固体物理答案第四章

合集下载

固体物理第章固体电子论 参考答案

固体物理第章固体电子论 参考答案

第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。

解:二维情形,自由电子的能量是:2πL x x k n =,2πL y y k n =在/k =h 到d k k +区间: 那么:2d ()d Z Sg E E =其中:22()πm g E =h2. 若二维电子气的面密度为n s ,证明它的化学势为:解:由前一题已经求得能态密度:电子气体的化学势μ由下式决定: ()()222E-/E-/001d ()d πe 1e 1B B k T k T L m E N g E L E μμ∞∞==++⎰⎰h 令()/B E k T x μ-≡,并注意到:2s N n L=那么可以求出μ:证毕。

3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3的数密度:其中m 是单个He 3粒子的质量。

可得:代入数据,可以算得: E F =6.8x 10-16 erg = 4.3x 10-4eV.则:F F E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为在T=0K 时,费米能量为代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()F erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭≈⨯≈ 在≠T 0K 时,费米能量所以,当温度从绝对零度升到室温(300K )时, 费米能变化为代如相关数据得可见,温度改变时,费米能量的改变是微不足道的。

5. 已知锂的密度为30.534/g cm ,德拜温度为370K ,试求(1)室温(300K )下电子的摩尔比热;(2)在什么温度下,锂的电子比热等于其晶格比热?解:(1)金属中每个电子在常温下贡献的比热 2'0()2B V B F k T C k E π= (1) 式中0FE 为绝对零度下的费米能: 202/33()28F h n E m π= (2)锂的密度30.534/g cm ,原子量6.94,每立方厘米锂包含的摩尔数为0.534/6.94,1摩尔物质中包含 6.022x 1023个原子,每个锂贡献一个电子,则每立方厘米中的电子数已知将数据代入(2)得在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热代入相关数据得(2)电子比热只在低温下才是重要的。

固体物理答案陆栋.pdf

固体物理答案陆栋.pdf

《固体物理学》习题解答( 仅供参考 )参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个 Na+和一个 Cl-组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:⎧⎪a1=a2( j + k)⎪⎪⎨a 2=a2( k + i)⎪⎪⎪a 3=a ( i +j)⎩ 2相应的晶胞基矢都为:⎧a =a i,⎪⎨b =a j,⎪⎩c =a k.2.六角密集结构可取四个原胞基矢a1, a 2,a 3与 a4,如图所示。

试写出O'A1A3、A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数(h k l m)。

解:(1).对于O'A1A3面,其在四个原胞基矢上的截矩分别为:1,1,- 1 ,1。

所以,其晶面2( )指数为。

(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1,-12,∞。

所以,其晶面指数为(1120)。

(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,-1,∞,∞。

1所以,其晶面指数为 (1 100)。

(4).对于 A 1 A 2 A 3 A 4 A 5 A 6 面,其在四个原胞基矢上的截矩分别为:∞ ,∞ ,∞ ,1。

所以, 其晶面指数为 (0001) 。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方: π6 ;体心立方: 83π;面心立方: 62π ;六角密集: 62π ;金刚石:3π 。

固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。

为什么?作出这一结构所对应的两维点阵和初基元胞。

解:石墨层中原子排成的六角网状结构是复式格子。

因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。

1.2在正交直角坐标系中,若矢量,,,为单位向量。

为整数。

问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。

解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。

1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。

证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。

证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。

证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。

解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。

(b)立方晶系中没有底心立方点阵。

(c)六角晶中只有简单六角点阵。

解:(a)因为四方晶系加底心,会失去4次轴。

(b)因为立方晶系加底心,将失去3次轴。

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理习题带答案

固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有

r
m


rn
。证明:要使两原子处于平衡状

r
m


rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2

2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m

r0
m 1
n

r0
n 1
。所以
m nm r0 。 n
0
r0



d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r


固体物理吴代鸣第四章习题答案

固体物理吴代鸣第四章习题答案

23
1300
1 . 79 10
8
二者差约
Байду номын сангаас
3 个量级。
4 2 试求产生 热容的贡献。
解:产生
n 个肖脱基缺陷后晶体体
积的变化以及对晶体
n 个肖脱基缺陷就意味着
有 n 个原子从晶体内移动 N 个增加到 N n 个,
到表面上,这样,晶格
的格点就由原来的
令原来的晶体体积为
V 0,那么每个原子所占的
4- 1铜的空位形成能约为 试估计接近熔点( 两者的数量级。
1 . 26 eV ,间隙原子的形成能约
为 4 eV ,
1300 K )时空位和间隙原子的
浓度,并比较
解:对于空位,主要由
u k BT
肖脱基缺陷引起,
n 空 Ne
空位浓度
n空 N

u k BT
e
e

1 . 26 1 . 6 10 1 . 38 10
体积为
V0 N

后来的体积
n V V0 n V0 1 N N V0
体积变化为
V V0
V0 N
n
能量变化为 nu ,
产生 n 个肖脱基缺陷,晶体的
而 CV
E T V
CV
n E nu u T T V T V
23
19
1300
1 . 32 10
5
对于间隙原子,由夫伦
1 u 2 k BT
克尔缺陷引起:
u 2 k BT
n 间 ( NN ) 2 e
'

