谱线宽度和波长的关系
光谱线宽

Z
.
8
而 氦 氖 激 光 器 0.6328 m 谱 线 的 宽 度 为
=1. 3× 109 HZ 因 此 , 在 区 间 中 , 可 以 存 在 的 纵 模 个 数 为
N
k
1 .3 10 9 1 .5 10 8
8
.
9
比如缩短腔长L到 0.1c 即L 则 q0.110 q1=1.5×109Hz
的波长差,亦即在给定d的标准具中,若入射光的波长在λ1到λ1+ Δλ的波长范围以内,则所产生的干涉圆环不重叠,我们称此Δλ
为标准具常数或称标准具的自由光谱范围。标准具的厚度d比谐振
腔的长度L小得多, 因此它的自由光谱区比谐振腔的纵模间隔大得
多。也可用频率表示之。因为
c
所以 c c 此为自由光谱区。
)它们各
生一组同心圆环状的干涉亮条纹(主最大),对同一干涉级(k),
λ2的干涉圆环的直径较λ1的小些,如图所示,
.
标准具简介
当满足: 2ndcosi′= k λ1 =(k-1) λ2的第(k-1)级亮圆环重迭,因而得
λ2时,λ1的2第k级1亮圆k2环与
由于在法布里—珀罗标准具中, 大多数情况下, cosi′≈1,
在 区间中,可能存在的纵模个数为 N=1。
10
.
3. 腔内插入法布里-珀罗标准具
多光束干涉,透射峰频率
q
q c
2ndcos
q 为正整数; n 为标准具两镜间介 质折射率; d 为标准具长度; 为标准具内光线与 法线的夹角
相邻透过率峰的频率间隔
.
q
c
2ndcos
H
透射谱线宽度
q
c 1R 2nd R
光谱线增宽

1.极子阻尼振动时释放能量 —— 自发辐射现象
U
t 2
e
U 0e
t 2
cos2v0 t
其阻尼振动形式为
U U 0e
t 2
cos2v0t
(1-60)
其发射的光强 I U
2
, 可表示为 I AU 2 e 0
t
其中:τ——驰豫时间,振子的辐射寿命 当
三种跃迁中单位时间内发生跃迁的粒子数密度
dn2 ( ) sp n2 A21 (v)dv n2 A21 f (v)dv 0 0 dt n2 A21 f (v)dv n2 A21
0
dn2 ( ) st n2W21 (v)dv n2 B21 f (v) v dv 0 0 dt dn2 ( ) st n1W12 (v)dv n1 B12 f (v ) v dv 0 0 dt
CO2
D
Ne
(CO2的多普勒线宽小得多)
其它展宽
(1) 飞行时间展宽
(2) 仪器增宽
1.4.5 均匀增宽和非均匀增宽 一. 均匀增宽 Homogeneous broadening :
自然增宽、碰撞增宽
共同特点:
• 引起加宽的物理因素对每个原子都是等同的
• 都是光辐射偏离简谐波引起的谱线加宽 在这类加宽中,每一粒子的发光对谱线内的任一频率都有贡献, 我们不能把某一发光粒子和曲线中某一频率单独联系起来
(1-53)
与
dn2 ( ) st W21n2 dt
对比有
W21 B21 f (v0 )
ρ vv
'
(1-54)
原子吸收谱线的宽度

原子吸收谱线的宽度
原子吸收谱线的宽度是指谱线在频率或波长上的展宽。
原子吸收谱线的宽度如下几个主要原因:
1. 自然展宽(Natural Broadening):根据不确定性原理,原子存在能级间的过渡是有一定的时间,因此导致谱线有一定的展宽。
自然展宽是由于能级之间的寿命有限,产生了能级的宽度。
自然展宽与能级寿命有关,能级寿命越短,自然展宽越大。
2. 热展宽(Thermal Broadening):由于原子处于热运动状态,热运动会导致原子产生多种速度,而不同速度的原子会产生多个微妙不同的多普勒效应引起的吸收峰,从而使谱线展宽。
热展宽与原子热运动速度的分布有关。
3. 压力展宽(Pressure Broadening):在高压条件下,原子与
周围气体分子碰撞的频率增加,这些碰撞对原子的能级造成扰动,从而导致谱线的展宽。
4. 光学展宽(Optical Broadening):光源本身的性质会对谱线
的宽度产生影响。
光源的发射带宽或仪器分辨率的限制会使得测得的谱线宽度变宽。
