2018年高三一轮复习函数的奇偶性与周期性

合集下载

高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)-word

高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)-word

高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)若T为非零常数,对于定义域内的任一x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,下面是函数的奇偶性与周期性专题训练,请考生及时练习。

一、选择题1.设f(x)为定义在R上的奇函数.当x0时,f(x)=2x+2x+b(b 为常数),则f(-1)等于().A.3 B.1 C.-1 D.-3解析由f(-0)=-f(0),即f(0)=0.则b=-1,f(x)=2x+2x-1,f(-1)=-f(1)=-3.答案 D2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 ().A.-1B.0C.1D.2(构造法)构造函数f(x)=sin x,则有f(x+2)=sin=-sinx=-f(x),所以f(x)=sin x是一个满足条件的函数,所以f(6)=sin 3=0,故选B.答案 B3.定义在R上的函数f(x)满足f(x)=f(x+2),当x[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是().A.ffB.f(sin 1)f(sin 2)解析当x[-1,1]时,x+4[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,显然当x[-1,0]时,f(x)为增函数;当x[0,1]时,f(x)为减函数,cos=-,sin =,又f=ff,所以ff.答案 A4.已知函数f(x)=则该函数是().A.偶函数,且单调递增B.偶函数,且单调递减C.奇函数,且单调递增D.奇函数,且单调递减解析当x0时,f(-x)=2-x-1=-f(x);当x0时,f(-x)=1-2-(-x)=1-2x=-f(x).当x=0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x在[0,+)上为增函数,f(x)=2x-1在(-,0)上为增函数,又x0时1-2-x0,x0时2x-10,故f(x)为R上的增函数.答案 C.已知f(x)是定义在R上的周期为2的周期函数,当x[0,1)时,f(x)=4x-1,则f(-5.5)的值为()A.2B.-1C.-D.1解析 f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.答案 .设函数D(x)=则下列结论错误的是().A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数解析显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.若x是无理数,-x,x+1是无理数;若x是有理数,-x,x+1也是有理数.D(-x)=D(x),D(x+1)=D(x).则D(x)是偶函数,D(x)为周期函数,B正确,C错误.答案 C二、填空题.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.解析由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),1-|1+a|=1-|-1+a|,a=0.答案 0.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.解析因为y=f(x)+x2是奇函数,且x=1时,y=2,所以当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.答案 -1.设奇函数f(x)的定义域为[-5,5],当x[0,5]时,函数y=f(x)的图象如图所示,则使函数值y0的x的取值集合为________.解析由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y0的x的取值集合为(-2,0)(2,5).答案 (-2,0)(2,5) 10. 设f(x)是偶函数,且当x0时是单调函数,则满足f(2x)=f的所有x之和为________.解析 f(x)是偶函数,f(2x)=f,f(|2x|)=f,又f(x)在(0,+)上为单调函数,|2x|=,即2x=或2x=-,整理得2x2+7x-1=0或2x2+9x+1=0,设方程2x2+7x-1=0的两根为x1,x2,方程2x2+9x+1=0的两根为x3,x4.则(x1+x2)+(x3+x4)=-+=-8.-8三、解答题.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解 (1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-,+)上的奇函数..已知函数f(x)对任意x,yR,都有f(x+y)=f(x)+f(y),且x0时,f(x)0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.已知函数f(x)是(-,+)上的奇函数,且f(x)的图象关于x=1对称,当x[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)++f(2019)的值.(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x[1,2]时,2-x[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x[1,2].(3)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.f(0)+f(1)+f(2)++f(2019)=f(2 012)+f(2 013)=f(0)+f(1)=1..已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当01时,f(x)=x,求使f(x)=-在[0,2 014]上的所有x的个数.(1)证明 f(x+2)=-f(x),f(x+4)=-f(x+2)=-[-f(x)]=f(x),f(x)是以4为周期的周期函数.(2)解当01时,f(x)=x,设-10,则01,f(-x)=(-x)=-x.f(x)是奇函数,f(-x)=-f(x),-f(x)=-x,即f(x)=x.故f(x)=x(-11).函数的奇偶性与周期性专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。

