2.2整式的加减(4)

合集下载

2.2 整式的加减

2.2 整式的加减
它的指数不变.
相加
3 ab²+ 5 ab²= 8 ab²
不变
探究新知
2.2 整式的加减
试一试
下列合并同类项合并对了吗?不对的,说明理由.
(1)a+a=2a √
(4)4x2y-5xy2=-x2y ×
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5
×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a
当x=2019时,原式=2×2019-1=4037.
探究新知
素养考点 4
2.2 整式的加减
利用合并同类项解答实际问题
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方
商定的结果是:1千克土豆换0.5千克苹果. 当称完带篮子的土豆重
量后,摊主对小明奶奶说:“别称篮子的重量了,称苹果时也带
篮子称,这样既省事又互不吃亏.”你认为摊主的话有道理吗?请
你用所学的有关数学知识加以判定.
解:设土豆重a千克,篮子重b千克,则应换苹果0.5a千克.
若不称篮子,则实换苹果为0.5a+0.5b-b=(0.5a-0.5b)千克,
很明显小明奶奶少得苹果0.5b千克.
所以摊主说得没有道理,这样做小明奶奶吃亏了.
巩固练习
2.2 整式的加减
6.为建立“图书角”,七年级一班的各组同学踊跃捐书,其
=____.
4.合并同类项:
-4a
(1)-a-a-2a=________;
0
(2)-xy-5xy+6yx=______;
ab2-a2b
(3)0.8ab2-a2b+0.2ab2=_______;
8a2b-2ab2+3

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

2.2 整式的加减

2.2 整式的加减
(x-y2)=x2+y-2x+2y2,错误;③-(a+b)-(-x+y)=-a-b+x-y, 正确;④应为3(x-y)+(a-b)=3x-3y&#(1)括号内各项都要与括号前的数相乘,不要漏
乘任何一项;(2)同号得正,异号得负,不要出 现符号错误;(3)去完括号,可运用去括号法则 进行验证.
意若所给的值是负数,代入时要添上括号;若所给的值是
(3)整式加减的结果一定要化为最简,即最后结果中:①不能
含有同类项;②不能出现带分数,带分数要化成假分数;③一 般按某一字母的降幂或升幂排列
巧记乐背
整式进行加和减,
实质就是在化简; 先去括号再合并, 化到最简才算完.
整式加减与求值:整式的加减常与整式的求值相结合,解 决这类问题的大致步骤为:先利用整式的加减化简整式, 再把有关的数值代入并计算,简记为“一化、二代、三计 算”.在化简时要注意去括号时是否变号,在代入时要注
第二章 整式的加减
2.2 整式的加减
同类项
概念 同类 项 所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个 常数项也是同类项
(1)同类项不一定是两项,也可以是三项、四项或更多项,但至
少为两项.(2)同类项的特征:“两相同,两无关”.“两相同”是 知识 指:①所含字母相同;②相同字母的指数相同.“两无关”是指:①
整式的加减
概念
整式加 减的运 算法则 一般地,几个整式相加减,如果有括号就先去括号,再合并同
类项
(1)整式加减的一般步骤:①如果有括号,先去括号;②如果
有同类项,要合并同类项;③如果运算结果是多项式,把这个
知识解 读 多项式按某一字母的降(升)幂排列.(2)整式加减的一般步 骤并不绝对,在具体运算中,也可以先合并同类项,再去括号.

《整式的加减(4)》教学设计

《整式的加减(4)》教学设计

2.2整式的加减(4)学习目标:1.熟练进行整式的加减运算,提高计算能力;2.规范训练计算的过程步骤,形成书写习惯;3.积极开展小组合作与交流,参与团队合作;4.整合知识融合方法与思想,发展核心能力。

学习重点:熟练进行整式的加减运算。

学习过程:一、自学:(主动弄清自己可以弄清楚的问题)1、读一读:(读课本:)(要求:两分钟内完成,其中前1分钟自己大声朗读,后1分钟小组内两人组合互相背诵。

)(1)《课本》63页的同类项的概念、合并同类项的方法;(2)《课本》66页的去括号符号法则。

2、练一练:(计算题:)(要求:五分钟内完成,其中前3分钟自己独立练习,选择完成至少3个,第四分钟组内统一答案,第五分钟组内帮学。

)(1) (2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b);(3)(5a2+2a-1)-4(3-8a+2a2)(4)5a2-[a2+(5a2-2a)-2(a2-3a)]3、议一议:(勤归纳:)(要求:三分钟内完成,前两分钟组内交流讨论,第3分钟反馈。

