高一数学上册 指数函数知识点及练习题含答案

合集下载

部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)

部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)

(名师选题)部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)单选题1、已知函数f (x )=log a (x −b )(a >0且a ≠1,a ,b 为常数)的图象如图,则下列结论正确的是( )A .a >0,b <−1B .a >0,−1<b <0C .0<a <1,b <−1D .0<a <1,−1<b <02、下列计算中结果正确的是( )A .log 102+log 105=1B .log 46log 43=log 42=12 C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33 3、若32是函数f (x )=2x 2−ax +3的一个零点,则f (x )的另一个零点为( ) A .1B .2C .(1,0)D .(2,0)4、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .695、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度( )A .25天B .30天C .35天D .40天6、下列各组函数中,表示同一个函数的是( )A .y =1与y =x 0B .y =x 与y =(√x)2C .y =2log 2x 与y =log 2x 2D .y =ln 1+x 1−x 与y =ln (1+x )−ln (1−x )7、设f(x)=log 2(1x+a +1)是奇函数,若函数g(x)图象与函数f(x)图象关于直线y =x 对称,则g(x)的值域为( )A .(−∞,−12)∪(12,+∞)B .(−12,12)C .(−∞,−2)∪(2,+∞)D .(−2,2)8、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限多选题9、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ).A .0<a <1B .a >1C .b >0D .b <010、(多选题)下列计算正确的是( )A .√(−3)412=√−33B .(a 23b 12)(−3a 12b 13)÷(13a 16b 56)=−9a a >0,b >0 C .√√93=√33D .已知x 2+x −2=2,则x +x −1=211、已知a ,b 均为正实数,若log a b +log b a =52,a b =b a ,则ab =( )A .12B .√22C .√2D .2填空题12、对数型函数f (x )的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.部编版高中数学必修一第四章指数函数与对数函数带答案(十三)参考答案1、答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0,故选:D2、答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确;对于B :log 46log 43=log 36,故B 错误; 对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A3、答案:A分析:由32是函数f (x )=2x 2−ax +3的一个零点,可得a 值,再利用韦达定理列方程解出f (x )的另一个零点. 因为32是函数f (x )=2x 2−ax +3的一个零点,所以f (32)=2×(32)2−a ×32+3=0,解得a =5.设另一个零点为x 0,则x 0+32=52,解得x 0=1,所以f (x )的另一个零点为1.故选:A .4、答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解.∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19,所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5、答案:B分析:根据给定条件求出m 及a 10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m ⋅a 1020%=m ⋅a 20,解得m =120,a 10=2,当ℎ=40%时,40%=120⋅a t , 即40%=120⋅a 10⋅a t−10,解得a t−10=4=(a 10)2=a 20,于是得t −10=20,解得t =30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B6、答案:D分析:分别计算每个选项中两个函数的定义域和对应关系,定义域和对应关系都相同的是同一个函数,即可得正确选项.对于A :y =1定义域为R ,y =x 0定义域为{x|x ≠0},定义域不同不是同一个函数,故选项A 不正确; 对于B :y =x 定义域为R ,y =(√x)2的定义域为{x|x ≥0},定义域不同不是同一个函数,故选项B 不正确; 对于C :y =2log 2x 的定义域为{x|x >0},y =log 2x 2定义域为{x|x ≠0},定义域不同不是同一个函数,故选项C 不正确;对于D :由1+x 1−x >0可得(x +1)(x −1)<0,解得:−1<x <1,所以y =ln 1+x 1−x 的定义域为{x|−1<x <1},由{1+x >01−x >0可得−1<x <1,所以函数y =ln (1+x )−ln (1−x )的定义域为{x|−1<x <1}且y =ln (1+x )−ln (1−x )=ln 1+x 1−x ,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.7、答案:A分析:先求出f(x)的定义域,然后利用奇函数的性质求出a 的值,从而得到f(x)的定义域,然后利用反函数的定义,即可求出g(x)的值域.因为f(x)=log 2(1x+a +1),所以1x+a +1=1+x+a x+a >0可得x <−a −1或x >−a ,所以f(x)的定义域为{x|x <−a −1或x >−a},因为f(x)是奇函数,定义域关于原点对称,所以−a −1=a ,解得a =−12, 所以f(x)的定义域为(−∞,−12)∪(12,+∞), 因为函数g(x)图象与函数f(x)图象关于直线y =x 对称,所以g(x)与f(x)互为反函数,故g(x)的值域即为f(x)的定义域(−∞,−12)∪(12,+∞).故选:A .8、答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .9、答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0.故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.10、答案:BC解析:根据根式运算和指数幂的运算法则求解判断.A. √(−3)412=√3412=√33,故错误;B. (a 23b 12)(−3a 12b 13)÷(13a 16b 56)=−9a23+12−16b 12+13−56=−9a ,故正确; C. √√93=916=(32)16=313=√33,故正确;D. 因为x 2+x −2=(x +x −1)2−2=2,所以(x +x −1)2=4,则x +x −1=±2,故错误; 故选:BC11、答案:AD分析:令t =log a b ,代入可求出t ,可得a 与b 的关系式,再代入a b =b a 即可求出a ,b 的值. 令t =log a b ,则t +1t =52, 所以2t 2−5t +2=0,即(2t −1)(t −2)=0,解得t =12或t =2,即log a b =12或log a b =2,所以a =b 2或a 2=b ,因为a b =b a ,代入得2b =a =b 2或b =2a =a 2,所以a =4,b =2或a =2,b =4,所以a b =2或a b =12.故选:AD.小提示:本题主要考查了对数的运算及性质,属于中档题.12、答案:f (x )=|log 2(x +1)|(答案不唯一,满足f (x )=|log a (x +b )|,a >1,b ≥1即可) 分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f (x )的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f (x )=|log 2(x +1)|.所以答案是:f (x )=|log 2(x +1)|(答案不唯一)。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