高考数学学业水平测试一轮复习专题二函数的概念与基本初等函数Ⅰ第4讲函数的奇偶性与周期性课件

高考数学学业水平测试一轮复习专题二函数的概念与基本初等函数Ⅰ第4讲函数的奇偶性与周期性课件

B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数 D.f(x)为偶函数,g(x)为奇函数 解析:(1)A、C选项中的函数不是奇函数,D选项中 的函数在定义域内不是增函数. (2)因为函数f(x)与g(x)的定义域均为R, f(-x)=3-x+3x=f(x),所以为偶函数, g(-x)=3-x-3x=-g(x),所以为奇函数. 答案:(1)B (2)D
则f(-2)=( )
A.-10
B.10
C.-12
D.12
解析:依题意有f(2)=22 017a+bsin 2-1=10,
所以22 017a+bsin 2=11.
所以f(-2)=(-2)2 017a+bsin(-2)-1
=-(22 017a+bsin 2)-1
=-11-1
=-12.
答案:C
3.已知定义在R上的奇函数f(x)满足f(x+2)=-
f(x),当0≤x≤1时,f(x)=x2,则f(1)+f(2)+f(3)+…+
f(2 019)=( )
A.2019
B.0
C.1
D.-1
解析:由f(x+4)=-f(x+2)=f(x)得,f(x)的周期为4.
又f(x)为奇函数,
则f(1)=1,f(2)=-f(0)=0,f(3)=f(-1)=-f(1)=
么函数f(x)是奇函数
关于______ 对称
答案:f(-x)=f(x) y轴 f(-x)=-f(x) 原点
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常 数T,使得当x取定义域内的任何值时,都有_____,那么 就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中 ________________的正数,那么这个最小正数就叫做f(x) 的最小正周期. 答案:(1)f(x+T)=f(x) (2)存在一个最小

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。

2018高考数学第一轮复习函数的奇偶性与周期性 精品优选公开课件

2018高考数学第一轮复习函数的奇偶性与周期性 精品优选公开课件

Page 11
例:设函数 f(x)和 g(x)分别是 R 上的偶函数和奇函数,则下列结
论恒成立的是
( ).
A.f(x)+|g(x)|是偶函数 B.f(x)-|g(x)|是奇函数
C.|f(x)|+g(x)是偶函数 D.|f(x)|-g(x)是奇函数
Page 12
3.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)
(D)2 012
(2)(2012·江苏高考)设f(x)是定义在R上且周期为2的函数,
ax1,1 x<0,
在区间[-1,1]上,
f
x

bx

2
其中a,b∈R,若
f ( 1 ) f ( 3 ), 则a+3b的值为_____x_.1 ,0 x 1,
22
Page 29
【规范解答】(1)选B.∵f(x+6)=f(x),∴T=6.
解得2<x< 6 ,即不等式的解集为(2, 6 ). 答案:(2, 6 )
Page 25
(2)当a=1时,f
x

2x
1, 1
此时
fx2 2 x x 1 11 1 2 2x x2 2x x 1 1
=-f(x), ∴f(x)是其定义域上的奇函数.
当f 即
2 2 xx x a a22 xx aa2 2x x是 a a 其, 定1 1 a义 域2 2x x上a 的a 奇2 2x x函, 数1 a时a,, fa( -x)1=.-f(x),
=…=f(2 005)+f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1× 2 0 1 0 =335.

高考数学(文科)一轮总复习:第3讲 函数的奇偶性与周期性

高考数学(文科)一轮总复习:第3讲 函数的奇偶性与周期性

诊断基础知识
突破高频考点
培养解题能力
1.函数的奇偶性
知识梳理
奇偶性
定义
图象特点
偶函数
如果对于函数f(x)的定义域内任意 一个x,都有 f(-x)=f(x) ,那么
关于 y轴 对

函数f(x)是偶函数
奇函数
如果对于函数f(x)的定义域内任意 一个x,都有f(-x)=-f(x),那么函
关于原点对

Hale Waihona Puke 数f(x)是奇函数诊断基础知识
突破高频考点
培养解题能力
2.奇(偶)函数的性质 (1)奇函数在关于原点对称的区间上的单调性 相同 , 偶 函数在关于原点对称的区间上的单调性 相反 (填“相 同”、“相反”). (2)在公共定义域内 ①两个奇函数的和函数是 奇函数 ,两个奇函数的积函数 是 偶函数 . ②两个偶函数的和函数、积函数是 偶函数 . ③一个奇函数,一个偶函数的积函数是 奇函数 . (3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0 .
诊断基础知识
突破高频考点
培养解题能力
3.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,
使得当x取定义域内的任何值时,都有f(x+T)= ,f(那x) 么
就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:
如果在周期函数f(x)的所有周期中
的正数,
那么这个最小正数就叫做f(x)的最小存正在周一期个.最小
第3讲 函数的奇偶性与周期性
目录 编辑 第一章 算法初步 [2] 1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 阅读与思考 割圆术 复习参考题 第二章 统计 [3] 2.1 阅读与思考 一个著名的案例 阅读与思考 广告中数据的可靠性 阅读与思考 如何得到敏感性问题的诚实反应 2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图 2.3 变量间的相关关系 阅读与思考 相关关系的强与弱 实习作业 复习参 考题 第三章 概率 3.1 的概率 阅读与思考 天气变化的认识过程 3.2 古典概型 3.3 阅读与思考 概率与密码 复习参考题 普通高中课程标准实验教科书 数学 必修3 [1] 在本模块中,学生将学习算法初步、统计、概率的基础知识。 1.算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。中学数学中的算法内容和其他内容是密切联系在一起的,比如线性方程组的求解、数列的求和等。具体来说,需要通过模仿、操作、探索,学习设计程序框图表达解决问题的过程,体会算法的基本思想和含义,理解算法的基本结构和基本算法语句,并了解中国古代数学中的算法。 在本教科书中,首先通过实例明确了算法的含义,然后结合具体算法介绍了算法的三种基本结构:顺序、条件和循环,以及基本的算法语句,最后集中介绍了辗转相除法与更相减损术、秦九韶算法、排序、进位制等典型的几个算法问题,力求表现算法的思想,培养学生的算法意识。 2.现代社会是信息化的社会,人们面临形形色色的问题,把问题用数量化的形式表示,是利用数学工具解决问题的基础。对于数量化表示的问题,需要收集数据、分析数据、解答问题。统计学是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。 本教科书主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布及数字特征和线性回归等内容。 本教科书介绍的统计内容是在义务教育阶段有关抽样调查知识的基础上展开的,侧重点放在了介绍获得高质量样本的方法、方便样本的缺点以及随机样本的简单性质上。教科书首先通过大量的日常生活中的统计数据,通过边框的问题和探究栏目引导学生思考用样本估计总体的必要性,以及样本的代表性问题。为强化样本代表性的重要性,教科书通过一个著名的预测结果出错的案例,使学生体会抽样不是简单的从总体中取出几个个体的问题,它关系到最后的统计分析结果是否可靠。然后,通过生动有趣的实例引进了随机样本的概念。通过实际问题情景引入系统抽样、分层抽样方法,介绍了简单随机抽样方法。最后,通过探究的方式,引导学生总结三种随机抽样方法的优缺点。 3.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的模型,同时为统计学的发展提供了理论基础。因此,统计与概率的基础知识已经成为一个未来公民的必备常识。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器(机)模拟估计简单随机事件发生的概率。 教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。 概率的意义是本章的重点内容。教科书从几方面解释概率的意义,并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。 概率的意义是本章的重点内容。教科书从几方面解释概率的意义,并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。