)(1)整式的加减运算的主要步骤?(2)整式的加减运算中注意事项?二、探究:(积极思考自己应该弄清楚的问题)1、动手算:12×(−2)−2×[−2−13×(23)2]+[−32×(−2)+13×(23)2](要求:四分钟内完成,其中前3分钟自己独立练习,后1分钟小组内统一答案,组内帮学。

)2、看一看:求:12x−2(x−13y2)+(−32x+13y2)的值,其中x=−2,y=23。

议一议:(要求:1分钟内完成,组内交流讨论,1分钟后反馈。

)(1)这道求值题和上一道计算题有何联系?(2)这道题是直接代值计算吗?(3)简便算的解题步骤?3、带一带:师生配合完成解题过程规范示范。

4、练一练:(化简求值:)(要求:五分钟内完成,其中前3分钟自己独立练习,选择完成至少2个,第四分钟组内统一答案,第五分钟组内帮学。

七年级上册2.2整式的加减(共18张PPT)

七年级上册2.2整式的加减(共18张PPT)

例2、根据乘法分配律合并同类项:
(1)-xy2+3xy2, (2)7a+3a2+2a-a2+3
解: (1)原式=(-1+3)xy2 =2xy2
(2)原式=7a 2a 3a2 a2 3
(7a 2a) (3a2 a2 ) 3
合并同类 项的法则
=(7+2)a+(3-1)a2+3 =9a+2a2+3
=(3-5)a+(2-1)b = -2a+b
(二结合) (三合并)
18
(1)同类项与系数无关, 字母的排 列顺序也无关。 (2)几个常数项也是同类项。
化简多项式的一般步骤是什么呢?通过 如下问题进行说明:找出多项式
4x2 2x 7 3x 8x2 2 中同类项,并进行合
并,同时思考下面问题:
每一步运算的依据是什么?注意什么?
(1)找出同类项并做标记; (2)运用交换律、结合律将多项式的同类项结合; (3)合并同类项; (4)按同一个字母的降幂(或升幂排列).
16
合并同类项:
不要忘记哦
(1)a 2a 3a ;
(2)3b 5b -2b ;
(3) 5x2 9x2 4 x 2;
(4) 4xy2 2xy2 6xy2;
17
例3、合并同类项:
(1)3a+2b-5a-b
(2) 4ab 1 b2 9ab 1 b2
3
2
解: (1) 3a + 2b – 5a - b (一找)
100t+120×2.1t=100t+252t
100t+120×2.1t=100t+252t 这个式子的结果是多少? 你是怎样得到的?
二、1.如何表示两种立体图形的体积? b

整式的加减2.2去括号(4)

整式的加减2.2去括号(4)
第二章 整式的加减
2.2 整式的加减
第2课时 去括号
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能运用运算律探究去括号法则.(重点) 2.会利用去括号法则将整式化简.(难点)
针对训练
化简: (1)3(a2-4a+3)-5(5a2-a+2); (2)3(x2-5xy)-4(x2+2xy-y2)-5(y2-3xy); (3)abc-[2ab-(3abc-ab)+4abc]
解:原式=-5a2+5a+2. a=-2时,原式=-8.
课堂小结
(1)去括号时要将括号前的符号和括号一起去掉; (2)去括号时首先弄清括号前是“+”还是“-”; (3)去括号时当括号前1)8m 2n (5m n) 8m 2n 5m n 13m n;
(2)(5 p 3q) 3( p2 2q) 5 p 3q (3 p2 6q) 5 p 3q 3 p2 6q 3 p2 5 p 3q;
5.先化简,再求值:2(a+8a2+1-3a3)-3(-a +7a2-2a3),其中a=-2.
当堂练习
1.下列去括号中,正确的是( C )
2.不改变代数式的值,把代数式括号前的“-”
号变成“+”号,
结果应是( D )
3.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为(B )
A.1
B.5
C.-5 D.-1
4.化简下列各式: (1)8m+2n+(5m-n); (2)(5p-3q)-3(p2 2q).
2
求5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.
解:原式=5xy2-(-xy2+2x2y)+2x2y-xy2 =5xy2.