高中 指数与指数函数知识点+例题+练习 含答案

高中 指数与指数函数知识点+例题+练习 含答案

教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。

高中数学必修一第四章指数函数与对数函数知识点归纳超级精简版(带答案)

高中数学必修一第四章指数函数与对数函数知识点归纳超级精简版(带答案)

高中数学必修一第四章指数函数与对数函数知识点归纳超级精简版单选题1、已知函数f(x)={a x ,x <0(a −3)x +4a,x ≥0 满足对任意x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,则a 的取值范围为( )A .(0,14]B .(0,1)C .[14,1)D .(0,3)答案:A分析:根据给定不等式可得函数f (x )为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,不妨令x 1<x 2,则f (x 1)>f (x 2),于是可得f (x )为R 上的减函数, 则函数y =a x 在(−∞,0)上是减函数,有0<a <1,函数y =(a −3)x +4a 在[0,+∞)上是减函数,有a −3<0,即a <3, 并且满足:a 0≥f(0),即4a ≤1,解和a ≤14, 综上得0<a ≤14,所以a 的取值范围为(0,14]. 故选:A2、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a 3·√a 6=(−a)13⋅a 16=−a 13⋅a 16=−a13+16=−a 12=−√a .故选:A.3、声强级L 1(单位:dB )与声强I 的函数关系式为:L 1=10lg (I 10−12).若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( )A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.4、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个,故选:A5、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B6、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13) 答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 7、若n <m <0,则√m 2+2mn +n 2−√m 2−2mn +n 2等于( ) A .2m B .2n C .−2m D .−2n 答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果. 原式=|m +n|−|m −n|,∵n <m <0,∴m +n <0,m −n >0, ∴原式=−(m +n)−(m −n)=−2m . 故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可. 8、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56分析:解方程可得x1=2,x2=3,代入运算即可得解. 由题意,令x2−5x+6=0,解得x=2或3,不妨设x1=2,x2=3,代入可得1x1+1x2=12+13=56.故选:D.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A正确,设D的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、若指数函数y =a x 在区间[−1,1]上的最大值和最小值的和为52,则a 的值可能是( ). A .2B .12C .3D .13 答案:AB分析:分别讨论a >1单调递增和0<a <1单调递减两种不同的情况即可求解. 设f(x)=a x ,当a >1时,指数函数f(x)=a x 单调递增,所以在区间[−1,1]上的最大值y max =f(1)=a ,最小值y min =f(−1)=1a .所以a +1a =52,求得a =2或者a =12(舍);当0<a <1时,指数函数f(x)=a x 单调递减,所以在区间[−1,1]上的最大值y max =f(−1)=1a ,最小值y min =f(1)=a ,所以a +1a =52,求得a =2(舍)或者a =12. 综上所述:a =2或者a =12.