二叉树的生成和遍历

合集下载

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

二叉树的遍历实验报告

二叉树的遍历实验报告

二叉树的遍历实验报告二叉树的遍历实验报告引言:二叉树是一种常见的数据结构,它由节点和连接节点的边组成。

在实际应用中,我们经常需要对二叉树进行遍历,以便对其中的节点进行访问和操作。

本次实验旨在探索二叉树的遍历算法,并通过实验验证其正确性和效率。

一、二叉树的定义和基本操作二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

根据节点的访问顺序,二叉树的遍历可以分为前序遍历、中序遍历和后序遍历三种方式。

前序遍历是指先访问根节点,然后按照左子树、右子树的顺序递归地进行遍历;中序遍历是指先按照左子树、根节点、右子树的顺序递归地进行遍历;后序遍历是指先按照左子树、右子树、根节点的顺序递归地进行遍历。

二、实验设计和方法为了验证二叉树的遍历算法的正确性和效率,我们设计了以下实验方案:1. 构建二叉树:我们首先构建一个具有一定规模的二叉树,以模拟实际应用中的情况。

为了方便起见,我们选择随机生成一棵二叉树,并确保其结构合理。

2. 实现遍历算法:我们根据前文所述的遍历方式,实现了相应的遍历算法。

在实现过程中,我们考虑到了递归和迭代两种方式,并分别进行了实验比较。

3. 遍历实验:我们使用不同规模的二叉树进行遍历实验,并记录遍历的结果和所花费的时间。

通过对比不同规模下不同遍历方式的结果和时间,我们可以评估遍历算法的效率和准确性。

三、实验结果和分析在实验中,我们构建了一棵具有1000个节点的二叉树,并分别使用前序、中序和后序遍历算法进行遍历。

通过实验结果的比较,我们得出以下结论:1. 遍历结果的正确性:无论是前序、中序还是后序遍历,我们都能够正确地访问到二叉树中的每个节点。

这表明我们所实现的遍历算法是正确的。

2. 遍历算法的效率:在1000个节点的二叉树中,我们发现中序遍历算法的执行时间最短,后序遍历算法的执行时间最长,前序遍历算法的执行时间居中。

这是因为中序遍历算法在访问节点时可以尽可能地减少递归次数,而后序遍历算法需要递归到最深层才能返回。

二叉树的随机生成及其遍历

二叉树的随机生成及其遍历

叉树的随机生成及其遍历张 zhaohan 10804XXXXX2010/6/12问题重述利用随机函数产生50个(不大于1 00且各不相同的)随机整数,用这些整数来生成一棵二叉树,分别对二叉树进行先根遍历,中根遍历和后根遍历并输出树中结点元素序列。

程序设计(一) 需求分析:•问题的定义与要求: 1 、产生50个不大于100且各不相同的随机整数 (由系统的随机函数生成并对100取模);2、先根遍历并输出结果;3、中根遍历并输出结果;4、后根遍历并输出结果;按层次浏览二叉树结5、点;6、退出程序。

•俞入:所需功能,选项为1〜6。

•输出:按照用户功能选择输出结果。

•限制:输入的功能选择在1〜6之间,否则无回应。

•模块功能及要求:RandDif(): 生成50个随机不大于100的整数,每次生成不同随机整数。

CreateBitree(): 给数据结点生成二叉树,使每个结点的左右儿子指针指向左右儿子。

NRPreOrder(): 非递归算法的先根遍历。

inOrderTraverse(): 递归算法的中根遍历。

P ostOrderTraverseO:递归算法的后根遍历。

Welcome(): 欢迎窗口。

Menu():菜单。

Goodbye():再见窗口。

(二) 概要设计:首先要生成二叉树,由于是对随机生成的50个数生成二叉树,故可以采取顺序存储的方式,对结点的左右儿子进行赋值。

生成的二叉树是完全二叉树。

先根遍历的非递归算法:1、根结点进栈2、结点出栈,被访问3、结点的右、左儿子(非空)进栈4、反复执行2、3 ,至栈空为止。

先根遍历的算法流程图:根结点进栈( a[0]=T->boot,p=a[0] ) 访问结点printf(*p)右儿子存在则进栈a[i]=(*p).rchild; i++;左儿子存在则进栈a[i]=(*p).rchild; i++;栈顶降低top--:i--;p=a[i];栈非空while(i>-1)返回中根遍历的递归算法流程图:T为空Return;inOrderTraverse(T->lchild)Printf(T->data) inOrderTraverse(T->rchild)返回后根遍历的递归算法流程图:T为空Return;inOrderTraverse(T->lchild) inOrderTraverse(T->rchild)Printf(T->data)返回遍历输出均按链式存储。

