人工神经网络分类应用

合集下载

人工神经网络及其应用领域

人工神经网络及其应用领域

人工神经网络及其应用领域人工神经网络(Artificial Neural Network,简称ANN)是一种被广泛应用于机器学习、模式识别、数据挖掘等领域的技术。

它模仿自然神经元的结构和功能,通过多层、多节点的结构,从输入端读取数据,经过复杂计算后输出结果,实现了对一系列非线性问题的解决。

在本文中,我们将探讨人工神经网络的基本结构以及其应用领域。

一、人工神经网络的基本结构为了更好地理解人工神经网络,我们需要了解其基本结构。

人工神经网络由三层结构组成,分别是输入层、隐藏层和输出层。

输入层从外界获取数据输入,而输出层将输出反馈给用户,隐藏层则对输入层的信息进行处理。

输入层的每个节点均对应着一个输入特征,比如图像识别中的像素点。

隐藏层的节点数量在不同情况下各不相同,取决于网络的设计和任务要求。

对于拥有N个输入特征的神经网络,如采用一个由H个节点组成的隐藏层,那么H个节点将共同接收这N个输入特征。

隐藏层中节点的计算方式通常采用非线性函数,比如ReLU函数。

最后,输出层从隐藏层中接收数据并输出结果。

在实际应用中,不同类型的神经网络设计包括全连接、卷积、循环神经网络等。

二、人工神经网络的应用领域1. 图像识别和分类技术人工神经网络的最常见应用之一是图像识别和分类。

在图像识别任务中,神经网络通过输入图像像素特征,识别不同物体并给出正确的标签。

在图像分类任务中,神经网络可以自动对具有相似特征的图像进行分类。

2. 自动驾驶技术在自动驾驶技术中,人工神经网络可以实现对车辆周围环境的检测和分析。

通过连接车辆上的传感器和摄像头,神经网络能够对路况、车速和周围交通情况进行有效处理。

基于这些数据,自动驾驶车辆就能够合理地进行运行和规避违规操作。

3. 自然语言处理在自然语言处理中,人工神经网络主要应用于文本分类和情感分析。

神经网络通过学习文本中的数据特征和结构,实现对文本分类的准确性提升。

在情感分析方面,神经网络则能够自动分析文本的情感倾向并给出相关预测。

人工神经网络基础与应用-幻灯片(1)

