滑模控制
滑模控制分类

滑模控制分类滑模控制是一种常用的控制技术,它通过引入滑模面来实现对系统的控制。
滑模面是一个特定的超平面,在这个超平面上,系统的状态会滑动到另一侧。
通过控制滑模面的位置和速度,可以实现对系统的稳定控制。
滑模控制可以分为两种类型:离散滑模控制和连续滑模控制。
离散滑模控制适用于离散时间系统,而连续滑模控制适用于连续时间系统。
离散滑模控制的基本思想是,在每个离散时间点上,根据系统的当前状态和滑模面的位置,计算出控制输入。
这个控制输入会使系统的状态滑动到滑模面的另一侧,从而实现对系统的控制。
离散滑模控制通常用于电力系统、机械系统等。
连续滑模控制的基本思想是,在连续时间下,通过引入滑模面和滑模控制律,将系统的状态滑动到滑模面上。
滑模面的位置和速度可以根据系统的状态和控制目标来确定。
连续滑模控制通常用于飞行器、机器人等系统。
滑模控制具有许多优点。
首先,它对系统的不确定性和扰动具有较强的鲁棒性。
其次,它可以实现对系统状态的快速响应和稳定控制。
此外,滑模控制还可以应用于非线性系统和时变系统。
然而,滑模控制也存在一些问题。
首先,滑模控制的设计和调试比较困难,需要对系统的动力学和非线性特性有深入的理解。
其次,滑模控制会引入较大的控制输入,可能对系统的执行器和传感器造成损坏。
此外,滑模控制的性能也会受到系统参数变化和测量误差的影响。
总的来说,滑模控制是一种重要的控制技术,可以实现对系统的稳定控制。
在实际应用中,需要根据具体的系统特性和控制要求来选择合适的滑模控制方法,并进行合理的设计和调试。
滑模控制的研究和应用还有许多待解决的问题,需要进一步的研究和改进。
滑模控制分类

滑模控制分类滑模控制是一种常用的控制方法,它通过引入滑动面来实现对系统的稳定控制。
在滑模控制的分类中,可以分为离散滑模控制和连续滑模控制两种类型。
离散滑模控制是指在系统的离散时间点上进行控制决策,通过在每个时间点上计算控制量,来实现对系统的控制。
离散滑模控制的特点是简单易实现,对于一些实时性要求不高的系统,可以采用这种方法进行控制。
连续滑模控制是指在系统的连续时间上进行控制决策,通过引入滑动面来实现对系统的控制。
连续滑模控制的特点是可以实现对系统状态的连续控制,对于一些实时性要求较高的系统,可以采用这种方法进行控制。
连续滑模控制在实际应用中具有广泛的应用领域,如机器人控制、电力系统控制等。
在滑模控制的分类中,还可以根据控制对象的不同进行划分。
例如,可以将滑模控制分为单输入单输出(SISO)滑模控制和多输入多输出(MIMO)滑模控制两种类型。
单输入单输出滑模控制是指在系统只有一个输入和一个输出时采用的控制方法,通过设计合适的滑动面和控制律,实现对系统的控制。
多输入多输出滑模控制是指在系统有多个输入和多个输出时采用的控制方法,通过设计合适的滑动面和控制律,实现对系统的控制。
滑模控制是一种在控制领域中广泛应用的控制方法,它具有鲁棒性强、控制效果好等优点,在实际应用中具有广泛的应用前景。
随着科技的不断发展,滑模控制在各个领域中的应用也越来越广泛,可以说滑模控制在现代控制领域中占据着重要的地位。
滑模控制是一种重要的控制方法,它通过引入滑动面来实现对系统的控制。
在滑模控制的分类中,可以根据控制的时间类型和控制对象的不同进行划分。
无论是离散滑模控制还是连续滑模控制,无论是单输入单输出滑模控制还是多输入多输出滑模控制,滑模控制在实际应用中都具有重要的地位和广泛的应用前景。
希望本文对读者对滑模控制的分类有所了解,并能够在实际应用中灵活运用。
先进控制理论-滑膜控制

1 滑模控制概述变结构系统,广义地说,是在控制过程(或瞬态过程)中,系统结构(或模型)可发生变化的系统。