故选:AB小提示:本题主要考查指数函数的单调性及其应用,意在考查学生对这些知识的理解掌握水平. 11、下列运算法则正确的是( )A .log a 3b 2=23log a bB .(a n )mn =a mC .log a b =lnblna (b >0,a >0且a ≠1) D .a m+n =a m ⋅a n (a ≠0,m,n ∈N +) 答案:CD分析:取b <0可判断A 选项的正误;取a <0,n =12可判断B 选项的正误;利用对数的换底公式可判断C 选项的正误;利用指数的运算性质可判断D 选项的正误. 对于A 选项,若b <0,则log a b 无意义,A 选项错误;对于B 选项,若a <0,n =12,则a n =√a 无意义,B 选项错误;对于C 选项,由换底公式可得log a b =lnb lna(b >0,a >0且a ≠1),C 选项正确;对于D 选项,当a ≠0,m 、n ∈N +时,a m+n =a m ⋅a n ,D 选项正确. 故选:CD. 填空题12、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f(x)=t,因为f2(x)−af(x)+2=0恰有6个不同的实数解,所以g(t)=t2−at+2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a2−8>01<a2<2g(1)=3−a>0g(2)=6−2a≥0,解得2√2<a<3,∴实数a的取值范围为(2√2,3).所以答案是:(2√2,3).13、若x+x−1=3,则x 12+x−12x2+x−2=__________.答案:√57分析:将目标式分子、分母转化为含已知条件x+x−1的代数式,进而求值x+x−1=3,易知x>0而(x 12+x−12)2=x+x−1+2=5∴x12+x−12=√5又由x2+x−2=(x+x−1)2−2=7综上,有:x 12+x−12x2+x−2=√57所以答案是:√57小提示:本题考查了利用指数幂运算化简求值,应用指数幂运算化简含x a+x−a形式的代数式并求值14、若函数f (x )={−(12)x+a,a ≤x <0−x 2+2x −3,0≤x ≤4的值域为[−11,−2],则实数a 的取值范围是______. 答案:[−3,−1]解析:利用函数的单调性分别求得函数f (x )在区间[a,0)、[0,4],结合已知条件可得出关于实数a 的不等式组,进而可求得实数a 的取值范围.当0≤x ≤4时,f (x )=−x 2+2x −3=−(x −1)2−2∈[−11,−2];当a ≤x <0时,此时函数f (x )=a −(12)x单调递增,此时f (x )∈[−(12)a+a,−1+a). 由于函数f (x )在区间[a,4]上的值域为[−11,−2],所以[−(12)a+a,−1+a)⊆[−11,−2]. ∴{−(12)a+a ≥−11−1+a ≤−2a <0,令g (x )=x −(12)x,则函数g (x )在R 上单调递增,且g (−3)=−11, 所以,不等式a −(12)a≥−11的解为a ≥−3.解不等式组{−(12)a+a ≥−11−1+a ≤−2a <0得−3≤a ≤−1.所以实数a 的取值范围是[−3,−1]. 所以答案是:[−3,−1].小提示:本题考查利用分段函数的值域求参数的取值范围,考查分析问题和解决问题的能力,属于中等题. 解答题15、某工厂以x kg/h 的速度生产运输某种药剂(生产条件要求边生产边运输且3<x ≤10),每小时可以获得的利润为100(2x +1+8x−2)元.(1)要使生产运输该药品3h 获得的利润不低于4500元,求x 的取值范围; (2)x 为何值时,每小时获得的利润最小?最小利润是多少? 答案:(1)[6,10];(2)当x 为4kg/h 时,每小时获得的利润最小,最小利润为1300元.分析:(1)由题设可得2x +1+8x−2≥15,结合3<x ≤10求不等式的解集即可.(2)应用基本不等式求y =100(2x +1+8x−2)的最小值,并求出对应的x 值.(1)依题意得:3×100(2x +1+8x−2)≥4500,即2x +1+8x−2≥15,由3<x ≤10,故8x−2>0,可得x 2-9x +18≥0,即(x -3)(x -6)≥0,解得x ≤3或x ≥6,∴x 的取值范围为[6,10]. (2)设每小时获得的利润为y .y =100(2x +1+8x−2)=100[2(x -2)+8x−2+5] ≥100[2√2(x −2)(8x−2)+5]=100(8+5)=1300,当2(x -2)=8x−2时取等号,此时x =4.于是当生产运输速度为4kg/h ,每小时获得的利润最小,最小值为1300元.。