高考数学总复习(一轮)(人教A)教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性

高考数学总复习(一轮)(人教A)教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性
定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(-x)=f(|x|).
(3)若函数满足f(x)=0或解析式可化简为f(x)=0(x∈D),其中定义
域D是关于原点对称的非空数集,则函数既是奇函数又是偶函数.
(4)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×
偶=偶,奇×偶=奇.



所以函数 f(x)是以 2 为周期的周期函数,f( )=f( -2)=f(- )= .



故选 C.
3.已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=
2x3-3x+1,则f(-3)=-(-54+9+1)=44.

是奇函数,且单调递增,

故原不等式等价于 f(x)- ≤ -f(a-2x),





即(-) ≤-(--) =(2x-a+1)

,
所以 x-1≤2x-a+1,
所以 x+2≥a 在任意的 x∈[2,3]上恒成立,故 a≤4.故选 D.
(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在
定义域为 R,g(-x)=ln( + -x),
而 g(-x)+g(x)=ln( + -x)+ln( + +x)=0,符合题意.故选 ABD.
判断函数的奇偶性,其中包括两个必备条件
(1)定义域关于原点对称,否则为非奇非偶函数.
(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可
5.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+x-1,则函数

年高考第一轮复习数学函数的奇偶性

函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内随意一个x,都有f(- x)=-f(x)〔或f (x) + f(- x) =0〕,则称f( x)为奇函数.2.偶函数:对于函数f( x)的定义域内随意一个x,都有f(- x) =f( x)〔或f ( x)- f(- x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)拥有奇偶性的函数,其定义域对于原点对称(也就是说,函数为奇函数或偶函数的必需条件是其定义域对于原点对称).(2)奇函数的图象对于原点对称,偶函数的图象对于y 轴对称 .(3)若奇函数的定义域包括数0,则 f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞, +∞)上的随意函数f(x)都能够独一表示成一个奇函数与一个偶函数之和 .●点击双基1.下边四个结论中,正确命题的个数是①偶函数的图象必定与y 轴订交②奇函数的图象必定经过原点③偶函数的图象对于 y 轴对称④既是奇函数,又是偶函数的函数必定是f( x)=0(x∈R)分析:①不对;②不对,由于奇函数的定义域可能不包括原点;③正确;④不对,既是奇函数又是偶函数的函数能够为f( x)=0〔x∈(- a, a)〕.答案: A2.已知函数 f(x)=ax2+bx+ c(a≠0)是偶函数,那么g(x) =ax3+bx2+cx 是A. 奇函数C.既奇且偶函数B.偶函数D.非奇非偶函数分析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx( a≠0)为奇函数.答案: A3.若偶函数f(x)在区间[-1, 0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则以下不等式中正确的选项是(cosα)> f(cosβ)(sinα)> f( cosβ)(sinα)> f(sinβ)(cosα)>f(sinβ)分析:∵偶函数f(x)在区间[- 1, 0]上是减函数,∴ f(x)在区间[ 0, 1]上为增函数 .由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sinα>cosβ> 0.∴f(sinα)> f( cosβ) .答案: B4.已知 f( x)= ax2+ bx+ 3a+ b 是偶函数,且其定义域为[a-1,2a],则 a=___________,b=___________.分析:定义域应对于原点对称,故有 a-1=- 2a,得 a=1 .3又对于所给分析式,要使f(- x)= f( x)恒建立,应 b=0.答案:131( x≠ 0);②y=x25.给定函数+1;③y=2x;④y=log2;⑤y=log2(x+x 2 1 ):①y=x.x在这五个函数中,奇函数是_________,偶函数是 _________,非奇非偶函数是__________.