这种控制方法的特点就在于系统的“结构力不是固定的,而是可以在动态过程中,随着系统的变化,根据当前系统状态,系统的各阶导数和偏差等,使系统按照设计好的“滑动模态”的状态轨迹运动。
由于滑动模态可以进行设计并且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。
这种方法的缺点是当系统状态运行到滑模面后,难于严格地沿着滑模面向平衡点滑动,而是在滑模面两侧来回穿越,从而产生抖动。
滑模变结构控制是一种先进的控制方法,文献[34-51]讲述了这种控制方法是20世纪50年代,前苏联学者Emelyanov 首先提出了变结构控制的概念之后,UtkinE 等人进一步发展了变结构理论。
具有滑动模态的变结构系统不仅对外界干扰和参数摄动具有较强的鲁棒性,而且可以通过滑动模态的设计来获得满意的动态品质。
在这种控制方法的初始阶段研究的对象为二阶及单输入的高阶系统,采用的分析方法为相平i 酊法来分析系统特性。
20世纪70年代以来研究对象转变为状态空问的线性系统,使得变结构控制系统设计思想得到了不断丰富,并逐渐成为一个相对独立的研究分支,成为自动控制系统的一种设计方法,适用于线性与非线性系统、连续与离散系统、确定性与不确定性系统、集中参数与分布参数系统、集中控制与分散控制等。
并且在实际工程中逐渐得到推广应用,如电机与电力系统控制、机器人控制、飞机控制、卫星姿态控制等。
这种控制方法通过控制量的切换使系统状态沿着滑模面滑动,使系统在受到参数摄动和外干扰时具有不变性,正是这种特性使得变结构控制方法得到了越来越广泛的应用。
2 滑模控制的基本思想考虑一般的情况,在系统)(.x f x = nR x ∈的状态空间中,有一个切换面是0),,,()(321=⋯⋯=n x x x x s x s 它将状态空间分成上下两部分S>0及S<0。
滑模控制原理

滑模控制原理
滑模控制是一种常用的非线性控制方法,它具有很好的鲁棒性
和抗干扰能力,在控制系统中得到了广泛的应用。
滑模控制的基本
原理是通过引入一个滑动面,使得系统状态在该滑动面上快速滑动,从而实现对系统的控制。
在本文中,我们将详细介绍滑模控制的原
理及其应用。
首先,滑模控制的基本原理是通过设计一个滑动面,使得系统
状态在该滑动面上快速滑动。
这样一来,系统状态就会迅速趋向于
滑动面,从而实现对系统的控制。
滑模控制的核心思想是引入一个
滑动面,通过设计合适的控制律,使得系统状态能够在该滑动面上
快速运动,并最终达到稳定状态。
其次,滑模控制具有很好的鲁棒性和抗干扰能力。
由于滑模控
制引入了滑动面,系统状态在该滑动面上快速滑动,因此对于外部
扰动具有很强的抑制能力。
同时,滑模控制对于系统参数变化也具
有很好的鲁棒性,能够保持系统稳定性和性能。
在实际应用中,滑模控制被广泛应用于各种控制系统中。
例如,在电机控制、飞行器控制、机器人控制等领域,滑模控制都发挥着
重要的作用。
由于其鲁棒性和抗干扰能力,滑模控制在一些复杂系统中得到了广泛的应用,并取得了良好的控制效果。
总的来说,滑模控制是一种非常有效的控制方法,它具有很好的鲁棒性和抗干扰能力,在实际应用中得到了广泛的应用。
通过引入滑动面,滑模控制能够实现对系统的快速稳定控制,对于一些复杂系统具有很好的适用性。
希望本文能够对滑模控制原理有一个清晰的了解,并在实际应用中发挥重要的作用。
滑模控制趋近律参数

滑模控制趋近律参数
摘要:
一、滑模控制简介
1.滑模控制的定义
2.滑模控制的优势
二、趋近律参数
1.趋近律参数的定义
2.趋近律参数的作用
三、滑模控制趋近律参数的调整
1.调整方法
2.调整过程
3.调整结果
四、滑模控制趋近律参数在实际应用中的意义
1.提高控制精度