高一数学上册 指数函数知识点及练习题含答案

高一数学上册 指数函数知识点及练习题含答案

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

部编版高中数学必修一第四章指数函数与对数函数带答案知识点归纳总结(精华版)

部编版高中数学必修一第四章指数函数与对数函数带答案知识点归纳总结(精华版)

(名师选题)部编版高中数学必修一第四章指数函数与对数函数带答案知识点归纳总结(精华版)单选题1、已知a =log 20.6,b =log 20.8,c =log 21.2,则( ) A .c >b >a B .c >a >b C .b >c >a D .a >b >c2、函数y =|lg(x +1)|的图像是( )A .B .C .D .3、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5)C .(32,5)D .(1,5)4、化简(1og 62)2+log 62⋅log 63+2log 63−6log 62的值为( ) A .−log 62B .−log 63C .log 63D .-15、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.66、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 7、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )附:lg2≈0.3010A .10%B .20%C .50%D .100%8、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e )D .(0,√e )多选题9、若直线y =2a 与函数y =|a x −1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值可以是( ) A .14B .13C .12D .2 10、已知函数f(x)=2x 2x +1+m(m ∈R)则下列说法正确的是( )A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 11、已知函数f(x)=1−2x1+2x ,则下面几个结论正确的有( ) A .f(x)的图象关于原点对称 B .f(x)的图象关于y 轴对称 C .f(x)的值域为(−1,1) D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立填空题12、函数f(x)=lg(kx)−2lg(x+1)仅有一个零点,则k的取值范围为________.部编版高中数学必修一第四章指数函数与对数函数带答案(四十七)参考答案1、答案:A分析:由对数函数得单调性即可得出结果. ∵y =log 2x 在定义域上单调递增,∴log 20.6<log 20.8<log 21.2,即c >b >a . 故选:A. 2、答案:A分析:由函数y =lgx 的图象与x 轴的交点是(1,0)结合函数的平移变换得函数y =|lg(x +1)|的图象与x 轴的公共点是(0,0),即可求解.由于函数y =lg(x +1)的图象可由函数y =lgx 的图象左移一个单位而得到,函数y =lgx 的图象与x 轴的交点是(1,0),故函数y =lg(x +1)的图象与x 轴的交点是(0,0),即函数y =|lg(x +1)|的图象与x 轴的公共点是(0,0),显然四个选项只有A 选项满足. 故选:A. 3、答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案 因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5, 故选:B 4、答案:A分析:运用对数的运算性质即可求解. 解析:(log 62)2+log 62⋅log 63+2log 63−6log 62=log 62(log 62+log 63)+2log 63−2=log 62+2log 63−2=2(log 62+log 63)−log 62−2=2−log 62−2=−log 62故选:A. 5、答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解. 由L =5+lgV ,当L =4.9时,lgV =−0.1, 则V =10−0.1=10−110=√1010≈11.259≈0.8.故选:C. 6、答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点, 若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m=0⇒m=916.故m∈(0,916).故选:D.7、答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.8、答案:B分析:f(x)=x2+e x−12(x<0)关于y轴对称的函数为:f(−x)=x2+e−x−12(x>0),函数f(x)=x2+e x−12(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,即f(−x)=g(x)有解,通过数形结合即可得解.f(x)=x2+e x−12(x<0)关于y轴对称的函数为:f(−x)=x2+e−x−12(x>0),函数f(x)=x2+e x−12(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,即f(−x)=g(x)有解,即x2+e−x−12=x2+ln(x+a),整理的:e−x−12=ln(x+a),y=e−x−12和y=ln(x+a)的图像存在交点,如图:临界值在x=0处取到(虚取),此时a=√e,和y=ln(x+a)的图像存在交点,故当a<√e时y=e−x−12故选:B.9、答案:AB分析:对a分类讨论,利用数形结合分析得解.,(1)当a>1时,由题得0<2a<1,∴0<a<12因为a>1,所以此种情况不存在;,(2)当0<a<1时,由题得0<2a<1,∴0<a<12因为0<a<1,所以0<a<1.2故选:AB小提示:方法点睛:取值范围问题的求解,常用的方法:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.10、答案:ABD分析:根据函数的定义域的求法,可判定A正确;根据函数的奇偶性列出方程,求得m的值,可判定B正确,化简f(x)=−12x+1+m+1,结合指数函数的单调性,可判定C错误;化简函数f(x)=1−12x+1,结合指数函数的值域,可判定D正确.由题意,函数f(x)=2x2x+1+m(m∈R),对于A中,由2x+1≠0,所以函数f(x)的定义域为R,所以A正确;对于B中,由函数f(x)为奇函数,则满足f(−x)=−f(x),即2−x2−x+1+m=−2x2x+1−m,所以2m=−2x2x+1−2−x2−x+1=−2x2x+1−12x12x+1=−2x2x+1−12x+1=−1,即m=−12,所以B不正确;对于C中,由f(x)=2x2x+1+m=2x+1−12x+1+m=−12x+1+m+1,因为函数y=2x+1为单调递增函数,则y=−12x+1递增函数,所以f(x)函数在R上单调递减,所以C不正确;对于D中,当m=0时,可得f(x)=2x2x+1=1−12x+1,因为2x+1>1,可得−1<−12x+1<0,所以1−12x+1∈(0,1),即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD. 11、答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x 1+2x ,则f(−x)=1−2−x 1+2−x =2x −11+2x=−f(x),则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x 1+2x=−1+21+2x,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t,易知:−1+2t∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x , 因为y =1+2x 在R 上为增函数,y =−1+21+t为(1,+∞)上的减函数,由复合函数的单调性的判断法则可得f (x )在R 上单调递减, 故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断. 12、答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点, 当k >0时,即(0,+∞)上y 1、y 2只有一个交点;∴仅当y 1、y 2相切,即x 2+(2−k)x +1=0中Δ=(2−k)2−4=0,得k =4或k =0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}。