人工神经网络基础与应用-幻灯片(1)
24
4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突

细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。

人工神经网络的原理和应用

人工神经网络的原理和应用

人工神经网络的原理和应用人工神经网络(Artificial Neural Network,ANN)是一种模拟生物神经网络的计算模型。

它由大量的人工神经元(Artificial Neurons)相互连接而成,并通过加权和激活函数来模拟神经元之间的信息传递。

人工神经网络模型是一种在计算机中模拟信息处理和知识获取方式的数学模型,它能够通过学习自适应调整神经元间的连接权值,从而实现对数据的分类、识别、预测等功能。

在人工神经网络中,每个人工神经元接收多个输入信号,并将这些输入信号进行加权求和后经过激活函数处理得到输出信号。

神经元之间的连接权值决定了不同输入信号对输出信号的影响程度。

而激活函数则用于对神经元的输出进行非线性映射,增加人工神经网络的模拟能力。

人工神经网络的学习过程是通过反向传播算法(Backpropagation)来进行的。

反向传播算法基于梯度下降法的思想,通过计算输出误差对连接权值的偏导数来调整连接权值,使得神经网络的输出尽可能接近于所期望的输出。

反向传播算法通常需要大量的训练数据和反复迭代的过程才能得到较好的结果。

人工神经网络的应用非常广泛,以下是几个常见的应用领域:1. 图像识别:人工神经网络能够通过学习大量的图像数据,实现对图像的识别和分类。

例如,人工神经网络可以通过学习大量的猫的图片,实现对新的图片是否为猫的判断。

2. 语音识别:人工神经网络可以通过学习大量的语音数据,实现对语音的识别和转录。

例如,语音助手中的语音识别功能就是基于人工神经网络实现的。

3. 自然语言处理:人工神经网络可以通过学习大量的文本数据,实现对自然语言的理解和处理。

例如,机器翻译、情感分析等领域都可以使用人工神经网络进行处理。

4. 数据挖掘:人工神经网络可以通过学习大量的数据,实现对数据的分类、聚类、预测等任务。

例如,人工神经网络可以通过学习用户的历史行为数据,预测用户的购买行为。

5. 控制系统:人工神经网络可以通过学习环境和控制信号之间的关系,实现对复杂控制系统的建模和控制。

人工神经网络原理、分类及应用

人工神经网络原理、分类及应用

3 B P 神经 网络
目前 应 用 最 为 广泛 的 网络 , 具 有 多 层 网络 结 构 , 口 _ J ‘ 以由 一 个 或 者 多个 隐 含 层 。 B P 网 络采 用W i d r o w- - Ho f f 学 习算法 和 非线 性 传递 函数 , 典 型 的BP 网 络 采 用 的是 梯 度 下降 算 法 , 也 就 是 wi d T o w— Ho f f 算 法所 规 定的 。 B P, i f  ̄ B a c k P r o p a g a t i o n , 就 是指 为 非线性 多 层 网络 训 练 中梯 度 计 算 是 采 用 信 号 正 向传 播 、 误 差 反 向传 播 的 方 式。 通过 采 用非 线 性 传递 函数 , B P 网 络能 够 以 义 的 精度 逼 近 仟何 非 线性 函数 , 由于 采 用 隐 含 中 间 层 的 结 构 , BP网 络 能 够 提 取 出更 高 阶 的 统 计性 质 , 尤 其是 当输 入 规 模庞 大 时 , 网络 能 够 提 取 高 阶统 计性 质 的能 力就 显 得 非 常 重 要 了, 结合本文的课题 , 将 采 用 BP神 经 网络 及其 改进 算 法 进行 组 合 集成 实验 , 用 以 解决 财 务 颅 警 的 实
1 神经 网络简介
人 工神 经 网络( Ar t i f i c i a l Ne u r a l Ne t wo r k, ANN) , 亦称 神经 网络 ( Ne u r a l Ne t wo r k , NN) , 是 一种应 用 类 似 于大 脑神 经 突触 连 接结构进行信息处理的数学模型 , 它 是 在 人 类 对 自身大 脑组 织 结 合 和 思 维 机 制 的 认 识理 解 基 础 之 上模 拟 出来 的 , 它 是 根 植 于 神 经 科学 、 数 学、 统计学 、 物理 学、 计 算 机 科 学 以 及 工 程 科 学 的一 『 J 技 术。 心理 学 家Mc c u l l o c h , 数学 家P i t t s 在2 0 世 纪4 0 年 代第 次 提 出 了 神 经 网 络模 型 , 从 此开 创 了神 经 科 学理 论 的 研 究 时 代 , 此 后 半 个世 纪 神 经 网 络技 术 蓬 勃 发 展 。 神 经 网络 是 一种 计 算 模 型 , 由大 量 的 神 经 无 个体 节 点 和 其 间相 瓦 连 接 的加 权 值共 同组 成 , 每 个 节 点 都 代 表 ・ 种运算, 称 为激 励 函数 ( a c t i v a t i o n f u n c t i o n ) 。 每 两 个相 互连 接 的 节 点 问 鄙 代 表 个 通 过 该 连 接 信 号 加 权 值 , 称 值 为 权 重 ( we i g h t ) , 神 经 网络 就 是通 过 这 种 方 式 来模 拟 人 类 的 记忆 , 网络 的 输 出 则取 决于 网络 的结 构 、 网络 的连 接 方 式 、 权 重和 激 励 函数 。 而 网络 本 身 通 常 是 对 自然 界 或 者 人 类 社 会 某 种 算 法 或 函数 的 逼 近 , 也 呵能 是 ・ 种 逻辑 策 略 的 表 达 。 神 经 网 络 的 构 筑 理 念 是 受 到 生 物 的神经网络运作启发而产生的。 人工 神 经 网络 则 是 把 对 生 物 神 经 网络 的认 识 与数 学统 计 模 型 向 结 合 , 借 助 数 学统 计 工具 来 实现 。 另

