光二极管)显示器是最新的显示技术,具有许多优点。
OLED显示器不需要背光源,因为每个像素点都是自发光的。
这使得OLED显示器能够实现更高的亮度和对比度,并且显示更为鲜艳丰富的色彩。
什么是QLED和量子点?QLED技术有什么特点?QLED和OLED对比如何?

什么是QLED和量子点?QLED技术有什么特点?
QLED和OLED对比如何?
在彩电市场中,QLED电视在索尼、三星、海信这些传统企业的竞争下变得越来越激烈,在LCD技术达到瓶颈后,不少厂商会开始研发自己的新显示技术。
OLED技术发展了好多年,却始终没有在销量和高端之间找到一个合
理的位置。
而如今又开始吹嘘“QLED量子点”技术,但对于消费者来说,除
了看起来很高大上之外,其他一无所知,可是却又饱受电视厂商的追捧。
今
天笔者就给大家介绍一下QLED电视到底有多厉害。
什幺是QLED和量子点?
QLED是“Quantum Dots Light Emitting Diode Display”的缩写,中文翻译过来就是量子点发光二极管。
其实QLED电视也是LED电视的一种,只不过
是利用了量子点技术提高了关键图像的显示质量。
这种技术可以通过电驱动
发光产生图像,而不需要液晶和背光,算是一种新型的屏幕技术。
QLED更像是OLED,它也像OLED一样可以自发光,但光源不是二极管,而是量子点。
量子点是纳米级大小的球形材料,肉眼无法看到,在电压的作
用下会自发光。
简单来说,量子点其实就是一种会发光会变色的颗粒物。
电视的种类有哪些

电视的种类有哪些
电视的种类有多种,以下是一些常见的电视类型:
1. 液晶电视(LCD TV):使用液晶显示技术来产生图像的电视。
它们通常具有高分辨率、广视角和较薄的外观。
2. LED电视:LED(Light Emitting Diode)背光的电视,是一种液晶电视的变种。
它使用LED作为背光源,提供更好的对比度和色彩饱和度。
3. OLED电视:OLED(Organic Light Emitting Diode)电视采用有机发光二极管技术,每个像素都能自己发光,可以实现更深的黑色和更高的对比度。
4. QLED电视:QLED(Quantum Dot LED)电视使用量子点技术,通过激活量子点来产生颜色。
它具有更高的亮度、更广的色域和更好的抗烧屏效果。
5. 曲面电视:曲面电视的显示屏呈弧形或弯曲形状,旨在提供更加沉浸式的观影体验。
6. 4K电视:4K电视指的是具有更高分辨率的电视,即3840 x 2160像素。
它提供了比传统全高清电视更清晰的图像。
7. 8K电视:8K电视是分辨率更高的电视,即7680 x 4320像素。
它提供极高的图像细节和清晰度。
8. 智能电视:智能电视具有内置的操作系统和网络连接功能,可以访问各种应用程序、流媒体服务和在线内容。
这些只是一些常见的电视类型,随着技术的不断进步,还可能出现新的电视类型。
根据个人需求和预算,选择适合的电视类型会带来更好的观影体验。
新型显示技术研究与应用

新型显示技术研究与应用随着科技领域的不断发展和进步,新型显示技术得到了广泛的关注和应用。
新型显示技术具备更高的分辨率、更广的视角和更逼真的色彩表现,能够满足人们对更高质量显示的需求。
本文旨在介绍几种新型显示技术及其应用。
一、OLED显示技术OLED全称有机发光二极管,是一种新型的自发光材料,由有机材料制成。
与传统LED不同,OLED可以通过电子输运、直接增强效率地发光,不需要背光,比传统LCD更薄、更轻、更省电、更柔软,更适合在弯曲的表面上使用。
OLED屏幕的色彩更加真实鲜艳,色彩还原度更好。
OLED广泛应用于高端手机、平板电脑和电视屏幕等电子产品中。
三星公司就曾在旗下手机中使用了该技术,而索尼则推出了采用OLED技术的电视产品。
二、微LED显示技术微LED是指像素大小可以小于50微米的LED灯珠,也被称为亚毫米级LED或超微型LED。
微LED的发光原理与传统LED基本相同,但与之相比,微LED的颗粒更小、更亮、更省电、长寿命,色彩还原度更高等优势。
此外,微LED还具备灰度细分、透明性以及抗外界光干扰等特点,可以在室内、室外、全息投影等不同场合下使用。