指数函数及其性质(含知识点、例题、练习、测试)

指数函数及其性质 知识点一 指数函数及图像性质1.指数函数概念:定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R ,a 是底数.2. 指数函数的图象和性质:作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =图像性质总结 底数 a >1 0<a <1图象性质 函数的定义域为R ,值域为(0,+∞)函数图象过定点(0,1),即x =0时,y =1 当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1; 当x <0时,恒有y >1 函数在定义域R 上为增函数 函数在定义域R 上为减函数题型一 指数函数求值【例1】已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.题型二 比较大小【例2】比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1题型三 指数函数性质【例3】求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =【过关练习】1、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .2、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.思考探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域问题?知识点二 指数函数应用1. 指数函数的应用模型(应用题)2. 指数形式的函数定义域、值域题型 函数综合【例1】 2017年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍? → 变式:多少年后产值能达到120亿?【例2】指数函数与函数性质综合1、已知函数[]2,1,2329∈+•-=x y xx ,求这个函数的值域;2、求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.【过关练习】1、 一片树林中现有木材30000m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 32. ① 求函数y =的定义域和值域.② 求下列函数的定义域、值域:21x y =+; y =110.4x y -=.【补救练习】 1、已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )2、比较下列各组数的大小: 13222()0.45--与() ; 0.760.75333-()与().【巩固练习】1、函数f (x )=2|x -1|的图象是( )2、下列函数中值域为正实数的是( )A .y =-5xB .y =⎝⎛⎭⎫131-x C .y =⎝⎛⎭⎫12x -1 D .y =1-2x 【拔高练习】1、当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)2、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.【补救练习】 B ><【巩固练习】B B 【拔高练习】 C 24。

2023-2024学年高一上数学必修一:指数函数(附答案解析)