答案:①⑤② ③④●典例分析【例 1】已知函数 y=f(x)是偶函数, y=f(x- 2)在[ 0,2]上是单一减函数,则(0)< f(- 1)< f( 2)(-1)<f(0)<f(2)(- 1)< f( 2)< f( 0)(2)<f(-1)<f(0)分析:由 f(x-2)在[ 0,2]上单一递减,∴f(x)在[- 2,0]上单一递减 .∵y=f(x)是偶函数,∴f(x)在[ 0, 2]上单一递加 .又 f(- 1) =f(1),故应选 A.答案: A【例 2】判断以下函数的奇偶性:(1)f(x)=|x+1|- |x- 1|;1x(2)f(x)=(x-1)·;(3)f(x)=1x 2;| x 2 | 2(4)f(x)=x(1x)( x0),x(1x)( x0).分析:依据函数奇偶性的定义进行判断.解:(1)函数的定义域x∈(-∞, +∞),对称于原点 .∵f(- x)=|- x+1|- |- x- 1|=|x-1|- |x+1|=-( |x+1|-|x-1|) =- f( x),∴f(x)=|x+1|- |x- 1|是奇函数 .( 2)先确立函数的定义域 .由1x1 x≥0,得- 1≤x< 1,其定义域不对称于原点,所以 f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,依据定义判断.由1x20,1 x 1,得4. | x 2 | 2 0,x 0且x故 f(x)的定义域为[- 1,0)∪(0,1],对于原点对称,且有 x+2>0.进而有 f(x)221( x)22= 1 x= 1x=-1x =-f(x),故 f(x)为奇,这时有 f(- x)=xx22x x函数 .(4)∵函数 f(x)的定义域是(-∞, 0)∪(0,+∞),而且当 x> 0 时,- x<0,∴f(- x)=(- x)[1-(- x)]=-x(1+x) =- f(x)(x> 0) .当 x< 0 时,- x>0,∴ f(- x) =- x( 1- x)=-f(x)( x< 0) .故函数 f(x)为奇函数 .评论:( 1)分段函数的奇偶性应分段证明 .(2)判断函数的奇偶性应先求定义域再化简函数分析式 .【例 3】(2005 年北京东城区模拟试题)函数f( x)的定义域为 D={ x|x≠0} ,且满足对于随意 x 、 x ∈D,有 f( x ·x )=f( x )+f(x ) .121212(1)求 f( 1)的值;(2)判断 f(x)的奇偶性并证明;(3)假如 f(4)=1, f(3x+1)+f( 2x-6)≤ 3,且 f( x)在( 0,+∞)上是增函数,求 x 的取值范围 .(1)解:令 x1 =x2=1,有 f(1×1)=f( 1) +f(1),解得 f(1)=0.(2)证明:令 x1 =x2=- 1,有 f[(- 1)×(- 1)]=f(- 1)+f(- 1) .解得 f(-1)=0.令 x1 =-1,x2=x,有 f(- x)=f(- 1)+f( x),∴ f(- x)=f( x) .∴f(x)为偶函数.(3)解: f ( 4× 4) =f (4)+f (4)=2,f ( 16×4)=f ( 16)+f (4) =3.∴ f (3x+1)+f (2x -6)≤ 3 即 f [(3x+1)( 2x -6)]≤ f (64) .(* )∵f (x )在( 0, +∞)上是增函数,∴( * )等价于不等式组或 (3x 1)( 2x 6) 0,(3x 1)(2 x 6) 64,x 3或x1 , 1 3,或3 或x 375x R.x3∴3<x ≤5 或- 7≤x <- 1或- 1<x <3.333∴x 的取值范围为 { x|- 7≤x <- 1或- 1<x <3 或 3< x ≤5}.33 3评论:解答此题易出现以下思想阻碍:(1)无从下手,不知怎样脱掉“ f ” .解决方法 :利用函数的单一性 .(2)没法获得另一个不等式 .解决方法:对于原点对称的两个区间上,奇函数的单调性同样,偶函数的单一性相反 .深入拓展已知 f ( x )、g (x )都是奇函数, f ( x )> 0 的解集是( a 2,b ), g ( x )> 0 的解集2是(a, b ), b>a 2,那么 f (x )· g ( x )> 0 的解集是 2 2 2A. ( a 2 , b)2)2 2 B.(- b ,- aC.( a 2, b)∪(- b,- a 2)222 D.(a,b )∪(- b 2,- a 2)2提示: f ( x )·g (x )> 0f (x) 0, 或 f ( x) 0,g( x) 0g ( x)0.∴x ∈( a 2, b )∪(- b,- a 2) .2 2答案: C【例 4】 (2004 年天津模拟试题)已知函数 f (x )=x+ px+m ( p ≠ 0)是奇函数 .(1)求 m 的值 .(2)(理)当 x ∈[ 1, 2]时,求 f (x )的最大值和最小值 .(文)若 p > 1,当 x ∈[ 1,2]时,求 f (x )的最大值和最小值 .解:(1)∵ f (x )是奇函数,∴ f (- x )=-f (x ).∴- x - p +m=-x - p-m.xx∴ 2m=0.∴m=0.(2)(理)(ⅰ)当 p < 0 时,据定义可证明 f (x )在[ 1, 2]上为增函数 .∴ f (x )max =f (2)=2+ p,f ( x ) min =f (1)=1+p.2(ⅱ)当 p > 0 时,据定义可证明 f (x )在( 0, p ]上是减函数,在[p ,+∞)上是增函数 .