目前微LED已广泛应用于显示器、电视、VR设备、手表及汽车显示器等产品中,成为未来优秀的选项之一。
三、全息显示技术全息显示技术是在空间中生成三维图像的技术。
它基本上是一种虚拟现实环境,通过将光束投影到透明的玻璃板上,使光线重合形成立体影像。
与传统的双眼立体显示技术相比,全息显示技术可以实现360度全视角。
目前,全息显示技术还只处于研究阶段,但它的应用在医学、安防、军事、广告等领域有巨大的潜力。
四、QLED显示技术QLED全称量子点LED,是一种量子点发光材料,可以通过改变量子点的大小、形状和属性等来调节其发光效果。
QLED技术在色域、高亮度、高对比度和长寿命等方面具有优势,可以在较亮和光线充足的环境下获得更佳的视觉体验。
目前,三星和海信等国内外品牌已推出采用该技术的QLED电视产品。
半导体的应用领域(3篇)

第1篇一、电子器件领域1. 集成电路(IC)集成电路是半导体技术中最具代表性的应用之一。
集成电路将大量晶体管、电阻、电容等元件集成在一个芯片上,具有体积小、重量轻、功耗低、可靠性高等优点。
集成电路广泛应用于计算机、通信、消费电子、工业控制等领域。
2. 显示器半导体显示器是半导体技术的重要应用之一,主要包括液晶显示器(LCD)、有机发光二极管(OLED)和量子点显示器(QLED)等。
这些显示器具有高分辨率、高亮度、低功耗等特点,广泛应用于电视、手机、电脑、车载显示屏等领域。
3. 光电子器件光电子器件是利用半导体材料的光电特性制成的器件,主要包括发光二极管(LED)、激光二极管(LD)、光电二极管(PD)等。
这些器件在照明、通信、医疗、安防等领域具有广泛应用。
二、通信领域1. 无线通信半导体技术在无线通信领域得到了广泛应用,如手机、无线网卡、无线充电等。
半导体器件在无线通信中起到了关键作用,如射频放大器、滤波器、功率放大器等。
2. 光通信光通信是利用光波在光纤中传输信息的一种通信方式。
半导体技术在光通信领域发挥着重要作用,如光发射器、光接收器、光开关等。
三、计算机领域1. 中央处理器(CPU)CPU是计算机的核心部件,半导体技术在CPU的发展中起到了关键作用。
随着半导体工艺的进步,CPU的性能不断提升,使得计算机的运算速度越来越快。
2. 内存内存是计算机中用于存储数据和指令的部件。
半导体技术在内存的发展中起到了关键作用,如动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)等。
四、消费电子领域1. 手机手机是半导体技术的重要应用领域之一。
随着半导体工艺的进步,手机的功能越来越强大,如高性能处理器、高清摄像头、大容量电池等。
2. 数字相机数字相机是半导体技术的重要应用领域之一。
半导体技术在数字相机中起到了关键作用,如高性能图像传感器、图像处理芯片等。
五、医疗领域1. 医疗成像设备半导体技术在医疗成像设备中得到了广泛应用,如X射线成像、CT扫描、核磁共振成像(MRI)等。
显示器的发展历程

显示器的发展历程
显示器的发展历程可以追溯到20世纪。
早期的计算机显示器
采用了阴极射线管(CRT)技术。
CRT显示器由一个大玻璃
管制成,其中有电子枪向玻璃面发射电子束,然后通过磁场控制电子束的偏转,最终形成图像。
这种显示器具有较大的体积和较高的功耗,但在当时是唯一的显示器选择。
随着计算机技术的不断进步,出现了平板液晶显示器(LCD),这是显示器技术的重大突破。
与CRT显示器相比,LCD显示
器更轻薄,占用空间更小,且能耗更低。
LCD显示器使用液
晶材料和光栅技术,通过液晶分子的电场调节来控制光的透过程度,从而产生图像。
这种显示器逐渐取代了CRT显示器,
成为主流的显示器技术。
在LCD显示器之后,出现了OLED显示器(有机发光二极管)。
OLED显示器不需要背光源,因为每个像素都是自发光的。
这种显示器具有更高的对比度和更广的视角,且能耗更低。
OLED显示器也可以弯曲成弯曲的形状,因此更加灵活。
然而,由于OLED显示器的制造成本较高,目前仍然相对较少使用。
最近,还出现了量子点显示器(QLED)。
量子点显示器是一
种LCD显示器,但使用了量子点材料来增强色彩和光谱范围。
这种显示器在色彩鲜艳度和显示效果方面具有很大的优势,并且具有相对较低的功耗。