2023-2024学年高中数学必修一:指数函数
一、选择题(每小题5分,共40分)
1.若函数f(x)=(m2-m-1)a x是指数函数,则实数m的值为(D)
A.2B.1C.3D.2或-1
解析:由题意可知m2-m-1=1,解得m=2或m=-1.
2.函数f(x)=(3)x在区间[1,2]上的最大值是(C)
A.3
3
B.3C.3D.23
解析:因为3>1,所以指数函数f(x)=(3)x为增函数,所以当x =2时,函数f(x)在区间[1,2]上取得最大值,最大值为3.
3.若设a=0.30.3,b=0.32
5,c=
6
π,则a,b,c从大到小排列
为(A)
A.c>a>b B.c>b>a C.a>b>c D.b>a>c
解析:∵函数y=0.3x为减函数,∴0<b<a<1,c=6
π=π
1
6>1,
∴c>a>b.
4.已知f(x)
2-2x+1
,则f(x)的单调递增区间是(D)
A.(1,+∞)B.(-1,+∞) C.(-∞,-1)D.(-∞,1)
解析:设t=x2-2x+1,则函数y
为减函数,根据复合函数
单调性之间的关系可知,要求函数f(x)的单调递增区间,即求函数t =x2-2x+1的递减区间.由于t=x2-2x+1的对称轴为直线x=1,
第1页共6页。

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版单选题1、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B2、如图所示,函数y=|2x−2|的图像是()A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.3、在同一平面直角坐标系中,一次函数y =x +a 与对数函数y =log a x (a >0且a ≠1)的图象关系可能是( )A .B .C .D .答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可. A .由对数图象知0<a <1,此时直线的纵截距a >1,矛盾, B .由对数图象知a >1,此时直线的纵截距0<a <1,矛盾, C .由对数图象知0<a <1,此时直线的纵截距0<a <1,保持一致, D .由对数图象知a >1,此时直线的纵截距a <0,矛盾, 故选:C .4、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0,所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增,所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 5、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.6、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+a B .a+b 1−a C .a−b 1+a D .a−b1−a 答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b1−a .故选:B .8、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D. 多选题9、下列化简结果中正确的有(m 、n 均为正数)( ) A .(1a m)n=a −mn B .√a n n=a C .a m n=a m a nD .(π−3.14)0=1答案:AD分析:A.由指数幂的运算判断; B.由根式的性质判断;C.由分数指数幂和根式的转化判断;D.由规定判断. A. (1a m )n=(a −m )n =a −mn ,故正确; B. √a n n={a,n 为奇数|a |,n 为偶数 ,故错误;C. a m n=√a m n,故错误; D. (π−3.14)0=1,故正确. 故选:AD10、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0), 故选:CD .11、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a −2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a−2)−13=a−16+23=a12,故A 正确;对于B :(xa −1y)a⋅(4y−a )=4x1a×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题12、不等式2022x ≤1的解集为______. 答案:(−∞,0]分析:根据给定不等式利用指数函数单调性求解即可作答.依题意,不等式2022x ≤1化为:2022x ≤20220,而函数y =2022x 在R 上单调递增,解得x ≤0, 所以不等式2022x ≤1的解集为(−∞,0]. 所以答案是:(−∞,0]13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、函数f(x)=lg(kx)−2lg(x +1)仅有一个零点,则k 的取值范围为________. 答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}解答题(a>0,a≠1).15、已知函数f(x)=1−2a|x|+1(1)判断f(x)的奇偶性并证明;,求a的值.(2)若f(x)在[−1,1]上的最大值为13答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值. 解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