①当 p <1,即 0< p < 1 时, f (x )在[ 1,2]上为增函数,∴ f (x )max =f (2)=2+ p, f (x )min =f (1)=1+p.2②当 p ∈[ 1,2]时, f ( x )在[ 1,p ]上是减函数 .在[ p , 2]上是增函数 .f ( x ) min =f ( p )=2 p .f ( x ) max =max{ f ( 1),f (2) }=max{1+ p ,2+ p}.2当 1≤p ≤2 时,1+p ≤2+ p,f (x )max =f ( 2);当 2<p ≤4 时,1+p ≥2+ p,f (x )max =f22(1).③当p > 2,即 p > 4 时,f ( x )在[1,2]上为减函数, ∴ f ( x )max =f (1)=1+p ,f (x )min =f (2)=2+ p.2(文)解答略 .评论: f( x) =x+ p( p>0)的单一性是一重要问题,利用单一性求最值是重要方x 法.深入拓展f( x) =x+ p的单一性也可依据导函数的符号来判断,此题怎样用导数来解?x●闯关训练夯实基础1.定义在区间(-∞,+∞)上的奇函数 f ( x)为增函数,偶函数g( x)在区间[ 0, +∞)上的图象与f(x)的图象重合,设a< b< 0,给出以下不等式,此中建立的是①f(b)- f(- a)> g( a)- g(- b)②f(b)- f(- a)< g( a)- g(- b)③f(a)- f(- b)> g( b)- g(- a)④f(a)- f(- b)< g( b)- g(- a)A. ①④B.②③C.①③D. ②④分析:不如取切合题意的函数f(x)=x 及 g(x) =|x|进行比较,或一般地g(x)f ( x)x0, =x f(0)=0, f(a)< f(b)< 0.f ( x)0,答案: D2.(2003 年北京海淀区二模题)函数f(x)是定义域为 R 的偶函数,又是以 2 为周期的周期函数 .若 f(x)在[- 1,0]上是减函数,那么 f( x)在[ 2,3]上是A. 增函数B.减函数C.先增后减的函数D.先减后增的函数分析:∵偶函数f(x)在[- 1,0]上是减函数,∴ f( x)在[ 0,1]上是增函数 .由周期为 2 知该函数在[ 2,3]上为增函数 .答案: A3.已知 f( x)是奇函数,当 x∈( 0,1)时, f(x)=lg1,那么当x∈(-1,0)1 x时, f( x)的表达式是 __________.分析:当 x∈(- 1,0)时,- x∈( 0,1),∴ f(x)=-f(- x)=-lg 1=lg(1 1 x-x) .答案: lg(1-x)x2x1,4.(2003 年北京)函数 f(x)=lg( 1+x2),g(x)= 0| x | 1, h(x)=tan2x中,x2x 1.______________是偶函数 .分析:∵ f(- x)=lg[1+(- x)2]=lg(1+x2) =f(x),∴f(x)为偶函数 .又∵ 1°当- 1≤x≤1 时,- 1≤- x≤1,∴g(- x) =0.又 g( x) =0,∴ g(- x)=g( x).2°当 x<- 1 时,- x> 1,∴g(- x) =-(- x)+2=x+2.又∵ g( x) =x+2,∴ g(- x)=g( x) .3°当 x> 1 时,-x<- 1,∴g(- x) =(- x)+2=-x+2.又∵ g( x) =- x+2,∴ g(- x)=g(x).综上,对随意 x∈ R 都有 g(- x) =g(x).∴g(x)为偶函数 .h(- x)=tan(- 2x) =-tan2x=- h( x),∴h(x)为奇函数 .答案: f( x)、g(x)5.若 f(x)= a 2x a 2为奇函数,务实数 a 的值 .2 x1解:∵x∈ R,∴要使 f(x)为奇函数,一定且只需 f( x)+f(- x)=0,即 a-2+2 x1 a-2=0,得 a=1.x216.(理)定义在[- 2, 2]上的偶函数 g(x),当 x≥0 时, g(x)单一递减,若 g (1- m)< g(m),求 m 的取值范围 .解:由 g(1-m)< g(m)及 g(x)为偶函数,可得g(|1- m|)< g( |m|).又 g(x)在(0,+∞)上单一递减,∴ |1-m|>|m|,且 |1-m|≤ 2,|m|≤2,解得- 1≤m<1 . 2说明:也能够作出g(x)的表示图,联合图形进行分析.(文)( 2005 年北京西城区模拟试题)定义在R 上的奇函数 f( x)在( 0,+∞)上是增函数,又 f(- 3)=0,则不等式 xf(x)< 0 的解集为A. (- 3,0)∪( 0, 3)B.(-∞,- 3)∪( 3,+∞)C.(- 3,0)∪( 3, +∞)D.(-∞,- 3)∪( 0,3)分析:由奇偶性和单一性的关系联合图象来解.答案: A培育能力已知()=(1+1).7.f xx2 x 1 2(1)判断 f(x)的奇偶性;(2)证明 f(x)> 0.(1)解:f(x)= x·2x1,其定义域为 x≠0 的实数 .又 f(- x)=- x·22( 2x1)2( 2xx11)=-x· 1 2x=x· 2 x 1=f(x),2(1 2 x )2(2 x1)∴f(x)为偶函数 .