数据结构实验五(二叉树的建立及遍历)题目和源程序

数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。

2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。

二、实验要求1.认真阅读和掌握和本实验相关的教材内容。

2.编写完整程序完成下面的实验内容并上机运行。

3.整理并上交实验报告。

三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。

2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。

四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

c语言实现二叉树的四种遍历和求深度与叶子个数

c语言实现二叉树的四种遍历和求深度与叶子个数

c语言实现二叉树的四种遍历和求深度与叶子个数二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

在C语言中,我们可以使用指针来实现二叉树的操作。

本文将介绍四种常见的二叉树遍历方式,以及如何求解二叉树的深度和叶子节点个数。

首先,我们需要定义一个二叉树节点的结构体,包含一个数据域和两个指针域,分别指向左子节点和右子节点。

代码如下:```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```接下来,我们可以实现二叉树的四种遍历方式:前序遍历、中序遍历、后序遍历和层序遍历。

前序遍历是指先访问根节点,然后递归地遍历左子树和右子树。

代码如下:```cvoid preorderTraversal(struct TreeNode* root) {if (root == NULL) {return;}printf("%d ", root->data);preorderTraversal(root->left);preorderTraversal(root->right);}```中序遍历是指先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。

代码如下:```cvoid inorderTraversal(struct TreeNode* root) {if (root == NULL) {return;}inorderTraversal(root->left);printf("%d ", root->data);inorderTraversal(root->right);}```后序遍历是指先递归地遍历左子树和右子树,最后访问根节点。

代码如下:```cvoid postorderTraversal(struct TreeNode* root) {if (root == NULL) {return;}postorderTraversal(root->left);postorderTraversal(root->right);printf("%d ", root->data);}```层序遍历是按照树的层次逐层遍历节点。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

树和二叉树的实验报告

树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。

本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。

二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。

每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。

树的特点包括层次结构、唯一根节点和无环等。

2. 树的构建在本实验中,我们使用Python语言构建了一棵树。

通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。

3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。

三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。

2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。

通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。

3. 二叉树的应用二叉树在实际应用中有很多用途。

例如,二叉搜索树可以用于实现快速查找和排序算法。

AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。

我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。

四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。

通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。

树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。

同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。

这些问题需要进一步的研究和优化。

五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据结构》课程设计报告———二叉树的生成和遍历专业信息管理与信息系统班级110514小组成员110514128 汤文莹110514129 王玉珏110514130 张蓓蕾110514131 张慕琦课程设计:二叉树的生成和遍历一、任务描述1.将二叉树以广义表形式存储在一个 TXT 文件上,通过读取 TXT 文件,建立二叉树;2.求树的高度3.实现二叉树的前序、中序和后序遍历;4.将输出结果存储在文件内。

二、问题分析1.设计思想以广义表格式输入一个二叉树,将其接收至一维数组中,利用栈结构建立二叉链表树;通过先、中、后访问根结点递归算法遍历二叉树;利用队列的入队、出队操作实现二叉树的层次遍历。