部编版高中数学必修一第四章指数函数与对数函数带答案重难点归纳

(名师选题)部编版高中数学必修一第四章指数函数与对数函数带答案重难点归纳单选题1、设4a =3b =36,则1a +2b =( ) A .3B .1C .−1D .−32、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增3、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .4、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a3 (a >0,b >0)的结果是( )A .b aB .ab C .a 2b D .b 2a5、设alog 34=2,则4−a =( ) A .116B .19C .18D .166、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −17、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( ) A .−1或2B .−1 C .2D .128、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,多选题9、定义运算a ⊕b ={a(a ≥b)b(a <b) ,设函数f(x)=1⊕2−x ,则下列命题正确的有( )A .f(x)的值域为 [1,+∞)B .f(x)的值域为 (0,1]C.不等式f(x+1)<f(2x)成立的范围是(−∞,0)D.不等式f(x+1)<f(2x)成立的范围是(0,+∞)10、已知函数y=f(x)的图象在区间[0,1]上是一条连续不断的曲线,则下列结论正确的是()A.若f(0)⋅f(1)<0,则y=f(x)在(0,1)内至少有一个零点B.若f(0)⋅f(1)>0,则y=f(x)在(0,1)内没有零点C.若y=f(x)在(0,1)内没有零点,则必有f(0)⋅f(1)≥0D.若y=f(x)在(0,1)内有唯一零点,f(0)⋅f(1)<0,则f(x)在(0,1)上是单调函数11、(多选)已知函数f(x)=a x−(1a )x其中a>0且a≠1,则下列结论正确的是()A.函数f(x)是奇函数B.函数f(x)=0在其定义域上有解C.函数f(x)的图象过定点(0,1)D.当a>1时,函数f(x)在其定义域上为单调递增函数填空题12、函数f(x)=a x−1+2(a>0,a≠1)的图象恒过定点_____________.部编版高中数学必修一第四章指数函数与对数函数带答案(二十九)参考答案1、答案:B分析:先求出a =log 436,b =log 336,再利用换底公式和对数的运算法则计算求解. 因为4a =3b =36,所以a =log 436,b =log 336, 则1a =log 364,2b =log 369,所以则1a +2b =log 364+log 369=log 3636=1. 故选:B. 2、答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .3、答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断. y 2=3x与y 4=10x是增函数,y 1=(13)x与y 3=10−x=(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A . 故选:A 4、答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√a=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13=a32+16−1+13b1+13−2−13=ab −1=ab故选:B 5、答案:B分析:根据已知等式,利用指数对数运算性质即可得解由alog 34=2可得log 34a =2,所以4a =9, 所以有4−a =19, 故选:B.小提示:本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目. 6、答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 7、答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值. 由题意可得{m 2−m −1=1m >0m ≠1 ,解得m =2. 故选:C. 8、答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C . 9、答案:AC分析:求得f (x )的解析式,画出f (x )的图象,由此判断f (x )的值域,并求得不等式f(x +1)<f(2x)的解. 由函数f(x)=1⊕2−x,有f(x)={1(1≥2−x )2−x(1<2−x ),即f(x)={2−x(x <0)1(x ≥0),作出函数f(x)的图像如下,根据函数图像有f(x)的值域为[1,+∞),所以A选项正确,B选项错误. 若不等式f(x+1)<f(2x)成立,由函数图像有当2x<x+1≤0即x≤−1时成立,当{2x<0x+1>0即−1<x<0时也成立.所以不等式f(x+1)<f(2x)成立时,x<0.所以C选项正确,D选项错误.故选:AC.小提示:本小题主要考查分段函数图象与性质,属于中档题.10、答案:AC分析:根据零点存在定理逐一判断即可.因为f(x)在[0,1]上连续,A.f(0)⋅f(1)<0,由零点存在定理可知,y=f(x)在(0,1)内至少有一个零点,故正确;B.当f(x)=x2−x+14时,满足f(0)⋅f(1)>0,但在(0,1)内有一个零点12,故错误;C.y=f(x)在(0,1)内没有零点,则必有f(0)⋅f(1)⩾0等价于f(0)⋅f(1)<0,则y=f(x)在(0,1)内有零点,由零点存在定理可知此命题是真命题,故正确;D.y=f(x)在(0,1)内有唯一零点,f(0)⋅f(1)<0,但f(x)在(0,1)上不一定是单调函数,比如f(x)=14−(x−14)2,故错误.故选:AC.11、答案:ABD分析:对于A,先求出定义域后利用奇函数的定义判断,对于BC,由A可知f(x)为R上的奇函数,所以可得f(0)=0,从而可进行判断,对于D,由指数函数的单调性判断f(x)=a x−(1a )x=a x−a−x,定义域为R,f(−x)=a−x−a x=−f(x),所以f(x)为奇函数,且f(0)=0,故选项A,B正确,选项C错误;a>1,0<1a <1,y=a x,y=−(1a)x在R上均为增函数,f(x)在其定义域上为单调递增函数,所以选项D正确.故选:ABD.12、答案:(1,3)分析:根据指数函数的性质,即可得答案.令x−1=0,可得x=1,所以f(1)=a0+2=3,即f(x)图象恒过定点(1,3). 所以答案是:(1,3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

相关文档
最新文档