2.优化控制效果
3.降低系统误差
正文:
滑模控制是一种非线性控制策略,其通过模拟滑动模态来达到控制目标。
在实际应用中,滑模控制能够实现对系统的快速响应和精确控制,因此被广泛应用于各种领域。
然而,滑模控制的效果受到趋近律参数的影响,因此对趋近律参数的调整是提高控制效果的关键。
趋近律参数是滑模控制中一个重要的参数,其定义了控制律的饱和程度。
通过调整趋近律参数,可以改变控制律对系统误差的响应,从而优化控制效果。
在实际调整过程中,通常需要根据系统的特性和控制需求来进行。
首先,需要对系统进行建模,并确定滑模控制的模型。
然后,通过仿真或实验来收集系统的数据,以此作为调整趋近律参数的依据。
接着,根据系统数据和控制需求,对趋近律参数进行调整。
通常情况下,可以通过调整参数的大小或使用不同的函数形式来改变趋近律的饱和程度。
调整滑模控制趋近律参数后,可以观察到控制效果的显著提升。
一方面,调整趋近律参数能够提高控制的精度,使系统能够更快地达到预期状态。
另一方面,优化趋近律参数还能够降低系统的误差,提高整体的控制效果。
总的来说,滑模控制趋近律参数在实际应用中具有重要意义。
滑模控制和滑膜变结构控制

滑模控制和滑膜变结构控制1. 引言滑模控制和滑膜变结构控制是现代控制理论中重要的控制策略,广泛应用于各个领域的控制系统中。
滑模控制通过引入一个滑模面来实现系统的稳定性和鲁棒性;滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动。
2. 滑模控制滑模控制最早由俄罗斯科学家阿莫斯特芬于1968年提出,并在1974年得到了进一步的发展。
滑模控制通过引入一个滑模面,将系统状态从非线性区域滑到线性区域,从而实现系统的稳定性和鲁棒性。
2.1 滑模面滑模面是滑模控制的核心概念之一,它通常由一个超平面表示,可以用数学方程描述为:s=Sx其中,s为滑模面,S为一个可逆矩阵,x为系统的状态变量。
2.2 滑模控制律滑模控制律用于调节系统状态,以使系统状态滑到滑模面上。
滑模控制律的一般形式可以表示为:u=−S−1B Tλ(s)其中,u为控制输入,B为输入矩阵,λ(s)为滑模曲线。
2.3 滑模控制的优点滑模控制具有以下几个优点:•鲁棒性强:滑模控制能够在面对参数扰动和外部干扰时保持系统的稳定性。
•快速响应:由于滑模面能够将系统状态快速滑到线性区域,使得系统具有快速响应的特性。
•无需精确模型:滑模控制不需要系统的精确模型,因此对于复杂系统的控制较为便捷。
3. 滑膜变结构控制滑膜变结构控制(SMC)由美国科学家丹尼尔·尤斯托曼在20世纪90年代末提出,是一种基于滑模控制的新型控制策略。
滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动,从而提高系统的鲁棒性和性能。
3.1 滑膜设计滑膜变结构控制的关键是设计一个合适的滑膜来响应系统的不确定性和扰动。
滑膜通常由一个或多个滑模面组成,通过在线调整滑膜的参数,可以适应不同的工作条件和控制要求。
3.2 滑膜变结构控制律滑膜变结构控制律的一般形式可以表示为:u=−K(θ)s−δ(θ)sign(s)其中,u为控制输入,K(θ)和δ(θ)分别为滑膜参数和输出增益,θ为参数向量,s为滑模曲线。
c语言滑模控制算法

c语言滑模控制算法滑模控制(Sliding Mode Control,SMC)是一种非线性控制方法,主要用于处理系统的不确定性和外界干扰。
滑模控制的主要思想是在状态空间中设计一个滑动模态,该模态对应于系统的一种特殊状态,当系统状态到达滑动模态时,系统将沿着滑动模态向原点滑动,直到系统达到平衡状态。