例如:a(c(,d),f(g,))建立如下图所示二叉树。

2.数据结构定义队列数组长度# define QueueMaxSize 20定义栈数组长度# define StackMaxSize 10定义二叉树数据类型typedef char ElemType;struct BTreeNode{ElemType data;struct BTreeNode * left;struct BTreeNode * right;}BTreeNode;3.主要模块设计初始化二叉树void InitBTree(struct BTreeNode** BT)根据a所定义的二叉树广义表字符串建立对应的存储结构void CreateBTree(struct BTreeNode ** BT,char * a)前序遍历二叉树void Preorder(struct BTreeNode * BT){if(BT!=NULL) {printf("%c",BT->data); /*访问根结点*/Preorder(BT->left); /*前序遍历左子树*/Preorder(BT->right); /*前序遍历右子树*/ }}中序遍历二叉树void Inorder(struct BTreeNode * BT){if(BT!=NULL) {Inorder(BT->left); /*中序遍历左子树*/printf("%c",BT->data); /*访问根结点*/Inorder(BT->right); /*中序遍历右子树*/ }}后序遍历二叉树void Postorder(struct BTreeNode * BT){if(BT!=NULL) {Postorder(BT->left); /*后序遍历左子树*/Postorder(BT->right); /*后序遍历右子树*/printf("%c",BT->data); /*访问根结点*/ }}由指针指向的一颗二叉树的深度int BTreeDepth(struct BTreeNode * BT)按层遍历由BT指针所指向的二叉树void Levelorder(struct BTreeNode * BT4.详细设计1)二叉树的建立其中mark的值1、2、3、4分别指str[i]为字母、‘(’、‘,’、‘)’;tag为左、右孩子的标志;2.二叉树的层次遍历访问元素所指结点,若该元素所指结点的左右孩子结点非空,则该元素所指结点的左孩子指针和右孩子指针顺序入队。