(2)证明:由分析式易见,当x>0 时,有 f(x)> 0.又 f(x)是偶函数,且当 x< 0 时- x>0,∴当 x<0 时 f(x)= f (- x)> 0,即对于 x≠0 的任何实数 x,均有 f( x)> 0.研究创新8.设 f(x)=log 1(1ax)为奇函数,a为常数,2x1(1)求 a 的值;(2)证明 f(x)在( 1, +∞)内单一递加;对于[ 3, 4]上的每一个x 的值,不等式 f( x)>(1)x+m 恒建立,求2实数 m 的取值范围 .(1)解: f( x)是奇函数,∴ f(- x)=-f(x).∴ log 11ax=- log 12x 12 a=1(舍),∴ a=-1.1 ax1 ax=x 1> 0 1- a2x2=1- x2a=± 1.查验x 1x 1 1 ax(2)证明:任取 x1> x2>1,∴ x1- 1> x2-1>0.220< 1+ x 21< 1+ x2x11x21x11∴0<x 1<x211210<x11<x21 log 1x11>12log 1x21,即 f(x1)> f( x2).∴f(x)在( 1, +∞)内单一递加 .2x21(3)解: f( x)-(1)x>m 恒建立 . 2令 g(x) =f(x)-(1)x.只需 g(x)min> m,用定义能够证 g( x)在[ 3, 4]2上是增函数,∴ g( x)min()-9∴<-9时原式恒建立 .=g 3 =. m88●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内随意取值 .2.有时可直接依据图象的对称性来判断函数的奇偶性.●教师下载中心教课点睛1.函数的奇偶性常常与函数的其余性质,如单一性、周期性、对称性联合起来考察.所以,在复习过程中应增强知识横向间的联系.2.数形联合,以形助数是解决本节问题常用的思想方法.3.在教课过程中应重申函数的奇偶性是函数的整体性质,而单一性是其局部性质 .拓展题例2【例 1】 已知函数 f (x )=ax1(a 、b 、c ∈ Z )是奇函数,又 f ( 1)=2,f (2)bx c<3,求 a 、b 、c 的值 .解:由 f (- x )=-f (x ),得- bx+c=-( bx+c ).∴ c =0.由 f (1)=2,得 a+1=2b.由 f (2)< 3,得4a 1<3,a 1解得- 1<a <2.又 a ∈ Z ,∴a=0 或 a=1.若 a=0,则 b= 1,与 b ∈Z 矛盾 .∴a=1, b=1,c=0.2【例 2】 已知函数 y=f (x )的定义域为R ,对随意 x 、 x ′∈ R 均有 f (x+x ′) =f(x ) +f (x ′),且对随意 x >0,都有 f (x )< 0,f (3)=-3.(1)试证明:函数 y=f ( x )是 R 上的单一减函数;(2)试证明:函数 y=f ( x )是奇函数;(3)试求函数 y=f (x )在[ m , n ](m 、 n ∈ Z ,且 mn <0)上的值域 .分析:(1)可依据函数单一性的定义进行论证, 考虑证明过程中怎样利用题设条件 .(2)可依据函数奇偶性的定义进行证明,应由条件先获得f ( 0)=0 后,再利用条件 f (x 12)=f ( 1 ) +f ( 2)中 x 1、 2 的随意性,可使结论得证.+xx x x(3)由( 1)的结论可知 f ( m )、f (n )分别是函数 y=f (x )在[ m 、 n ]上的最大值与最小值,故求出 f (m )与 f (n )便可得所求值域 .(1)证明:任取 x 1、 x 2∈R ,且 x 1<x 2,f (x 2) =f [x 1+(x 2-x 1)],于是由条件f(x+x′) =f(x)+f( x′)可知 f(x2) =f(x1)+f(x2-x1) .∵x2> x1,∴ x2- x1>0.∴f(x2-x1)< 0.∴f(x2)=f(x1)+f( x2-x1)< f(x1) .故函数 y=f(x)是减函数 .(2)明:∵ 随意x、x′∈ R 均有 f(x+x′) =f(x) +f(x′),∴若令 x=x′ =0, f( 0) =f(0)+f(0).∴f(0)=0.再令 x′=-x,可得 f(0) =f(x)+f(- x) .∵f(0)=0,∴ f(- x)=-f( x) .故 y=f( x)是奇函数 .(3)解:由函数 y=f(x)是 R 上的减函数,∴y=f(x)在[ m,n]上也减函数 .∴y=f(x)在[ m,n]上的最大 f(m),最小 f(n).∴f(n)=f[1+(n-1)] =f(1)+f( n- 1) =2f( 1) +f(n-2)=⋯=nf(1).同理, f( m)=mf(1).∵f(3)=-3,∴ f(3)=3f(1)=-3.∴f(1)=-1.∴f(m)=-m, f(n)=-n.所以,函数 y=f(x)在[ m, n]上的域[- n,- m].述:( 1)足条件f( x+x′) =f(x)+f( x′)的函数,只需其定域是关于原点称的,它就奇函数.(2)若将条件中的x>0,均有 f( x)< 0 改成均有 f(x)> 0,函数 f(x)就是 R 上的增函数 .(3)若条件中的m、n∈Z 去掉,我就没法求出f(m)与 f(n)的,故 m、n∈Z 不行少 .。

