数学人教版九年级下册反比例函数图像和性质

合集下载

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第

一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.

人教版九年级数学下册第二十六章《反比例函数的图象和性质》(第1课时)公开课课件

人教版九年级数学下册第二十六章《反比例函数的图象和性质》(第1课时)公开课课件

学习目标
1 .会用描点法画反比例函数的图象 .
2.结合图象分析并掌握反比例函数的性质
3.体会函数的三种表示方法,领会数形结 合的思想方法.
二、探究新知
画出反比例函数 y 6 的函数图象. x
步骤一:列表
x … -6 -5 -4 -3 -2 -1 1 2
y
=
6 x

-1 -1.2 -1.5 -2
(A)y = 5x
(B) y = 2x+3
(C)y =
3 x
(D) y = - 4
x
四、强化训练
2、请指出下面的图象 中哪一个是反比例函 数的图象( D )
四、强化训练
3、如果点(1,-2)在某双曲线上,那么该双
曲线的解析式为
y2 x

4、下列函数中,当x>0时,y随x的增大而 减小的是( B ).
2、当k>0时,双曲线的两支分别位于第 ____一_、__三___象限,在每个象限内,y•值 随x值的增大而____减_小_______
3、当k<0时,双曲线的两支分别位于第 ____二_、_四____象限,在每个象限内,y•值 随x值的增大___增_大_.
四、强化训练
1、如图,这是下列四个函数中哪一个函数的 图象?( C)
(A) y=x
(B)
y
1 x
(C) y 1 x
(D) y=2x
四、强化训练
5、下列反比例函数图象一定在第一、三象 限的是( C ).
(A) y m
x
(B) y m 1
x
(C) y m 2 1
x
(D)
y m x
6、已知反比例函数y=
k2 x

26.1.2反比例函数的图像与性质 --(教学课件)- 初中数学人教版九年级下册

26.1.2反比例函数的图像与性质   --(教学课件)- 初中数学人教版九年级下册

解:(1)∵这个函数的图象的一支位于第一象限 ∴另一支必位于第三象限
∵这个函数的图象位于第一、三象限
∴m-5>0, 即m>5
例题练习
例2.如图,它是反比例函数
图象的一支,根据图象,回答下
列问题: (1)图象的另一支位于哪个象限?常数m 的取值范围是什么?
(2)在这个函数图象的某一支上任取点 A(x₁,y₁)和点 B(x2,y2).如果 x₁>x2, 那么 y₁ 和y2有怎样的大小关系?
(2)∵m-5>0
∴在这个函数图象的任一支上,y 随 x 的增大而小 ∴ 当x₁>x2时 ,yi<y2
、练习1 1.下列函数中,函数值y随自变量x的值增大而增大的是(D)

解析 :A、
为反比例函数,在x<0 内,函数值y 随自变量x的值增大而增大,并且在x>0 内,
函数值y 随自变量x 的值增大而增大,故选项错误;
用描点法画出反比例函数


列表
的图象
X
-12 -6 -4 -3 -2 -1 1 2 3
12
12 y=
X
-0.5 1
-1.5 -2 -3 0 6 3 2 1.5 1 0.5
-1 -2 -3 -4 -6- 12 12 6
321
描连 点线
观察反比例函数的y=⁶ 与
图象,回答下面的问题:
(1)反比例函数的图象是什么形状?
D.图像经过点(a,a+2),则a=1
练习3
解析:逐项分析如下.
选项
分析
A
3>0,∴图象位于第一、三象限.
是否符合题意 否
B
x≠0,y≠0,故图象与坐标轴无公共点.

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

O
x
B
SAOB SOMB SOAM 2 4 6.
(2)解法二:
y x 2,当x 0时, y 2, N(0,2).
ON 2.
1
1
SONB

ON 2
x B

2 4 4, 2
y A
N
SONA

1 ON 2
xA

1 2 2 2. 2
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y y = —kx
y=-x
y=x
0
12
x
.如图,在y 1 (x 0)的图像上有三点A,B,C, x
经过三点分别向x轴引垂线,交x轴于A ,B ,C 三点, 111
边结OA,OB,OC,记OAA , OBB , OCC 的
(2)根据图象写出反比y例函数的值大于一次函数的值 的x的取值范围。
M(2,m)
-1 0 2
x
N(-1,-4)
(1)求反比例函数和一次函数的解析式;
解(1)∵点N(-1,-4)在反比例函数图象上
4
∴k=4,
∴y= x
y
又∵点M(2,m)在反比例函数图象上
∴m=2 ∴M(2,2)
∵点M、N都y=ax+b的图象上 M(2,m)
(1)分别求直线AB与双曲线的解析式; (2)求出点D的坐标;
(3)利用图象直接写出当x在什 么范围内取何值时,y1>y2.
5、如图,已知反比例函数 y 12 的图象与一次函数 x
y= kx+4的图象相交于P、Q两点,且P点的纵坐标