人工神经网络在医疗中的应用

人工神经网络在医疗中的应用

人工神经网络在医疗中的应用随着人工智能技术的不断发展,人工神经网络在医疗领域中的应用也成为了一个热门话题。

人工神经网络在医疗中的应用,可以帮助医生更准确地诊断疾病,预测疾病的发展趋势,提高治疗效果等等。

本文将深入探讨人工神经网络在医疗中的应用,以及其所带来的好处和挑战。

一、人工神经网络在医疗中的应用人工神经网络是一种仿照人类神经系统工作原理的计算机程序模型,可以利用数据进行自学习和自适应。

在医疗领域中,人工神经网络可以应用于以下方面:1.辅助医生诊断疾病。

很多疾病的诊断需要依靠专业医生的经验和判断力,但是医生毕竟是人,会受到主观因素的干扰,有时难免会出现诊断错误的情况。

而人工神经网络可以利用大量的病例数据进行学习和训练,进一步提高诊断的准确性和可靠性。

比如,在CT 影像诊断领域,人工神经网络已经可以达到和医生相同甚至更高的诊断准确率。

2.预测疾病的发展趋势。

对于一些慢性病来说,治疗的过程可能需要经过一段很长的时间,而这个过程中疾病的发展趋势很难掌握。

而人工神经网络可以通过分析病人的历史病例和生命体征等数据,预测出疾病的发展趋势,帮助医生更好地了解病情变化,以便制定更有效的治疗方案。

3.个性化治疗方案的制定。

不同的疾病发展过程和病人的身体状况是各不相同的,而人工神经网络可以根据病人的生命体征、病情变化等数据,为每个病人制定出更加个性化的治疗方案。

这不仅可以提高治疗效果,还可以避免一些不必要的副作用和风险。

4.医疗图像识别和分析。

现代医学基于医学图像对疾病诊断和治疗进行指导。

如何利用医学图像的特点自动捕捉关键信息,分析和解释图像数据;进而实现医疗影像智能分析和自动诊断,是医疗领域关注的热点。

基于深度学习、人工神经网络等人工智能技术,医疗影像智能分析和自动诊断已经逐渐发展成为一个热门研究领域。

二、人工神经网络在医疗中的优势人工神经网络在医疗中的应用,有以下三个优势:1.提高诊断准确性和可靠性传统的人工诊断方法往往受到医生本身经验和主观因素的限制,容易出现误诊和漏诊的情况。