以下是一个简单的滑模控制的C语言实现:#include <stdio.h>#include <math.h>// 系统参数double Kp = 1.0; // 比例增益double Ki = 0.01; // 积分增益double Kd = 0.1; // 微分增益double integral = 0; // 积分项double pre_error = 0; // 上一次的误差// 控制器函数double sliding_mode_control(double setpoint, double actual_position) {double error = setpoint - actual_position; // 计算误差integral += error; // 积分项增加double derivative = error - pre_error; // 计算误差的导数pre_error = error; // 更新上一次的误差double u = Kp * error + Ki * integral + Kd * derivative; // 计算控制输入return u;}int main() {double setpoint = 10.0; // 设置点double actual_position = 0.0; // 实际位置for (int i = 0; i < 100; i++) {double control_input = sliding_mode_control(setpoint, actual_position); // 计算控制输入// 在这里添加实际系统的控制逻辑,例如:更新实际位置等actual_position += control_input; // 更新实际位置printf("Time: %d, Setpoint: %f, Actual Position: %f, Control Input: %f ", i, setpoint, actual_position, control_input); // 打印信息}return 0;}这个简单的例子中,我们设定了一个期望的位置setpoint和实际的位置actual_position。
控制系统的滑模控制理论与方法

控制系统的滑模控制理论与方法滑模控制(Sliding Mode Control,SMC)是一种针对非线性系统的控制方法,它通过引入一个滑模面,使系统状态在这个面上滑动,从而实现对系统的控制。
本文将介绍滑模控制的理论基础和常用方法,并分析其在控制系统中的应用。
一、滑模控制的基本原理滑模控制是一种基于滑模面的控制策略,其基本原理可以归纳为以下几点:1. 滑模面的选取:滑模面是指系统状态在该面上滑动的一个超平面,通过适当选取滑模面可以实现对系统状态的控制。
滑模面通常由线性和非线性组成,其中线性部分用于系统稳定,非线性部分用于解决系统的鲁棒性问题。
2. 滑模控制律:在滑模控制中,需要设计一个控制律来将系统状态引入滑模面,并保持系统在滑模面上滑动。
控制律通常由两部分组成:滑模面控制部分和滑模面切换部分。
滑模面控制部分用于实现系统状态在滑模面上滑动的动力学特性,滑模面切换部分用于保持系统状态在滑模面上滑动直至系统稳定。
3. 滑模模态:滑模模态指的是系统状态在滑模面上滑动的特性。
通常情况下,滑模模态可以分为饱和模态和非饱和模态两种。
在饱和模态下,系统状态在滑模面上滑动的速度有上限,从而保证系统的稳定性。
而在非饱和模态下,系统状态在滑模面上滑动的速度无上限,可以实现更快的响应速度。
二、滑模控制的方法与技巧在实际应用中,滑模控制可以采用不同的方法和技巧进行设计和实现。