这些展宽机制可以是独立的影响,也可以相互作用。
因此,测量得到的原子吸收谱线的宽度是以上多种因素的综合结果。
光源的谱线宽度

光源的谱线宽度是指光源发出的光在频率或波长上的分布范围。
谱线宽度可以用来描述光的频率或波长的分散程度,即光的单色性或色散性。
谱线宽度主要由光源的发射机制和环境条件等因素决定。
光源的发射机制包括原子、分子或固体材料的能级跃迁等过程,这些过程会导致光的频率或波长的分布。
环境条件如温度、压力等也会影响谱线宽度。
光源的谱线宽度可以通过测量光的频谱或波长谱来确定。
常用的测量方法包括光栅光谱仪、干涉仪等。
谱线宽度对于许多应用非常重要。
例如,在光谱分析中,谱线宽度决定了测量的分辨率和灵敏度。
在光通信中,谱线宽度决定了光纤传输的带宽和信号传输的速率。
在激光器中,谱线宽度决定了激光的单色性和相干性。
总之,光源的谱线宽度是描述光的频率或波长分布范围的重要参数,对于许多光学应用具有重要意义。
谱线宽度、展宽

2012-1-21 9
自然加宽的线型函数为:
γ 1 g (ν ) = 2 2 4π γ 2 + (ν −ν 0 ) 4π
这种函数称为洛仑兹函数 当ν = ν 0时,g (ν )取最大值 g max = 4
γ
10
2012-1-21
1 谱线宽度:峰值降到 大小处所对应的波长范围。 2 自然加宽谱线宽度=右侧半峰值波长-左侧半峰值波长 1 1 2 γ ′) = 2 g (ν = g max = 2 γ 4π γ 2 2 + (ν ′ −ν 0 ) 4π ⇒ ⇒ ⇒
−∞ +∞ +∞
= n2 A21 结论:谱线加宽对自发辐射没有影响
2012-1-21 12
(2) 受激辐射情况 爱因斯坦受激辐射系数: c3 c3 A21 (ν ) B21 = A21 = 3 8π hν 8π hν 3 g (ν ) ∴ B21 (ν ) = B21 g (ν ) 将受激辐射系数看成频率ν 的函数 受激辐射跃迁几率: W21 (ν ) = B21 g (ν )ω (ν )
2012-1-21
2
(2) 线型函数g(ν ) 以光强的相对值为纵坐标,以频率为横坐标, 所得光强分布曲线——线型函数g(ν ) 定义:总辐射功率为I0的光谱中,落在频率ν ~ν + dν 范 围内的辐射功率与总功率之比值随频率的分布情况。 g (ν ) = I (ν ) I0
+∞
归一化条件:
+∞
∴ 简并度 = 2S + 1 = 1 ∴ J = L+S = 2 ∴ 原子的状态符号为: 1s3d D2
1
2012-1-21 23
(2) 两电子自旋方向相同 1 1 S = s1 + s2 = + = 1 2 2 L = l1 + l2 = 0 + 2 = 2 ∴ 简并度 = 2S + 1 = 3 ∴ J = L + S、L + S − 1、.... L − S = 3、、 21 ∴ 原子的状态符号为: 1s3d 3 D3 、 3d 3 D2、 3d 3 D1 1s 1s
第三章原子谱线的宽度

• 自吸引起谱线宽度的表观性增大
• 共振线是原子由激发态跃迁至基态而产生 的。由于这种迁移及激发所需要的能量最 低,所以基态原子对共振线的吸收也最严 重。当元素浓度很大时,共振线呈现自蚀 现象。自吸现象严重的谱线,往往具有一 定的宽度,这是由于同类原子的互相碰撞 而引起的,称为共振变宽。 • 由于自吸现象严重影响谱线强度,所以在 光谱定量分析中是一个必须注意的问题。
• Stark分裂的谱线是偏振的。对Stark效应的 圆满解释是早期量子力学的重大胜利。 • Stark效应应用于原子分子结构的研究。 Stark效应是谱线增宽的原因之一,当气体 放电电流密度较大时,产生大量带电离子, 它们对发光原子产生较强的内部电场,引 起谱线Stark分裂;离子与发光原子的距离 不同,谱线分裂的大小不同,叠加的结果 导致谱线增宽。等离子谱线的Stark增宽可 用于内部电场强度和带电粒子密度的测定。
二、压力变宽
压力变宽又称碰撞变宽。粒子(原子、分子、