人工神经网络模型及应用领域分析

人工神经网络模型及应用领域分析

人工神经网络模型及应用领域分析人工神经网络(Artificial Neural Network)是一种模拟生物神经网络的智能系统。

它由一系列处理单元,即神经元所组成,能够学习、适应和模拟复杂的非线性关系,具有很强的特征提取与分类能力。

其主要应用于机器学习、人工智能等领域,并在图像识别、预测控制、金融风险分析、医学诊断等方面得到广泛应用。

本文将从人工神经网络模型的原理、种类和应用领域三个方面进行探讨。

一、人工神经网络模型的原理人工神经网络模型由模拟人类神经元构成,其基本结构包括输入层、隐藏层和输出层。

其中输入层接受外部输入信息,隐层是神经网络的核心,通过将输入信息转换为内部状态进行处理,并将处理结果传递给输出层。

输出层将最终结果输出给用户。

举个例子,我们可以将输入层视为人类的五官,隐藏层类比于大脑,而输出层则类比人体的手脚。

人工神经网络各层间的信息传递包括两个过程,即正向传递和反向传递。

正向传递过程是指输入信息从输入层流向输出层的过程,即信息的传递方向是输入层-隐藏层-输出层。

反向传递过程是指通过反向误差传递算法计算并更新神经网络中每个权重的值,从而优化神经网络的过程。

二、人工神经网络的种类人工神经网络主要分为三类,分别是前馈神经网络、递归神经网络和自适应神经网络。

一、前馈神经网络(FNN)前馈神经网络是人工神经网络中最为常见的一类,也是最简单的神经网络类型之一。

其功能类似于单向传导信息的系统,例如生物的视网膜和传感器等。

前馈神经网络只有正向传递过程,而没有反向传递过程。

前馈神经网络常用于分类、识别和预测等领域。

二、递归神经网络(RNN)递归神经网络包括输入层、隐藏层和输出层,但隐藏层的神经元可以连接到之前的神经元,使信息得以传递。

与前馈神经网络不同,递归神经网络可以处理时序性数据、自然语言等。

递归神经网络的应用领域主要是非线性有限时序预测、文本分类、语音识别、图像处理、自然语言处理等。

三、自适应神经网络(ANN)自适应神经网络是一种可以自动调整结构和参数的神经网络,包括自组织神经网络和归纳神经网络。

人工神经网络在哪些领域中得到广泛应用?

人工神经网络在哪些领域中得到广泛应用?