人教版七年级数学教材上册《整式的加减》全章教案

第一学时 整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。

学习目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。

学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。

(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。

[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。

4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。

单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。

说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。

2、判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数 和次数。

①x +1; ②x 1; ③πr 2; ④-23a 2b 。

3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。

2.2 整式的加减

2.2 整式的加减1. 引言整式是由字母、数字与运算符号组合而成的代数表达式。

整式的加减是数学中的基础运算之一,掌握整式的加减运算对于学习代数学和解决实际问题都具有重要意义。

本文将介绍整式的加减的定义和运算规则,以及一些例子来帮助读者更好地理解。

2. 整式的定义整式是指只包含有理数、字母和运算符(加号或减号)的表达式。

整式是代数学中的基础概念,用于表示数与字母的运算关系。

整式的形式可以是单个项或多个项的和或差。

每个项由系数和字母的乘积组成,这个乘积可以有指数。

例如: - 2x^2y + 3xy^2 - 4xy - 5a^3 - 2b^2 + 73. 整式的加减运算规则3.1 加法的运算规则整式的加法是指将两个或多个整式相加的运算。

加法的运算规则如下: 1. 将同类项相加,即将具有相同字母和指数的项相加。

2. 系数相加。

例如:2x^2y + 3xy^2 - 4xy + 5x^2y - 2xy^2 + 7xy= (2x^2y + 5x^2y) + (3xy^2 - 2xy^2) + (- 4xy + 7xy)= 7x^2y + xy^2 + 3xy3.2 减法的运算规则整式的减法是指将一个整式减去另一个整式的运算。

减法的运算规则如下: 1. 将减数的每一项的系数取相反数,然后按照加法的运算规则进行运算。

例如:(2x^2y + 3xy^2 - 4xy) - (5x^2y - 2xy^2 + 7xy)= 2x^2y + 3xy^2 - 4xy - 5x^2y + 2xy^2 - 7xy= (2x^2y - 5x^2y) + (3xy^2 + 2xy^2) + (-4xy - 7xy)= -3x^2y + 5xy^2 - 11xy4. 整式的加减练习题1.计算:(3x^2 - 2xy + y^2) + (4x^2 - 3xy + 2y^2)2.计算:(5a^3 - 2b^2 + 7) - (3a^3 + 4b^2 - 1)5. 结论在代数学中,整式的加减是基础的代数运算之一。

2.2(4)整式的加减--实际问题(简单)

2.2(4)整式的加减--实际问题
一.【知识要点】
1.利用整式的加减解决实际问题。

二.【经典例题】
1.一件商品每件a 元,原来按成本增加22%定出价格,每件售价是多少元?现在由于库存积压减价,按原价的85%出售,现在售价多少元?每件还能盈利多少元?
三.【题库】
【A 】
1.如果某三角形第一条边长为(2a -b) cm,第二条边比第一条边长(a+b) cm,第三条边比第一条边的2倍少b cm,求这个三角形的周长.
2.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )
A .b a 1612+ B. b a 86+ C. b a 83+ D.b a 46+
【B 】
1. 一根铁丝长a 米,第一次用去它的一半少1米,第二次用去剩下的一半多1米,结果还剩下多少米?
2. 三角形的第一边长为32a b +,第二边比第一边长a b -,第三边比第二边短2a ,其中a=2,b=4 求这个三角形的周长。

3.
【C 】
1.张老板以每颗a 元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,求全部水蜜桃共卖多少元?( ).
A . )(3070b a a -+
B .b a 30%)201(70+⨯+⨯
C .)(30%)201(100b a a --⨯+⨯ D
.)(b a a -+⨯+⨯30%)201(70
【D 】。

2.2 整式的加减(第4课时)

义务教育教科书 数学 七年级 上册
2.2 整式的加减 (第4课时)
大连市第五十一中学 刘悦
例8
做两个长方体纸盒,尺寸如下(单位:cm)



小纸盒 a
b
c
大纸盒 1.5a 2b
2c
(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?
小组合作:(1)独立思考1分钟 (2)组内讨论4分钟 (3)小组展示方案3分钟
作业:教科书习题2.2 第3,4, 5题.
(3) x y x 2 y 2 x 2 y 2 8 x y
( )( ) (4) 53 a 2 b -a b 2-a b 2 + 3 a 2 b 其中 a = 1 , b = 1 23
打开学案完成2,3,4题
课堂小结
从知识,方法,经验三个方面我们 有哪些收获?
完成学案中的课堂检测
想一想:你是如何计算整式加减的 呢?你可以归纳下整式加减的法则 吗?
求 1x2(x1y2)(3x1y2)的值,
2
3
23
其中 x 2, y 2 .
3
练习: 打开猿题库,自行完成题库中2.2整式 加减,利用软件解析错题。
四、闯关竞赛
(1) abcd (2) 5 a 4 c 7 b 5 c 3 b 6 a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档