函数实现# include<stdio.h># include<stdlib.h># define QueueMaxSize 20 /*定义队列数组长度*/# define StackMaxSize 10 /*定义栈数组长度*/typedef char ElemType;struct BTreeNode{ElemType data;struct BTreeNode * left;struct BTreeNode * right;}BTreeNode;void InitBTree(struct BTreeNode** BT)/*初始化二叉树,即把树根指针置空*/{*BT=NULL;}void CreateBTree(struct BTreeNode ** BT,char * a) /*根据a所定义的二叉树广义表字符串建立对应的存储结构*/{struct BTreeNode * p;/*定义s数组作为存储根结点指针的栈使用*/struct BTreeNode * s[StackMaxSize];/*定义top作为s栈的栈顶指针,初值为-1,表示空栈*/int top=-1;/*用k作为处理结点的左子树和右子树的标记,k=1处理左子树,k=2处理右子树*/int k;/*用i扫描数组a中存储的二叉树广义表字符串,初值为0*/int i=0;/*把树根指针置为空,即从空树开始建立二叉树*/*BT=NULL;/*每循环一次处理一个字符,直到扫描到字符串结束\0为止*/while (a[i]){switch(a[i]){case ' ': /*对空格不做任何处理*/break;case '(':if(top==StackMaxSize-1){printf("栈空间太小,需增加StackMaxSize!\n");exit(1);}top++;s[top]=p;k=1;break;case ')':if(top==-1){printf("二叉树广义表字符串错!\n");exit(1);}top--;break;case ',':k=2;break;default:p=(struct BTreeNode * )malloc(sizeof(struct BTreeNode));p->data=a[i];p->left=p->right=NULL;if(*BT==NULL)*BT=p;else{if(k==1)s[top]->left=p;elses[top]->right=p;}} /*switch end*//*为扫描下一个字符串修改i值*/i++;}}void PrintBTree(struct BTreeNode * BT)/*输出二叉数的广义表表示*/{/*数为空时自然结束递归,否则执行如下操作*/if(BT==NULL){/*输出根结点的值*/printf("%c",BT->data);/*输出左、右子树*/if(BT->left!=NULL || BT->right!=NULL){printf("("); /*输出左括号*/PrintBTree(BT->left); /*输出左子树*/ if(BT->right!=NULL)PrintBTree(BT->right); /*输出右子树*/ printf(")"); /*输出右括号*/ }}}void Preorder(struct BTreeNode * BT){if(BT!=NULL) {printf("%c",BT->data); /*访问根结点*/Preorder(BT->left); /*前序遍历左子树*/ Preorder(BT->right); /*前序遍历右子树*/}}void Inorder(struct BTreeNode * BT){if(BT!=NULL) {Inorder(BT->left); /*中序遍历左子树*/printf("%c",BT->data); /*访问根结点*/Inorder(BT->right); /*中序遍历右子树*/}}void Postorder(struct BTreeNode * BT){if(BT!=NULL) {Postorder(BT->left); /*后序遍历左子树*/Postorder(BT->right); /*后序遍历右子树*/printf("%c",BT->data); /*访问根结点*/}}void Levelorder(struct BTreeNode * BT) /*按层遍历由BT指针所指向的二叉树*/{struct BTreeNode * p;/*定义队列所使用的数组空间,元素类型为指向结点的指针类型*/struct BTreeNode* q[QueueMaxSize];/*定义队首指针和队尾指针,初始均置0表示空队*/int front=0,rear=0;/*将树根指针进队*/if(BT!=NULL) {rear=(rear+1)% QueueMaxSize;q[rear]=BT;}/*当队列非空时执行循环*/while(front!=rear) {/*使队首指针指向队首元素*/front=(front+1)% QueueMaxSize;/*删除队首元素,输出队首元素所指结点的值*/p=q[front];printf("%c",p->data);/*若结点存在左孩子,则左孩子指针结点进队*/if(p->left!=NULL){rear=(rear+1)% QueueMaxSize;q[rear]=p->left;}/*若结点存在右孩子,则右孩子指针结点进队*/if(p->right!=NULL){rear=(rear+1)% QueueMaxSize;q[rear]=p->right;}}}int BTreeDepth(struct BTreeNode * BT) /*求由指针指向的一颗二叉树的深度*/{if(BT==NULL)return 0; /*对于空树,返回0并结束递归*/else{ /*计算左子树的深度*/int dep1=BTreeDepth(BT->left);/*计算右子树的深度*/int dep2=BTreeDepth(BT->right);/*返回树的深度*/if(dep1>dep2)return dep1+1;elsereturn dep2+1;}}void menu()//窗体显示菜单{printf("\n====>请在下列序号中选择一个并输入:\n");printf(" (1)---重新输入二叉树 \n");printf(" (2)---前序遍历二叉树 \n");printf(" (3)---中序遍历二叉树 \n");printf(" (4)---后序遍历二叉树 \n");printf(" (5)---广度优先遍历二叉树 \n");printf(" (6)---显示二叉树深度 \n");printf(" (0)---退出 \n");}void Wrong()//错误提示{printf("\n=====>按键错误!\n");getchar();//保留错误信息的显示}void main(){/*定义指向二叉树节点的操作,并用指针作为树根指针*/ struct BTreeNode * bt;/*定义一个用于存放二叉树广义表的字符数组*/char b[50];/*定义ElemType类型的对象X和指针对象px*/ElemType x,* px;/*初始化二叉树,即置树根bt为空*/InitBTree(&bt);/*从键盘向字符数组b输入二叉树广义表标识的字符串*/ printf("输入二叉树广义表字符串:\n");printf("输入格式为:a(c(m,d(s,z)),e(t(h,k),b(i))\n"); scanf("%s",b);/*建立以bt作为树根指针的二叉树的链接存储结构*/ CreateBTree(&bt,b);menu();while(10)//界面的显示实现{int p;scanf("%d",&p);switch(p){case 0:printf("===>谢谢使用!\n");getchar();break;case 1:printf("请重新输入二叉树广义表字符串:\n");printf("输入格式为:a(c(m,d(s,z)),e(t(h,k),b(i))\n");scanf("%s",b);/*建立以bt作为树根指针的二叉树的链接存储结构*/ CreateBTree(&bt,b);printf("\n");getchar();break;case 2:/*以广义表形式输入二叉树*/PrintBTree(bt);printf("\n");/*前序遍历以bt为树根指针的二叉树*/ printf("前序: ");Preorder(bt);printf("\n");getchar();break;case 3:/*以广义表形式输入二叉树*/ PrintBTree(bt);printf("\n");/*中序遍历以bt为树根指针的二叉树*/ printf("中序: ");Inorder(bt);printf("\n");getchar();break;case 4:/*以广义表形式输入二叉树*/ PrintBTree(bt);printf("\n");/*后序遍历以bt为树根指针的二叉树*/ printf("后序: ");Postorder(bt);printf("\n");getchar();break;case 5:/*以广义表形式输入二叉树*/ PrintBTree(bt);printf("\n");/*接层遍历以bt为树根指针的二叉树*/ printf("广度优先: ");Levelorder(bt);printf("\n");getchar();break;case 6:/*以广义表形式输入二叉树*/ PrintBTree(bt);printf("\n");/*求出以bt为树根指针的二叉树的深度*/printf("二叉树的深度: ");printf("%d\n",BTreeDepth(bt));getchar();break;default:Wrong();printf("\n请按任意键继续...");getchar();break;}}}三、运行结果四、设计总结二叉树是数据结构的的基本内容。

相关文档
最新文档