人工神经网络在哪些领域中得到广泛应用?一、医疗健康领域人工神经网络在医疗健康领域中的应用,早已成为一个备受瞩目的话题。

目前,人工神经网络已经成功应用于医学图像诊断、疾病预测和药物开发等多个方面。

1. 医学图像诊断通过使用深度学习算法,人工神经网络可以对医学图像进行自动分析和识别。

例如,在肿瘤检测方面,人工神经网络可以通过训练大量的肿瘤图像,自动识别出患者是否存在肿瘤,并提供相应的诊断建议,从而帮助医生提高诊断准确性。

2. 疾病预测人工神经网络可以通过学习大量的病例数据,预测患者未来可能发生的疾病。

例如,在心脏病预测方面,人工神经网络可以根据患者的年龄、性别、血压、血脂等指标,预测患者是否患有心脏病的风险,并提供相应的预防建议。

3. 药物开发人工神经网络可以通过分析药物分子的结构和特性,预测药物的疗效和潜在副作用。

例如,在药物筛选方面,人工神经网络可以通过学习已知药物和疾病之间的关系,预测新的药物对特定疾病的治疗效果,从而加快药物研发的速度和效率。

二、智能交通领域人工神经网络在智能交通领域中的应用,正在推动城市交通系统的智能化和高效化发展。

通过利用人工神经网络技术,可以实现交通流量预测、交通信号优化和智能驾驶等多个领域的创新。

1. 交通流量预测通过分析历史交通数据,人工神经网络可以预测未来交通流量的变化趋势。

例如,在城市交通规划方面,人工神经网络可以通过学习大量的历史交通数据,预测未来某一时间段某一路段的交通流量,从而帮助交通部门优化道路资源的配置。

2. 交通信号优化人工神经网络可以通过学习交通流量数据和信号控制策略,优化交通信号的配时方案。

例如,在城市交通拥堵缓解方面,人工神经网络可以根据实时的交通流量信息,自动调整交通信号的配时,从而提高交通效率和减少交通拥堵。

3. 智能驾驶人工神经网络在智能驾驶中的应用,可以帮助汽车实现自主驾驶和智能化的交通系统。

通过学习大量的驾驶数据,人工神经网络可以模拟人类的驾驶行为,并做出智能决策。

人工神经网络的基本原理和应用

人工神经网络的基本原理和应用

人工神经网络的基本原理和应用概述人工神经网络是一种受到人脑神经元启发的计算模型。

它由许多高度互连的处理单元(神经元)组成,这些神经元之间通过连接强度(权值)相互通信。

人工神经网络能够通过学习和训练,自动调整权值和拓扑结构,从而实现某种特定任务。

基本原理人工神经网络的基本原理是模拟生物神经元的工作方式。

每个神经元接收一组输入信号,并根据这些输入信号的权值和激活函数的输出,产生一个输出信号。

这个输出信号又可以作为其他神经元的输入信号,从而实现信息的传递和处理。

人工神经网络通常由多层神经元组成,包括输入层、隐藏层和输出层。

输入层接收外部输入信号,隐藏层和输出层对输入信号进行处理和转换。

隐藏层和输出层之间的连接强度(权值)通过训练过程进行学习和调整,以实现预期的输出结果。

应用领域人工神经网络在各个领域都有广泛的应用,包括但不限于以下几个方面:1.图像识别–人工神经网络可用于图像识别任务,如人脸识别、物体识别等。

通过训练大量图像数据,神经网络可以学习到图像中的特征,并通过对输入图像进行处理,达到准确分类和识别的目的。

2.自然语言处理–人工神经网络在自然语言处理方面也有着广泛的应用。

它可以用于语音识别、情感分析、机器翻译等任务。

通过训练大量文本数据,神经网络可以学习到单词和语义之间的关联,从而实现对自然语言的理解和处理。

3.预测和分类–人工神经网络可以通过训练历史数据,对未来事件进行预测。

例如,它可以用于股票市场预测、天气预报等领域。

此外,神经网络还可用于数据分类,如垃圾邮件过滤、疾病诊断等任务。

4.控制与优化–人工神经网络在控制与优化领域也有着广泛应用。

它可以用于自动驾驶车辆、工业生产优化、智能电网调度等控制系统中,通过学习和训练,实现自动控制和优化的目标。