以下是一些常见的滑模控制方法和技巧:1. 内模态滑模控制:内模态滑模控制是一种将滑模控制与内模态控制相结合的方法,通过在滑模控制律中引入内模态控制的思想,可以提高系统的鲁棒性和动态性能。
2. 非等效控制:非等效控制是一种通过选择系统输出和滑模面的差异性来实现控制的方法。
通过设计非等效控制律,可以对滑模模态进行优化,提高系统的控制性能。
3. 离散滑模控制:离散滑模控制是一种将滑模控制应用于离散时间系统的方法。
通过在离散时间下设计滑模控制律,可以对离散系统进行稳定控制和鲁棒性设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑模控制滑模施工的工程质量与安全技术一、质量控制滑模工程施工应按《液压模滑动模板施工技术规范》(GBJ113-87)等有关标准、规定,进行跟班质量检查。
对于兼作结构钢筋的支承杆的焊接接头、预埋插等,均应作隐蔽工程验收。
对混凝土的质量检验应符合下列规定:(1)标准养护混凝土试块的组数,每10m一个检验批,试块留置3组,并保证每200m³留置1组;(2)对混凝土出模强度的检查,每一工作应不少于两次,当在一个工作班内气温有骤变或混凝土配合比有变动时,必须相应增加检查数;(3)在每次模板滑升后,应立即检查出模混凝土有无塌落、拉裂和麻面等,发现问题应及时处理,重大问题应作好处理记录。
对高耸结构垂直度的测量,应以当地时间6:00~9:00间的测量结果为准。
二、工程验收滑模工程的验收应按《混凝土结构工程及验收规范》(GB 50204—92)和《液压滑动模板施工技术规范》(GBJ 113—87)等规范要求进行。
其工程结构的允许偏差应符合表23-29的规定。
1)质量问题的处理1、支承杆弯曲在模板滑升过程中,同于支承杆本身不直、自由长度太大、操作平台上荷载不均及模板遇有障碍而硬性提升等原因,均可使支承杆,必须立即进行加固,否则弯曲现象会继续发展,而造成严重的质量问题或安全事故。
弯曲支承杆的加固方法,按弯曲部位的不同,可取发下措施:(1)支承杆在混凝土内部弯曲从脱模后混凝土表面裂缝、外凸等现象,或根据支承杆突然产生较大幅度的下坠落情况,可以观察出支承杆在混凝土内部发生弯曲。
对于于已弯曲的支承杆,其上的千斤顶必须停止工作,并立即卸荷。
然后,将变坏事为好事处的混凝土挖洞清除。
当弯曲程度不大时,可在弯曲处加焊一根与支杆同直径的绑条(图23-282a),当弯曲和度较大或弯曲较严重时,应将支杆的弯曲部分切断,在切断处加焊两根总截面积大于支承杆的绑条(图23-282b)。
加焊绑条时,应保证必要的焊缝长度。
(2)支承杆在混凝土外部弯曲支承杆在混凝土外部易发生弯曲的部位,大多在混凝土的表面至千斤顶下卡头之间或门窗洞若观火口及框架梁下等支承杆的脱空处。
发现支承弯曲后,首先必须停止千斤顶工作,并立即卸荷。
对于弯曲不大的支承杆,可参照图23-282a的作法;当支承杆的弯曲程度较大时,应将弯曲部分切断,并蒂莲将上段支承杆下降(或另接一根新杆,上下两段支承杆的接头处,可采用一段钢套管或直接对并没有焊接。
妯用上述方法不便,可将弯曲的支承杆齐混凝土面切断,另换一根新支承杆,并在混凝土表面原支承杆的位置上,加设一个由钢垫板及钢套管焊接的套靴,将上段支承杆插入套靴内顶紧即可(图23-282c)。
2.混凝土质量问题的分析与处理(1)混凝土水平裂缝或模板带起1)原因分析①模板倾斜度太小或出现上口大、下口小的倒倾斜度时,而硬性提升(图23-283a);②纠正垂直偏差过急,使混凝土拉裂(图23-283b);③提升模板速度太慢,使混凝土与模板粘结;④模板表面不光洁,摩阻力太大。
2)处理方法:①纠正模板的倾斜度,使其符合要求;②加快提升速度,并在提升模板的同时,用木锤等工具敲打模板背面,或在混凝土的上表面垂直向下施加一定的压力,以消除混凝土与模板的粘结。