总的来说,显示器技术在过去几十年中取得了巨大的进步。
从CRT到LCD再到OLED和量子点,每一代显示器都在不断改
善图像质量、减小体积、降低功耗,以满足人们对高清图像的需求。
随着技术的发展和创新的不断涌现,显示器技术有望在未来继续进化和改进。
oled替代方案

oled替代方案在显示技术领域,有一种在电子设备中广泛应用的显示屏技术称为OLED(Organic Light Emitting Diode),它能够提供高质量的图像和视频显示效果。
然而,随着时间的推移和技术的发展,人们在寻找替代OLED的方案,以解决其存在的一些问题和限制。
下面将介绍几种被认为是潜在的替代方案。
第一种潜在的替代方案是MicroLED。
MicroLED显示技术使用微小的LED作为显示单元,这些LED可以独立发光,并且不需要背光模组或液晶层。
相对于OLED,MicroLED具有更高的亮度和更长的寿命,能够提供更准确的颜色和更高的对比度。
此外,MicroLED在刷新率和响应时间方面也更加出色。
然而,目前MicroLED还面临制造成本较高和制程难度大的挑战,不过随着技术的不断突破和成熟,相信其将成为OLED的有力竞争对手。
第二个替代方案是量子点显示技术。
量子点显示器是一种基于量子点材料的显示技术,它通过操控不同尺寸和种类的量子点来实现对颜色的精确控制。
与传统LCD相比,量子点显示器可以提供更饱和的颜色和更高的亮度。
此外,它还能在抑制漏光方面具有更好的效果。
量子点显示技术已经在一些电视和移动设备上得到应用,然而,目前其制造工艺复杂并且成本较高,仍然需要进一步的改进和优化。
第三个替代方案是电子墨水屏。
电子墨水屏是一种利用电荷调控颗粒位置来实现显示效果的技术。
与OLED不同,电子墨水屏可以提供类似纸张一样的阅读体验,具有非常低的功耗和护眼特性。
并且,电子墨水屏在室外环境中能够获得更好的可视性,不会受到阳光的影响。
尽管电子墨水屏的刷新率和彩色表现较弱,但它在特定的应用场景中具有独特的优势,如电子书阅读器和电子标签等。
除了上述替代方案,还有其他一些新兴的显示技术也在被探索和研发,如柔性显示、全息显示和生物显示等。
这些新技术在提供更广阔的应用前景的同时,也带来了更多的挑战和困难。
在选择合适的替代方案时,需要综合考虑性能、成本、可制造性和市场需求等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三星 40寸
台湾友达 14寸 1920×1080的全高清分辨率
索尼在CES 2010上展示了新 的3D AMOLED电视原型。该 电视显示器为24.5英寸
6
三星展示0.05mm超 薄OLED显示屏 (2008年) 分辨率为480 × 272,
对比度为100,000:1,
亮度为200cd/m2。
7
▫ 具有良好的空穴传输特性,即空穴 迁移率高; ▫ 具有较低的电子亲和能,有利于空 穴注入; ▫ 激发能量高于发光层的激发能量; ▫ 不能与发光层形成激基复合物; ▫ 具有良好的成膜性和较高的玻璃化 温度,热稳定性好,可以用真空蒸 发法形成致密的薄膜,不易结晶。
32
DL-B型双层EL器件结构图
(3)三层器件
• 分子结构具有多样性和可塑性,通过设计其化学结构,
可以改变有机材料的光电性质、热特性、机械性质等; • 面光源
28
二、有机电致发光器件的基本结构
OLED属于载流子双注入型发光器件 发光机理:在外界电压驱动下,由电极 注入的电子和空穴在有机材料中复合放 出能量,并将能量传递给有机发光物质 的分子,后者受到激发,从基态跃迁到 激发态,当受激分子从激发态回到基态 时辐射跃迁产生了发光现象。
1
(一)概述
OLED显示器
SONY 2008年展出了 一台仅有3mm厚的 OLED HDTV。尺寸为 11英寸
2
索尼公司发布了新的21英寸OLED电视原型(XEL - 2),分辨 率达到1366x760,对比度高达1000000:1,整个电视机厚度 只有1.4毫米。
3
台湾奇晶光电于 2008 年 开 发 出 了 一 款厚度为0.9mm的25 英寸的 OLED 液晶面 板
33
(4)多层器件
• 可提高OLED的发光亮度和发光效率。 • 主要形式:
▫ A.在两电极内侧加缓冲层,以增加电子和空穴的注入量; ▫ B.为提高器件的发光效率,使用了空穴阻挡层HBL。
34
三、有机电致发光过程
• 1.在外加电场的作用下载流子的 注入:电子和空穴分别从阴极和阳 极向夹在电极之间的有机功能薄膜 注入。 • 2.载流子的迁移:注入的电子和 空穴分别从电子输送层和空穴输送 层向发光层迁移。 • 3.载流子的复合:电子和空穴复 合产生激子。 • 4.激子的迁移:激子在电场的作 用下迁移,能量传递给发光分子, 并激发电子从基态跃迁到激发态。 • 5.电致发光:激发态能量通过辐 射跃迁,产生光子,释放出能量。
4
索尼开发出了驱动元件
采用氧化物半导体TFT
(TOS(IGZO)TFT)的 11.7英寸OLED面板,确
保了OLED电视要求的10
年以上的寿命
像素为960×540。全白亮度为 200cd/m2 ,峰值亮度为 600cd/m2以上。对比度为100 万比1以上,色彩表现范围按 NTSC规格比为100%以上 5
• 由空穴传输层(HTL)、电子 传输层(ETL)和将电能转化 成光能的发光层组成。HTL负 责调节空穴的注入速度和注入 量, ETL负责调节电子的注入 速度和注入量。 • 优点:
▫ 使三层功能层各行其职,对于选 择材料和优化器件结构性能十分 方便,是目前有机EL器件中最常 采用的器件结构之一。
三层EL器件结构图
25
有机电致发光发展历史——聚合物OLED
• 1990年,剑桥Burroughes,聚合物OLED
▫ 以亚苯基乙烯撑(PPV),用旋涂方法制备聚合物电致发 光器件。 ▫ 制作出高效的绿光聚合物发光器件(Polymer Light Emitting Device,PLED),开辟了高分子
• 有机电致发光的新纪元。
▫ 相对SMOLED需要采用高成本的真空掩模蒸发技术,高分 子材料可以采用旋转涂覆、喷墨打印等方法制备,有望大 大降低OLED的制作成本。
26
有机电致发光发展历史——磷光OLED
• 以上所述的OLED器件,无论是SMOLED还是PLED, 都属于荧光发光器件。 • 根据量子统计理论,荧光发射所需的单重态激子只 占激子总数的1/4,所以荧光OLED器件的内量子效率 不可能超过25%。 • 1998年,Forrest等基于自旋-轨道耦合相互作用,实 现了基于磷光发光的OLED器件。如能综合利用荧光 和磷光,OLED内量子效率在理论上可以达到100%。
8
9
Sony 柔性OTFT OLED显示屏参数 · 大小:4.1寸 · 分辨率:432 X 240像素 · 精细度:121PPI · 显示颜色:1677万色 · 最高亮度:大于100流明 · 对比度:大于1000:1 · 厚度:80μm · 依附卷绕圆柱体半径:4mm
10
台湾工研院
6英寸的AMOLED电 子纸技术,在弯曲
27
有机电致发光的优势பைடு நூலகம்
• 主动发光无视角、响应速度问题 。(相对LCD) • 全固态,使用方便。(CRT有真空腔,LCD有液态成分) • 可在其它柔性材料基底制作,超轻超薄有望实现超便携 的显示器。(相对LED) • 无机发光二极管不同发光层材料必须配合不同的外延技 术,而有机分子加工性好,并可在任何基板上成膜; • 很多有机的色料都具有很高效率的发光性质;
电流方向
35
四、OLED材料
根据材料不同OLED可以分为两大类:
(1) 高分子聚合物,分子量10000---100000,通常是导 电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜, 制作简单,成本低,但其纯度不易提高,在耐久性,亮 度和颜色方面比小分子有机化合物差。 (2) 小分子有机化合物,分子量为500-2000,能用真空 蒸镀方法成膜,按分子结构又分为两类: 有机小分子化合物和配合物。
36
1.有机发光材料
用于电致发光的有机材料应具备以下特性:
A . 高 量 子 效 率 的 荧 光 特 性 , 荧 光 光 谱 主 要 分 布 400700nm可见光区域。 B.良好的半导体特性,即具有高的导电率,能传导电子 或空穴或两者兼有。 C . 好的 成膜性 , 在几十纳 米的薄层 中不产生 针孔 。 D.良好的热稳定性。 总体来说小分子材料器件的工艺较为成熟,有望近期 进入产业化生产阶段,但小分子材料的开发仍然在继续, 随着材料和工艺两方面的进步,小分子材料的器件性能 会进一步提高。 聚合物作为很有前途的研究方向,不久以后也会进 入产业化阶段,给OLED产业带来强有力的推进
30
单层EL器件结构图
(2)双层器件
• (2)双层器件结构 • 柯达公司首先提出了双层有机膜结构, 有效地解决电子和空穴的复合区远离 电极和平衡载流子注入速率问题,使 有机EL的研究进入了一个新阶段。他 们的器件结构也叫DL-A型双层结构。 • 主要特点:
▫ 发光层材料具有电子传输性,需要加入一 层空穴传输材料去调节空穴和电子注入到 发光层的速率,这层空穴传输材料还起着 阻挡电子的作用,使注入的电子和空穴在 发光层处发生复合。
23
一、有机电致发光发展历史
• 自然界中的有机物发光: 萤火虫、发光水母, 生物体内化学反应发光。 • 1950s,法国Andre对沉积在纤维素上的吖啶 材料上施加交流大电压,观察到电致发光现 象。 • 1960年,纽约大学的Matin Pope等研究出可 以和有机晶体实现欧姆接触的黑色注入电极。 他们进一步描述了注入电子和空穴的电极的 能级要求,即功函数范围,奠定了 OLED 器 件的电荷注入的理论基础。 • 1963年,Pope在真空条件下,在纯单晶蒽和 掺杂并四苯的蒽晶体上,施加了 400V 的直 流电压,观察到蓝色电荧光。 • 主要问题:有机晶体厚、载流子传输困难、 有机材料存在针孔; OEL器件驱动电压高、 发光效率低、易击穿。
OLED与QLED
有 机 电 致 发 光 显 示 : Organic electroluminescence,OEL 有机发光二极管:Organic Light Emitting Diode, OLED 量子点:Quantum Dot,QD 量子点发光二极管: Quantum Dot Light Emitting Diode, QLED
OLED器件的结构设计应考虑:载流子 的传输层和发光层之间的能带匹配、厚 度匹配、载流子注入平衡、折射率匹配 等因素。 一般采用夹层式结构。阳极采用高功 函数材料,阴极采用低功函数材料。
29
(1)单层器件
• 在器件的正极和负极间,制作有一 种或多种物质组成的发光层。单层 器件的发光层厚度通常在100nm。 • 优点:制备方法简单。 • 缺点:A.复合发光区靠近金属电极 而靠近金属电极处缺陷多,非辐射 复合几率大,而且该处的高电场容 易产生发光淬灭; • B.由于两种载流子注入不平衡, 载流子的复合几率比较低,因而影 响器件的发光效率。 • 用途: 一般不用于发光器件,主要用于测 量有机材料的电学和光学性质 单层器件结构在聚合物电致发光器 件(PLED)中常见
24
萤火虫
发光水母
深海鮟鱇
有机电致发光发展历史——小分子OLED
• 1987,柯达C. W. Tang(邓青云),第一个真正意义上 的OLED
▫ 真空热蒸发沉积的双层小分子有机非晶薄膜 芳香联胺,空穴传输层(HTL),类似LED p区 8-羟基喹啉铝(Alq3),具有相对较高的绿光荧光发光效率, 电子传输层(ETL)兼发光层(EML) ,类似LED n区兼i区 有机薄膜厚度降至几十nm,OLED驱动电压大大降低 (10V) 绿光OEL器件效率提高近2个数量级 了全球OLED的大规模研发浪潮 逐步形成现有的小分子SM-OLED体系,成为现有OLED 产业的主流技术。
37
• 1) 有机小分子发光材料 (1) 红光材料 主要有:罗丹明类染料,DCM,DCT,DCJT,DCJTB, DCJTI和TPBD等 (2) 绿光材料 主要有:香豆素染料Coumarin6(Kodak公司第一个采用), 奎丫啶酮(quinacridone, QA)(先锋公司专利),六苯并 苯(Coronene),苯胺类(naphthalimide). (3) 蓝光材料 主要有:N-芳香基苯并咪唑类;1,2,4-三唑衍生物(TAZ) (也是ETM材料);1,3-4-噁二唑的衍生物OXD-(PNMe2)(高亮度;1000cd/m2);双芪类 (Distyrylarylene);BPVBi(亮度可达6000cd/m2)。