优势与挑战人工神经网络相比传统的算法有一些明显的优势,但同时也面临一些挑战。

优势•并行处理能力:神经网络的并行处理能力可以加快训练和推理的速度。

•自适应学习:神经网络可以通过训练和反馈机制,自动学习和调整权值,适应输入数据的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 输入 输出变量的确定及其数据的预处理 输入/输出变量的确定及其数据的预处理 一般地,BP网络的输入变量即为待分析系统的内生 变量(影响因子或自变量)数,一般根据专业知识确定. 若输入变量较多,一般可通过主成份分析方法压减输入 变量,也可根据剔除某一变量引起的系统误差与原系统 误差的比值的大小来压减输入变量.输出变量即为系统 待分析的外生变量(系统性能指标或因变量),可以是 一个,也可以是多个.一般将一个具有多个输出的网络 模型转化为多个具有一个输出的网络模型效果会更好, 训练也更方便.
2.2 隐层节点数
在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的 神经网络模型的性能影响很大,而且是训练时出现"过拟合"的 直接原因,但是目前理论上还没有一种科学的和普遍的确定方法. 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练 样本任意多的情况,而且多数是针对最不利的情况,一般工程实 践中很难满足,不宜采用.事实上,各种计算公式得到的隐层节 点数有时相差几倍甚至上百倍.为尽可能避免训练时出现"过拟 合"现象,保证足够高的网络性能和泛化能力,确定隐层节点数 的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构, 即取尽可能少的隐层节点数.研究表明,隐层节点数不仅与输入/ 输出层的节点数有关,更与需解决的问题的复杂程度和转换函数 的型式以及样本数据的特性等因素有关.
k n
基本BP网络的拓扑结构 基本 网络的拓扑结构
1.样本数据 样本数据
1.1 收集和整理分组
采用BP神经网络方法建模的首要和前提条件是有 足够多典型性好和精度高的样本.而且,为监控训练 (学习)过程使之不发生"过拟合"和评价建立的网 络模型的性能和泛化能力,必须将收集到的数据随机 分成训练样本,检验样本(10%以上)和测试样本 (10%以上)3部分.此外,数据分组时还应尽可能考 虑样本模式间的平衡.
脑神经信息活动的特征
(1)巨量并行性. (1)巨量并行性. 巨量并行性 (2)信息处理和存储单元结合在一起. (2)信息处理和存储单元结合在一起. 信息处理和存储单元结合在一起 (3)自组织自学习功能. 自组织自学习功能. 自组织自学习功能
ANN研究的目的和意义 ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射, (1)通过揭示物理平面与认知平面之间的映射,了 通过揭示物理平面与认知平面之间的映射 解它们相互联系和相互作用的机理, 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源. 维的本质,探索智能的本源. (2)争取构造出尽可能与人脑具有相似功能的计算 (2)争取构造出尽可能与人脑具有相似功能的计算 机,即ANN计算机. ANN计算机. 计算机 (3)研究仿照脑神经系统的人工神经网络,将在模 研究仿照脑神经系统的人工神经网络, 研究仿照脑神经系统的人工神经网络 式识别, 式识别,组合优化和决策判断等方面取得传统计 算机所难以达到的效果. 算机所难以达到的效果.
c
ቤተ መጻሕፍቲ ባይዱ
k j
k cq
W11
c1 Wp1 … W1j cj Wpj Wij W
i1
… …
W1q cq Wiq Wpq
输出层L 输出层 C
W
b1 Vn1 V11 a1 Vh1