人教版数学九年级下册第26章《反比例函数》复习课件

人教版数学九年级下册第26章《反比例函数》复习课件
(2)找出满足反比例函数解析式的点P(a,b); (3)将P(a,b)代入解析式得 k=ab; (4)确定反比例函数解析式 y =
ab x
真题专练
(2015安徽21题12分)如图,已知反比例函数y
k1 与
x
一次函数y=k2x+b的图象交于A(1,8),B(-4,m).源自(1)求k1、k2、b的值;
(2)求△AOB的面积;
y= k
K>0
K<0
x
图 象
当k>0时,函数图象的两 当k<0时,函数图象的两
性 质
个分支分别在第一、三象 个分支分别在第二、四象
限,在每个象限内,y随x 限,在每个象限内,y随x
的增大而减小.
的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
(1)求p与S之间的函数关系式;
用 (2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
p(Pa)
4000 3000 2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
【及时归纳】 求反比例函数解析式的步骤
(1)设出反比例函数解析式 y = k ; x
反比例函数的图象及性质(常考)
函数的图象经过点
A(1,-2),则k的值为
()
A. 1
2
B. 1 C. 2
2
D. -2
反比例函数解析式的确定(常考)
点P(1,a)在反比例函数的图象上,它关于y 轴的对称点在一次函数y=2x+4的图象上,求
此反比例函数的解析式.

26.1.2反比例函数的图像与性质 (教学课件)- 初中数学人教版九年级下册

26.1.2反比例函数的图像与性质   (教学课件)- 初中数学人教版九年级下册
作业布置1.课后习题3,5题;2.完成练习册本课时的习题。
典例精析例4如下图,它是反比例函数 图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图象的某一支上任取点 A(x₁,y₁) 和点B(x₂,y₂), 如果x₁>X₂, 那么 y₁ 和 y₂有怎样的大小关系? o A
3.反比例函 的图象如图所示,则k<_0, 在图象的每一支上,y 随 x 的增大而增 大4.如图,M 为反比例函 图象上的一点,MA 垂直y轴,垂足为A,△MAO 的面积为2,则k的 值 为 4 .
yA M0
642o5-2-6
5X
课堂练习
3
课堂练习5.已知一次函数y=kx+b 的图象与反比例函 图象交于点A(3, 司),点B(14-2a,2).(1)求反比例函数的解析式;(2)若一次函数图象与y 轴交于点C, 点 D 为点C 关于原点O 的对称点,求△A CD 的面 积 . yAC ABO X
可得 解 故一次函数的解析式为

课堂练习∵当x=0 时 ,y=6,C(0,6)..OC=6. ∵点D 为点C关于原点O 的对称点, ∴CD=20C=12.
板书设计反比例函数的图象和性质1.反比例函数的性质:反比例函 的图象,当k>0 时,图象位于第一、三象限, 在每一象限内,y 的值随x的增大而减小;当k<0 时,图象位于第二、四象限,y 的 值随x的增大而增大.2.双曲线的两条分支逼近坐标轴但不可能与坐标轴相交。3.反比例函数的图象是一个以原点为对称中心的中心对称图形.4. 在反比例函数 的图象上任取一点,分别作坐标轴的垂线(或平行线), 与 坐标轴所围成的矩形的面积S矩形=|k|.
典例精析解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或 者位于第二、第四象限.因为这个函数的图象的一支位于第一象限,所以另 一支必位于第三象限.因为这个函数的图象位于第一、第三象限,所以m-5>0解 得 m>5.( 2 ) 因 为m-5>0, 所以在这个函数图象的任一支上,y 都随x 的增大而减小,因此当X₁>X₂ 时 ,y₁<y₂.