电子、离子等)在输送过程中互相发生碰撞,引
起的谱线变宽。这种变宽和气体压力有关,气体
压力升高,粒子相互碰撞机会增多,碰撞变宽就 加大。它分为如下两种类型: Lorentz变宽
Holtsmark变宽
Lorentz变宽(ΔνL)
Lorentz变宽:正在发生辐射跃迁或吸收跃迁的 原子,同其他原子相碰撞,会引起谱线变宽、 中心波长位移和谱线轮廓不对称。 与非同类原子相互碰撞。
这种效应无论是在空心阴极灯中发光原子还 是原子化器中被测基态原子都存在。
• Doppler变宽与元素的相对原子质量、温度 和谱线的频率(或波长)有关。 • 温度越高,谱线变宽加大 • 原子量大的原子,变宽效应较小;原子量 小且难电离的原子,变宽效应严重 • 谱线频率(或波长)越大,展宽越显著
谱线宽度测量
谱线宽度测量摘要:谱线宽度测量实验测量的是谱线的半高全宽。
为此对谱线线型进行分析,判断谱线线型为Voigt线型,再使用该线型对实验图像进行拟合,最终计算得出谱线宽度。
一、实验原理实际的单色辐射都包含一定的波长范围,谱线是分布在很窄的光谱范围的辐射。
通常规定谱线强度等于峰值一半处的宽度为谱线宽度的标志。
实验目的是测量谱线宽度,为此需将光场在空域中的描述转换到频域进行描述。
常用方法有通过透射光栅、棱镜、闪耀光栅等一次性分光的和通过L-G板,F-P板,共焦干涉仪等在器件内部进行多次反射透射的干涉方法。
相对而言,后者更适合于测量谱线宽度,因其可以形成强度均匀的谱线组,而前者一次分光的器件棱镜是分辨率太低,光栅则是光的利用率太低。
本实验使用L-G板进行测量。
L-G板结构如右图,光进入L-G板后,在上下板面间多次反射和透射,形成一系列平行相干光束,在透镜焦面上产生干涉条纹组。
由于L-G板的角色散,不同波长的光将在不同的纵向位置产生产生干涉,即纵向上的位移对应着波长变化。
对于某个基准波长,L-G板有一定的自由光谱范围,当光线从板内掠面出射时,近似有自由光谱范围与波长满足:∆λ=λ22ℎ−1n2−1−12,而该自由光谱范围在空间上对应的便是该波长相邻两个干涉级的距离。
以自由光谱范围对纵向位移进行定标可以测得谱线宽度。
二、实验装置实验装置如下图所示:图2实验装置图低压汞灯发出光经过透镜准直进入L-G板,出射的光经过透镜汇聚在在棱镜摄谱仪的入射狭缝处并产生干涉,棱镜摄谱仪通过棱镜分光作用,把不同的谱线的干涉线组区分开来,并在输出焦平面上1:1成像,最后通过CCD采集数据到计算机。
三、实验现象与分析处理调节光路准直,移动透镜,使得出射光能较好汇聚在摄谱仪入射狭缝处。
在摄谱仪输出端可以用肉眼观测到入射光经过棱镜分光后出现4条色带,分别是黄色,绿色,蓝色,紫色。
对应汞灯的理论谱线,可知这4条谱线分别为576.96nm和579.06nm对应的交叠的黄光,546.07nm对应的绿光,435.84nm的蓝紫光还有404.66nm对应的紫光。
激光的谱线宽度
激光的谱线宽度
激光的谱线宽度是指激光光谱中的频率范围,通常以全宽半最大来表示。
这是通过测量光谱中光强度减半的频率范围来定义的。
激光的谱线宽度取决于多种因素,包括激光器的设计、激发源、放大介质等。
以下是一些影响激光谱线宽度的因素:
激光器类型:不同类型的激光器(例如气体激光器、半导体激光器、固体激光器等)具有不同的谱线宽度特性。
激发源的性质:激发源的特性,如波长、功率和稳定性,会影响激光谱线的宽度。
激光谐振腔:谐振腔的设计和长度也会对谱线宽度产生影响。
激光放大介质:使用的放大介质(例如气体、固体、液体等)的性质会影响激光的谱线宽度。
激光器的工作状态:激光器的工作状态,如温度和压力,也可能对谱线宽度产生影响。
激光器通常被设计为具有较窄的谱线宽度,特别是在科学、医学和通信等领域中需要高分辨率和精确频率的应用。
激光的谱线宽度越窄,其在精密测量和传输信息方面的性能就越好。
光信息专业实验报告:谱线宽度的测量 (2)
故在透镜焦面上形成干涉极大值(亮条 纹)的条件为:
图1
式中 为干涉光谱数序, 为入射光波波长, 为L-G板的折射率, 为出射角。