当被模板带起的混凝土脱模落下后,应立即将松散部分清除、需另外支模,并模板的粘结。
当被板带起的混凝土脱模落下后,应立即将松散部分清除、需另外支模的一侧做成高于上口100mm的喇叭口,重新浇筑高一级强度等能的混凝土,使喇叭口处混凝土向外斜向加高100mm,待拆模时,将多余部分剔除;③纠正垂直偏差时,应缓慢进行,防止混凝土弯折;④经常清除粘在模板表面的脏物及混凝土,保持模板表面的光洁。
停滑时,可在模板表面涂刷一层隔离剂。
(2)混凝土的局部坍塌1)原因分析:混凝土脱模时的局部坍塌,最容易在模板的初升阶段出现。
主要原因是提升过早,或混凝土没有严格地按分层交圈的方法浇灌。
因此,当模板开始滑升时,虽大部分混凝土已开始凝固,但最后浇筑的混凝土,仍处于流动或半流动状态。
2)处理方法:对已坍塌的混凝土,应及时清除干净。
然后在坍塌处补以比原标号高一级的干硬性豆石混凝土(同品种的水泥),修补后,将表面抹平,做到颜色及平整度一致。
当坍塌部位较大或形成孔洞时,应另外支模补浇混凝土,处理方法同“混凝土水平裂缝或被模板带起”作法。
(3)混凝土表面鱼鳞状外凸(出裙)1)原因分析:模板的倾斜度过大,或模板下部的刚度太差;每层混凝土浇灌厚度过高,或采用高频振捣器振捣时间过长等,造成混凝土对模板的侧压力过大,致使模板向外凸出。
2)处理方法:纠正模板的倾斜度,适当加强模板的机时向刚度;严格控制每层混凝土的浇灌厚度(一般不宜超过30cm),尽量采用振动力较小的振捣器,以减小混凝土对模板的侧压力。
(4)混凝土缺棱掉角1)原因分析:模板滑升时棱角处的摩阻力比其他部位大,采用木模板时,尤为明显;因模板提升不均衡,使混凝土保护层厚薄不匀,过厚的保护层容易开裂掉下;钢筋绑扎不直,或有外凸部分,使模板滑升时受阻;振捣混凝土时,碰到主筋(尤其采用高频振捣器时),将已凝固的混凝土棱角振掉;⑤棱角处模板倾斜度过大或过小。
2)处理方法:①采用钢模板或表面包铁皮的木模板,同时,将模板的角模处改为圆角或八字形,或采用整块角模,并严格控制角模处模板的倾斜在0.3%~0.5%范围内,以减小模板滑升时的摩阻力;②严格控制振捣器的插入尝试,振捣时不得强力碰动主筋,尽量采用频率较低及振捣棒头较短(如长度为250~300㎜)的振捣器。
(5)保护层厚度不匀1)原因分析:①混凝土入模浇筑时,只向一侧倾倒,使模板向一侧偏移;②钢筋绑扎的位置不正确。
2)处理方法:①混凝土浇筑时,两侧同时入模,尤其注意不得由吊罐直接向模板一侧倾倒混凝土;②经常注意检查和保持钢筋位置的正确。
(6)蜂窝、麻面、气泡及露筋1)原因分析:①混凝土振捣不密实,或振捣不匀;②石子粒径过大、钢筋过密或混凝土可塑性不够,因石子阻挡,水泥浆振不下去;③混凝土接搓处停歇时间过长,而且未按施工缝处理。
2)处理方法:①改善振捣质量,严格掌握混凝土的配合比,控制石子的粒径;②混凝土接搓处继续施工时,应先浇灌一层按原配合比减去石子的砂浆或减去一半石子的混凝土;③对于已出现蜂窝、麻面、气泡及露筋的混凝土,脱模后,应立即用水泥砂浆修补,并用木抹搓平,做到颜色及平整度一致。
三、滑模施工的安全技术滑模施工工艺是一种使混凝土在动态下连续成型的快速施工方法。
施工过程,整个操作平台支承于一群靠低龄期混凝土稳固且刚度较小的支承杆上,因而确保滑模施工安全是滑模施工工艺的一个重要问题。
滑模施工中的安全技术工作,除应遵照一般施工安全操作规程外,尚应遵照《液压滑动模板施工安全技术规程》(JGJ65—89)规定,在施工前制定具体的安全措施。
2)一般规定1. 滑模工程开工前,施工单位必须根据工程结构和施工特点以及施工环境、气候等条件编制滑模施工安全技术措施,作为滑模工程施工组织设计一部分,报上级安全和技术主管部门审批后实施。