人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件


-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合

⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B

A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)

人教版九年级数学下册反比例函数知识点归纳及练习含答案

人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。

它是函数的一种特殊形式,具有一些独特的性质和应用。

下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。

一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。

二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。

2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。

当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。

3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。

b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。

c) 当x等于1时,y等于k,这是反比例函数的特殊点。

d) 反比例函数可以通过求导得到,导数的值为-ky^2。

三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。

2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。

3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。

四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。

答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件


y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6

人教版数学九年级下册26.1.2反比例函数图象和性质课件

自变量与因变量的关系
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.1.2 反比例函数的图象和性质
第1课时反比例函数的图象和性质
1.会画出反比例函数的图象.
2.并能说出它的性质.
自学指导:阅读课本P4-6,完成下列问题.
知识探究
1.一次函数的表达式是:y=kx+b,它的图象是一条直线.
2.一次函数y=kx+b当k>0时,y随x的增大而增大.当k<0时,y随x的增大而减小.
3.作函数图象的一般步骤是:列表、描点、连线.
自学反馈
1.反比例函数的表达式是: .
2.类比一次函数的作图象法,作反比例函数的图象的一般步骤也
是:、、 .
3.反比例函数图象是 .
4.在反比例函数y=k
x
(k≠0,k为常数)中,当k>0时,双曲线位于象限;当k<0时,双曲线位于象限.
活动1 小组讨论
例1 画出反比例函数y=6
x 和y=6
x
的函数图象.
解:函数图象画法→描点法:列表→描点→连线
自学反馈
1.作反比例函数图象时应注意哪些问题?
列表时:自变量的值可以选取一些互为相反数的值,这样即可简化计算,又便于对称描点;
列表描点时:要尽量多取一些数值,多描一些点,这样既可以方便连线,又较准确的表达函数变化趋势;
连线时:一定要养成按自变量从小到大的顺序,依次用平滑的曲线连接,从中体会函数的增减性.
2.函数y=6
x
的图象在第一、第三象限;每个象限内y随x的增大而减小.
3.函数y=6
x
-的图象在第二、第四象限,每个象限内y随x的增大而增大.
(1)列表时自变量取值要均匀和对称.(2)x≠0.(3)选整数较好计算和描点.
例2 在同一坐标系画出反比例函数y=4
x 和y=-4
x
的函数图象.
解:列表→描点→连线
1.观察上图,回答问题:
(1)每个反比例函数的图象都是由两支曲线组成的.
(2)函数图象分别位于哪几个象限?y随的x变化有怎样的变化?
解:y=4
x
的图象位于第一、第三象限.每个象限内y随x的增大而减小
y=-4
x
的图象位于第二、第四象限.每个象限内y随x的增大而增大.
2.综合例1和例2可知:
当k>0时,两支双曲线分别位于第一、三象限内,每个象限内y随x的增大而减小.
当k<0时,两支双曲线分别位于第二、四象限内,每个象限内y随x的增大而增大.
3.反比例函数的图象既是轴对称图形又是中心对称图形.对称轴有两条:直线y=x 和y=-x.对称中心是原点.
活动2 跟踪训练
1.下面给出了反比例函数y=2
x 和y=-2
x
的图象,你知道哪个是y=-2
x
的图象吗?为
什么?
2.反比例函数y=-5
x
的图象大致是( )
3.(1)函数y=20
x
的图象在第 象限,在每一象限内,y 随x 的增大而 . (2)函数y=-30
x
的图象在第 象限,在每一象限内,y 随x 的增大而 . (3)函数y=
x
π
,当x>0时,图象在第 象限,y 随x 的增大而 . 4.已知反比例函数y=
4k
x
-. (1)若函数的图象位于第一、三象限,则k ; (2)若在每一象限内,y 随x 增大而增大,则k . 5.函数y=kx-k 与y=
k
x
在同一直角坐标系中的图象可能是( )
6.设x 为一切实数,在下列函数中,当x 减小时,y 的值总是增大的函数是( )
A.y=-5x -1
B.y=
2
x
C.y=-2x+2
D.y=4x 牢记函数图象的性质,严格按照函数图象性质判断.
课堂小结
反比例函数y=
k
x
(k 为常数,k ≠0)的图象是双曲线; 当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小.
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.
教学至此,敬请使用学案当堂训练部分.
【预习导学】
自学反馈
1.y=k
x
(k≠0,k为常数)
2.列表描点连线
3.双曲线
4.第一、第三第二、第四
【合作探究】
活动2 跟踪训练
1.第二个是y=-2
x 的图象.因为y=-2
x
中的k<0,图象在第二、四象限.
2.D
3.(1)一、三减小
(2)二、四增大
(3)一减小
4.(1)<4
(2)>4
5.D
6.C。

相关文档
最新文档