10、接着调整L-G板的位置,得到效果较好的几组实验结果进行分析,并保存图像数据于“桌面—谱线宽度测量—A18组”中。
11、收拾仪器,关闭电源。
[实验结果处理]
1、调节仪器
(1)调整好仪器,在软件窗口中观察到比较清晰的图像,移动CCD,可获得如下干涉图像。
图4 黄光 图5 蓝光
图6 绿光 图7 绿光
7、进行光路调整,先将CCD调焦,使成像效果最好,并调节图像采集软件的亮度,色度,饱和度至最小值,对比度最大,使成像的亮纹边缘细锐不模糊。
8、加入L-G板,首先调整两透镜的位置,通过屏幕观察使成像为水平,分立的细锐谱线。
9、此时亮纹中部呈现分立谱线状态,而两边缘仍为连续的竖直亮条纹。经过分析得知是由于光源在成像过程中漏光而形成的,并用纸板遮盖漏光部分,通过反复调节至竖直亮条纹消失。
光信息专业实验报告:谱线宽度的测量
[实验目的和内容]
1.了解描述光干涉仪器性能相关的几个物理量。
2.掌握谱线宽度的物理概念及测量方法。
[实验基本原理]
实际的单色辐射都包含一定的波长范围。所谓谱线,只不过是一个很窄的光谱区域辐射而已。在这区域辐射的能量从中心到边缘迅速递减,如下图所示。
规定在谱线强度等于峰值半处的宽度作为谱线宽度的标志及比较的标准,并称此宽度为半高全宽,简称谱线宽度。
(靠近光源一侧的LG板垫高)
荧光谱线展宽的原因
荧光谱线展宽的原因
荧光谱线展宽是指在光谱中观察到的荧光峰不是单一尖锐的线条,而是呈现一定的宽度。
荧光谱线展宽的原因涉及多个因素,主要包括以下几点:
1.能级分布:荧光发射的能级分布范围广泛。
在某些情况下,样品中存在多个能级,每个能级对应的发射波长可能不同,导致观察到的荧光谱线展宽。
2.荧光体的化学结构:荧光体的化学结构也会对谱线展宽产生影响。
一些分子或晶体结构可能具有多个不同的振动模式或构象,导致在荧光谱中出现不同的波峰,从而展宽整体的谱线。
3.非均匀展宽:由于样品中的环境不均匀性,不同位置可能导致略微不同的发射波长,使整体的荧光谱线呈现展宽的状态。
4.气体和液体中的碰撞效应:在气体或液体中,荧光体分子可能受到周围分子的碰撞,这些碰撞会影响能级的分布和能级之间的跃迁,导致谱线展宽。
5.荧光体的浓度效应:高浓度的荧光体可能由于相互作用而导致谱线展宽。
这可能与自发辐射、相互作用引起的能级移动等有关。
6.仪器分辨率:测量仪器的分辨率也会影响谱线的观测。
低分辨率可能使本来尖锐的谱线显得较为展宽。
总体而言,荧光谱线展宽是由于多种复杂的相互作用和影响因素共同作用的结果。
在实际研究中,了解这些因素对于解释和理解荧光谱的特性至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谱线宽度和波长的关系
光谱线是指星体或某种自然物质在其特定工作环境下,在光谱面上产生的一些
明暗线,是对对象特定光谱状态的图形描述,又称光谱条纹。
一般而言,光谱线的宽度与其所处的环境有关。
研究表明,光谱线宽度受到物
质温度、压力和光源强度等多种因素的影响,这些因素都会影响光谱线的宽度。
温度是影响光谱线宽度的最重要因素之一。
特别是在较低温度的情况下,光谱
线的宽度变得越来越窄,当温度上升时,光谱线宽度也会不断增加,但最终会稳定在一个宽度值。
压力也会影响光谱线宽度。
低压往往会加宽光谱线,而高压可以使其变窄,但
影响并不明显,因此这种影响被认为是相对较小的。
同样,光源强度也会影响光谱线宽度,当光源强度增强时,光谱线的宽度就会
变窄,而弱光源就会使光谱线加宽,但这种影响也不是很显著,因此往往被忽略。
此外,波长也会影响光谱线的宽度。
一般而言,根据Kirchhoff定律,波长越短,光谱线宽度越窄,原因是较短的波长更容易发射和激发出特定的光谱线。
另外,也存在一些受激离子态寿命影响的特殊波长,这些波长的光谱线宽度要远大于相应温度下的标准宽度。
总之,光谱线宽度与波长的关系是受因温度、压力、光源强度以及特定离子态
寿命等多种因素影响的,且影响程度不同,需要仔细研究才能得出结论。