滑模工程施工负责人必须对安全技术全面负责。
2. 滑模施工中必须配备具有安全技术知识、熟悉安全规程和《液压滑动模板施工技术规范》的专职安全检查员。
安全检查员负责滑模施工现场的安全检查工作,对违章作业有权制止。
发现重大不安全问题时,有权指令先行停工,并立即报告领导研究处理。
3. 对参加滑模工程施工人员,必须进行培训和安全教育,使其了解本工程滑模施工特点、熟悉安全规程有关条文和本岗位的安全技术操作规程,并通过考核合格后,方能上岗工作。
主要施工人员应相对固定。
4. 滑模施工中应经常与当地气象台、站取得联系,遇到雷雨、六级和六级以上大风时,必须停止施工。
停工前做好停滑措施,操作平台上人员撤离前,应对设备、工具、零散材料、可移动的铺板等进行整理、固定并作好防护。
全部人员撤离后,立即切断通向操作平台的供电电源。
5. 滑模操作平台上的施工人员应定期体检,经医生诊断凡患有高血压、心脏病、贫血、癫痫病及其他不适应高空作业疾病的,不得上操作平台工作。
2)施工现场与操作平台1. 在施工的建(构)筑物周围,必须划出施工危险警戒区,警戒线至建(构)筑物的距离,不应小于施工对象高度的1/10,有不10m。
当不能满足要求时,应采取有效的安全防护措施。
危险警戒线应设置围栏和明显警戒标志,出入口应设专人警卫,并制定警卫制度。
2. 危险警戒区内的建筑物出入口、地面通道及机械操作场所,应搭设高度不低于2.5m的安全防护棚。
滑模工程进行立体交叉作业时,上、下工作面间,应搭设隔离防护棚。
各种牵拉钢丝绳、滑输装置、管道、电缆及设备等,均应采取防护措施。
安全防护棚的构造应满足下列要求:(1)防护棚结构应通过计算确定;(2)棚顶一般可采用不少于二层纵横交错的木板(木板厚度不小于3㎝)或竹夹板组成,重要场所增加一层2~3㎜厚的钢板;(3)建(构)筑物的内部防护棚,应从蹭向四周留坡,外(四周)防护棚应做成向内留坡(外高内低),其坡度均不小于1:5;(4)垂直运输设备穿过防护棚时,防护棚所留洞口周围,应设置围栏和挡板,其高度不应小于800㎜;(5)烟囱类构筑物,当利用平台、灰斗底板代替防护棚时,在其板面上应采取缓冲措施。
3. 现场垂直运输机械的布置,应符合下列要求:(1)垂直运输用的卷扬机,应布置在危险警戒区以外,并尽量设在能与塔架上、下通视的地方;(2)当采用多台塔吊同场作业时,应防止相互碰撞。
4. 滑模操作平台的设计应具有完整的设计计算书、技术说明及施工图,并必须经过审核,报主管技术部门批准。
滑模操作平台的制作,必须按设计图纸加工,如有变动,必须经主管设计人员同意,并应有相应的设计变更文件。
5. 操作平台及吊脚手架上的铺板,必须严密平整、防滑、固定可靠,并不行随意挪动。
操作平台上的孔洞(加上、下层操作平台的通道孔、梁模滑空部位等),应设盖板封严。
操作平台(包括内外吊脚手)的边缘,应设钢制护栏杆,其高度不小于120㎝,横档间距不大于35㎝,底部设高度大于18㎝的挡板。
在防护栏杆外侧应满挂铁丝网或安全网封闭,并应与防护栏杆绑扎牢固。
内外吊脚手架操作面一侧的栏杆与操作面的距离,不大于10㎝。
操作平台的内外吊脚手架,应兜底满挂安全网,并应符合下列要求:(1)不得使用破烂变质的安全网,安全网与吊脚手骨架应用铁丝或尼龙绳等进行等强连接,连接点间距不应大于50㎝;(2)对老厂改造工程或在离周围建筑物较近及行人较多的地段施工时,操作平台的外侧吊脚手应加强防护措施;(3)安全网片之间应满足等强连接,连接点间距与网结间距相同。
6. 当滑模操作平台上设有随升井架时,在人、料道口应设防护栏杆;在其他侧面应用铁丝网封闭。
防护栏杆和封闭用的铁丝网高度不应低于1.2m。