2018高考一轮数学(课件)第2章 第3节 函数的奇偶性与周期性


下一页
第十二页,编辑于星期六:二十二点 三十一分。
高三一轮总复习
[变式训练 1] (1)设函数 f(x),g(x)的定义域都为 R,且 f(x)是奇函数,g(x) 是偶函数,则下列结论中正确的是( )
A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数 (2)判断函数 f(x)= 3-x2+ x2-3的奇偶性.
上一页
返回首页
下一页
第二十三页,编辑于星期六:二十二点 三十一 分。
高三一轮总复习
[变式训练 3] (2017·杭州模拟(一))已知定义在 R 上的函数 f(x)满足 f(x+1)
=-f(x),且 f(x)=-1,1,-01<<xx≤≤10,, 则下列函数值为 1 的是(
(1)1 (2)0,x=0, -x2-4x,x<0
[(1)∵f(x)为偶函数,∴f(-x)-f(x)=0 恒成立,
∴-xln(-x+ a+x2)-xln(x+ a+x2)=0 恒成立,∴xln a=0 恒成立,∴ln a=0,即 a=1.
上一页
返回首页
下一页
第十六页,编辑于星期六:二十二点 三十一分。
下一页
第十七页,编辑于星期六:二十二点 三十一分。
高三一轮总复习
[规律方法] 1.已知函数的奇偶性求参数,一般采用待定系数法求解,根 据 f(x)±f(x)=0 得到关于待求参数的恒等式,由系数的对等性得参数的值或方程 (组),进而得出参数的值;
2.已知函数的奇偶性求函数值或解析式,将待求区间上的自变量转化到已 知区间上,再利用奇偶性求出,或充分利用奇偶性得出关于 f(x)的方程(组),从 而可得 f(x)的值或解析式.

高考数学一轮复习-2-3函数的奇偶性与周期性课件-理

•由f(x)是定义在R上的奇函数,且满足f(x-4)= -f(x),得f(11)=f(3)=-f(-1)=f(1). •∵f(x)在区间[0,2]上是增函数,
•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶

高考数学一轮复习 函数的奇偶性与周期性

f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-f(x). 所以 f(x)为奇函数.
解法二(图象法):作出函数 f(x)的图象,由图象关于原点对
称的特征知函数 f(x)为奇函数.
(3)由4|x-+x32|≥-03,≠0 得-2≤x≤2 且 x≠0.
所以 f(x)的定义域为[-2,0)∪(0,2],关于原点对称.
(4)(2018·武昌联考)若函数 f(x)=1k+-k2·2xx在定义 域上为奇函数,则实数 k=________.
解:因为 f(-x)=1k+-k2·2--xx=k2·2x+x-k1,所以 f(-x)+f(x)=(k-2x)((2x+1+k)k·2+x)((k·22xx+-k1))(1+k·2x) =((1k+2-k1·2)x)((222xx++1k)). 由 f(-x)+f(x)=0 对定义域中的 x 均成立可得 k2=1, 所以 k=±1.故填±1.
所以 f(x)=(x+43-)x2-3=
4-x2 x.
所以 f(x)=-f(-x),所以 f(x)是奇函数.
(4)由9x2--x92≥ ≥00, 得 x=±3.
所以 f(x)的定义域为{-3,3},关于原点对称.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.
所以 f(x)=±f(-x). 所以 f(x)既是奇函数,又是偶函数.
(2)若函数 f(x)为偶函数,且在[a,b]上为增(减)函数,
则 f(x)在[-b,-a]上为. 6.奇、偶函数的“运算”(共同定义域上)
奇 ± 奇 = ________________ , 偶 ± 偶 = ________________,奇×奇=________________,偶×偶 =________________,奇×偶=________________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图象特点
偶函数
关于 y轴 对称
奇函数
如果对于函数f(x)的定义域内任意一个x,都 有 f(-x)=-f(x) ,那么函数f(x)是奇函数
关于 原点 对称
2.奇(偶)函数的性质 (1)奇函数在关于原点对称的区间上的单调性 相同 ,偶 函数在关于原点对称的区间上的ห้องสมุดไป่ตู้调性 相反 同”、“相反”). (2)在公共定义域内 ①两个奇函数的和函数是 奇函数 数是 偶函数 . ,两个奇函数的积函 ( 填“相
答案 D
3.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a +b 的值是( 1 A.-3 ) 1 B.3 1 C.2 1 D.-2
解析
1 1 依题意 b=0,且 2a=-(a-1),∴a=3,则 a+b=3.
答案 B
4.(2014· 四川卷)设 f(x)是定义在 R 上的周期为 2 的函数, 当
奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶
性的运算中,可以转化为判断奇偶性的等价等量
关系式 f(x) + f( - x) = 0( 奇函数 ) 或 f(x) - f( - x) =
0(偶函数))是否成立.
【训练1】 (1)(2015· 安徽卷)下列函数中,既是偶函数又存在零 点的是( A.y=ln x ) B.y=x2+1
第3讲
函数的奇偶性与周期性
最新考纲
1.结合具体函数,了解函数奇偶性的含
义;2.会运用函数的图象理解和研究函数的奇偶性; 3.了解函数周期性、最小正周期的含义,会判断、 应用简单函数的周期性.
知识梳理
1.函数的奇偶性
奇偶性 定义
如果对于函数f(x)的定义域内任意一个x,都 有 f(-x)=f(x) ,那么函数f(x)是偶函数
C.y=sin x
D.y=cos x
又f(x)为奇函数,∴f(-x)=-f(x)=(-x)(1-x),即f(x)
=x(1-x). 答案 x(1-x)
考点一
函数奇偶性的判断
【例 1】 判断下列函数的奇偶性: (1)f(x)=xlg(x+ x2+1); (2)f(x)=(1-x) (3)f(x) = 1+x ; 1-x
2 (x>0), -x +2x+1 2 (x<0); x +2x-1
sin 2x)=-f(x),为奇函数;对于 B,定义域为 R,f(-x)= (-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于 C, 1 1 定义域为 R,f(-x)=2-x+ -x=2x+2x=f(x),为偶函数; 2 y=x2+sin x 既不是偶函数也不是奇函数,故选 D.
2 -4x +2,-1≤x<0, x∈[-1, 1)时, f(x)= 则 x , 0 ≤ x < 1 ,
3 f 2
=________.
解析
∵f(x)的周期为 2,∴f
3 1 =f - , 2 2
又∵当-1≤x<0 时,f(x)=-4x2+2, ∴f
且 x≠0,
∴函数的定义域关于原点对称. 4-x2 4-x2 4-(-x)2 ∴f(x)= = x , 又 f ( -x) = = x+3-3 -x 4-x2 - x ,∴f(-x)=-f(x),即函数是奇函数.
规律方法
判断函数的奇偶性,其中包括两个必
备条件:(1)定义域关于原点对称,这是函数具有
诊断自测
1.判断正误(在括号内打“√”或“×”) (1)函数 y=x2,x∈(0,+∞)是偶函数.(
×
)
(2) 偶函数的图象不一定过原点,奇函数的图象一定过原 点.(
×
)
(3)若函数 y=f(x+b)是奇函数,则函数 y=f(x)关于点(b,0) 中心对称.(

)
(4)如果函数 f(x),g(x)为定义域相同的偶函数,则 F(x)=f(x) +g(x)也是偶函数.(
②两个偶函数的和函数、积函数是
偶函数
. .
③一个奇函数,一个偶函数的积函数是
奇函数
(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.
3.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T, 使得当x取定义域内的任何值时,都有f(x+T)= f(x) , 那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中 存在一个最小 的正数,那么这个最小正数就叫 做f(x)的最小正周期.

)
)
(5)若 T 为函数 f(x)的一个周期,那么 nT(n∈Z 且 n≠0)也是 函数 f(x)的周期.(

2.(2015· 广东卷)下列函数中,既不是奇函数,也不是偶函数 的是( ) B.y=x2-cos x D.y=x2+sin x
A.y=x+sin 2x 1 C.y=2x+2x
解析
对于 A,定义域为 R,f(-x)=-x+sin 2(-x)=-(x+
4-x2 (4)f(x)= . |x+3|-3

(1)∵ x2+1>|x|≥0,
∴函数 f(x)的定义域为 R,关于原点对称, 又 f(-x)=(-x)lg(-x+ (-x)2+1) =-xlg( x2+1-x)=xlg( x2+1+x)=f(x).
即 f(-x)=f(x),∴f(x)是偶函数. 1+x (2)当且仅当 ≥0 时函数有意义, 1-x ∴-1≤x<1,由于定义域关于原点不对称, ∴函数 f(x)是非奇非偶函数.
3 1 1 =f - =-4×- 2+2=1. 2 2 2
答案 1
5.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1 +x),则x<0时,f(x)=________. 解析 当x<0时,则-x>0,∴f(-x)=(-x)(1-x).
(3)函数的定义域为{x|x≠0},关于原点对称, 当 x>0 时,-x<0,f(-x)=x2-2x-1=-f(x), 当 x<0 时,-x>0,f(-x)=-x2-2x+1=-f(x). ∴f(-x)=-f(x),即函数是奇函数.
2 4-x ≥0, (4)∵ ⇒-2≤x≤2 | x + 3| ≠ 3
相关文档
最新文档