V1i bi Vni Vhi
V1p bp Vhp V np
隐含层L 隐含层LB
V
输入层L 输入层 A

k 1
ah

an
a
a
k h
a
人工神经网络概述
什么是人工神经网络? 什么是人工神经网络? 人工神经网络 T.Koholen的定义:"人工神经网络是由 具有 的定义: 人工神经网络是由 的定义 适应性的简单单元组成的广泛并行互连的网络, 适应性的简单单元组成的广泛并行互连的网络, 它的组织能够模拟生物神经系统对真实世界物 体所作出的交互反应. 体所作出的交互反应."
电脉冲 输 入 树 突 细胞体 信息处理
黑箱
形成
轴突 传输
突 触
输 出
图 12.2 生物神经元功能模型
一般而言, ANN与经典计算方法相比并非优越, 只有当常规方 法解决不了或效果不佳时ANN方法才能显示出其优越性.尤其对 问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断, 特征提取和预测等问题,ANN往往是最有利的工具.另一方面, ANN对处理大量原始数据而不能用规则或公式描述的问题, 表现 出极大的灵活性和自适应性.
由于BP神经网络的隐层一般采用Sigmoid转换函数, 为提高训练速度和灵敏性以及有效避开Sigmoid函数的 饱和区,一般要求输入数据的值在0~1之间.因此,要 对输入数据进行预处理.一般要求对不同变量分别进 行预处理,也可以对类似性质的变量进行统一的预处 理.如果输出层节点也采用Sigmoid转换函数,输出变 量也必须作相应的预处理,否则,输出变量也可以不 做预处理. 预处理的方法有多种多样,各文献采用的公式也 不尽相同.但必须注意的是,预处理的数据训练完成 后,网络输出的结果要进行反变换才能得到实际值. 再者,为保证建立的模型具有一定的外推能力,最好 使数据预处理后的值在0.2~0.8之间.
神经网络在环境科学与工程中的应用
人工神经网络以其具有自学习,自组织, 较好的容错性和优良的非线性逼近能力,受到 众多领域学者的关注.在实际应用中,80%~ 90%的人工神经网络模型是采用误差反传算法 或其变化形式的网络模型(简称BP网络),目 前主要应用于函数逼近,模式识别,分类和数 据压缩或数据挖掘.
神经网络研究的发展
(1)第一次热潮(40-60年代未) (1)第一次热潮(40-60年代未) 第一次热潮(40 年代未 1943年 美国心理学家W.McCulloch和数学家 1943年,美国心理学家W.McCulloch和数学家 W.McCulloch W.Pitts在提出了一个简单的神经元模型, MP模型. W.Pitts在提出了一个简单的神经元模型,即MP模型. 在提出了一个简单的神经元模型 模型 1958年 F.Rosenblatt等研制出了感知机 1958年,F.Rosenblatt等研制出了感知机 (Perceptron). (Perceptron). (2)低潮 -80年代初): 低潮(70- 年代初 年代初) 低潮 (3)第二次热潮 第二次热潮 1982年,美国物理学家J.J.Hopfield提出 年 美国物理学家 提出Hopfield模 提出 模 型,它是一个互联的非线性动力学网络他解决问题的方 法是一种反复运算的动态过程, 法是一种反复运算的动态过程,这是符号逻辑处理方法 所不具备的性质. 年首届国际A 大会在圣地亚哥 所不具备的性质. 1987年首届国际ANN大会在圣地亚哥 年首届国际 召开,国际A 联合会成立 创办了多种A 国际刊物 联合会成立, 国际刊物. 召开,国际ANN联合会成立,创办了多种ANN国际刊物.
神经网络在环境科学与工程中的应用
环境质量评价 环境系统因素预测 环境因素定量关系模拟 构效分析,成因分析 污染防治系统建模
李一平(河海大学环境科学与工程学院).《太湖生态系 统的人工神经网络模拟研究 》,环境科学与技术,2004 年第二期 构造了具有3层节点的人工神经网络模型,将太湖2001 年5~12月全湖共26个采样点的实测值作为学习样本,一共 有26×8=208组数据.从这些数据中分别随机抽取1/4的数 据各52组作为检验样本和测试样本,其余的104组(占50%) 数据作为训练样本.每个样本均含有12个输入因子,分别 是风速,风向,水温,pH,DO,高锰酸钾指数,浊度, TN,TP,叶绿素a,透明度,BOD5.以浮游植物 作为输出因子.用2002年8月的各点的浮游植物数据进行 预测比较,
BP网络建模特点: 非线性映照能力:神经网络能以任意精度逼近任何非线性连续函 数.在建模过程中的许多问题正是具有高度的非线性. 并行分布处理方式:在神经网络中信息是分布储存和并行处理的, 这使它具有很强的容错性和很快的处理速度. 自学习和自适应能力:神经网络在训练时,能从输入,输出的数 据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能 力,即将这组权值应用于一般情形的能力.神经网络的学习也可 以在线进行. 数据融合的能力:神经网络可以同时处理定量信息和定性信息, 因此它可以利用传统的工程技术(数值运算)和人工智能技术 (符号处理). 多变量系统:神经网络的输入和输出变量的数目是任意的,对单 变量系统与多变量系统提供了一种通用的描述方式,不必考虑各 子系统间的解耦问题.
汤丽妮(成都信息工程学院) 《人工神经网络在生态环境质量 评价中的应用》,四川环境,2003,3
BP神经网络在环境科学与工程中的应用 神经网络在环境科学与工程中的应用
由于BP神经网络具有优良的非线性逼近能力, 1994年以来,已在环境科学与工程的环境质量评 价与预测,监测点的优化布置,社会经济环境可 持续发展,污染物降解与释放,水(处理,生态) 系统的模拟与预测等方面获得了广泛的应用 .
人工神经网络 的研究方法及应用
刘 长安 2004. 12. 31
引 言
利用机器模仿人类的智能是长期以来人们认识自 然,改造自然和认识自身的理想. 改造自然和认识自身的理想. 研究 研究ANN目的: 目的: 目的 (1)探索和模拟人的感觉,思维和行为的规律, )探索和模拟人的感觉,思维和行为的规律, 设计具有人类智能的计算机系统. 设计具有人类智能的计算机系统. (2)探讨人脑的智能活动,用物化了的智能来 )探讨人脑的智能活动, 考察和研究人脑智能的物质过程及其规律. 考察和研究人脑智能的物质过程及其规律.
研究ANN方法 方法 研究
(1)生理结构的模拟: )生理结构的模拟:
用仿生学观点,探索人脑的生理结构, 用仿生学观点,探索人脑的生理结构,把 对人脑的微观结构及其智能行为的研究结合起 来即人工神经网络(Artificial Neural 来即人工神经网络( Netwroks,简称 ,简称ANN)方法. )方法. (2)宏观功能的模拟: )宏观功能的模拟: 从人的思维活动和智能行为的心理学特性 出发, 出发,利用计算机系统来对人脑智能进行宏观 功能的模拟,即符号处理方法. 功能的模拟,即符号处理方法.
相关文档
最新文档