固体物理学答案朱建国版3定稿版

固体物理学答案朱建国版3定稿版

固体物理学答案朱建国版3HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】固体物理学·习题指导配合《固体物理学(朱建国等编着)》使用2020年10月30日第1章晶体结构 (1)第2章晶体的结合 (12)第3章晶格振动和晶体的热学性质 (20)第4章晶体缺陷 (32)第5章金属电子论 (35)第1章晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f和R b代表面心立方和体心立方结构中最近邻原子间的距离,试问R f/R b等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于面心的原子与顶角原子的距离为:R fa对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,Rf Rb1.2 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点?若ABC 面的指数为(234),情况又如何?答:晶面族(123)截a1,a2,a3分别为1,2,3等份,ABC面是离原点O最近的晶面,OA的长度等于a1的长度,OB的长度等于a2长度的1/2,OC的长度等于a3长度的1/3,所以只有A点是格点。

若ABC面的指数为(234)的晶面族,则A、B和C都不是格点。

1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型,两晶轴ba、,夹角ϕ,如下表所示。

1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

固体物理答案第四章1

固体物理答案第四章1

化简为习惯的表示式
E0
3 5
EF0
4.8 对于单位面积的样品,二维电子气的状态密度为g 4m
h2
试求二维电子气的比热。
解: 设g(E)为单位体积样品的状态密度,当系统由0K加热直至 温度T时, 它的总能量
ET
4m
Ef (E)g(E)dE
0
h2
2m
Ef (E)dE
0
h2
E 2 f (E) dE
k 空间中,状态密度等于V,计入自旋,在波矢 k ~ k dk
的球壳内的状态数为 2V 4k 2dk , 由此得到,费密球内
电子的总能量
E0
k kF
h2k 2 2m
2V
4k 2dk
式中 kF 是费密球半径。当V比较大时,波矢 k 在 k 空间的
分布非常密集,可以看作准连续,上式的求和可用积分代替,
L 因而在波矢空间每个状态的代表点占有面积为

2

L
在k
~
k
dk 面积元
dk
dk x dk y
中含有的状态数为
L 2π
2
dk 。
每个波矢状态可容纳自旋相反的两个电子,则在面积元 dk 中
容纳电子数为
dz 2
L
2
dk
2
L
2 2 π kdk



E 2k2 2m
dE 2k dk m
所以E到E+dE之间的状态数

L 2

m 2
dE
L2m π 2
dE
(2)在E到E+dE内的电子数为dN
dN f Edz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


ν
b
Zπ 2 R
2T
0 F
12 R π 4
5
θ
3 D
RN 0kB8.3J 1m 44 o k1 l Z1
所以
π2 12
R R
2T π4
0 F
2.08
5
θ
3 D
2.57
T F 0 π 2 2 ν R 32 . 2 1 8 24 .m .3 0 1 m 1 3 m 8 J 0 k 4 2 m oJ 4 k l o 1 1l .1 9 4 k 0 7
(6)
另一方面,若应用周期性边界条件
x y
x y
L L
x y
x y
z
z
L
z
z
则从(3)(4)两式可得行波解
Ai2 e kxxkyykzz
波矢各分量分别为
kx
nLx,ky
nLy,kz
nz L
(7)
nx ,ny ,nz 取正负整数,电子的能量仍然表示为
Eh 2 2m k22 h m 2(kx 2ky 2kz2)
dy2
2ky
2y
0
(4)
d2z
dz2
2kz
2z
0
应用驻波边界条件:
( 0 , y , z ) ( x , 0 , z ) x , y , 0 0
( L , y , z ) ( x , L , z ) x , y , L 0
可得驻波解为
A s2 i k x x n ) s2 i k ( y y n s 2 i k z z n
求能量E~EdE 之间的状态数。
解: 因为
Ek 22m k1212 m k2222 m k3232
能量为E的等能面的方程式可写为
k12 k22 k32 1 2m1E 2m2E 2m3E
2
2
2
椭球的体积为
4 3 π 2 2 1 E m 1 2 2 2 2 E m 1 2 2 2 3 E m 1 2 4 3 π 81 m m 2 m 3 3 1 2 E 3 2
0. 0 17 1 0 J 7 6 7 .1 6-0 1 J 9 4.75eV
4.4 在低温下金属钾的摩尔热容量的实验结果可写成
c 2. 2 0. 3 8 毫 5T 摩 7开 焦 T尔
若一个摩尔的钾有 N61023个电子,试求钾的费米温度
T F 和德拜温度 Θ D。
解: 低温下,金属摩尔热容量为 C V eC V eC V ανT b3 T
乘上状态的密度 V (V为晶体体积)。得椭球内所含状态数 4π 3
为 Z E3π V 2 381 m m 2m 312E32
式中波矢的各分量分别为
kx
2 nL x,ky
2 nL y ,kz
nz 2L
(5)
这里 nx ,ny ,nz 为任意正整数,因而 kx ,ky ,kz 也只取正值。
由(5)式得知,k间中一个状态代表点所占体积为 111 1 2L 2L 2L 8V
V L3 代表金属体体积。
由上式知道,k 空间中的状态密度等于8V。
粒子,试分别采用驻波边界条件和周期性边界条件,求状态密 度的表示式。
解:电子在方匣中运动,设其势函数V(x)0,则薛定谔方程
可写为
282mE0
(1)
h2
令 8h 2 2 m E 2k242(kx 2ky 2kz 2)
(2)
x,y,zx yz
(3)
代入(1)式可得
d2x
dx2
2kx2x
0
d2y
第四章 金属自由电子论
4.1 限制在边长为L的正方形中的N个自由电子,电子的能量
Ekx,ky 2 2m kx 2ky 2
(1)求能量E到E+dE之间的状态数;
(2)求此二维系统在绝对零度的费密能量。
解:(1)由周期性边界条件得
kx
2π nx L
ky
2π ny LBiblioteka 沿kx,ky
轴相邻两代表点的间距为
因为能量 E~EdE之间的状态数即是 k 空间中半径在
k~kdk之间球壳体积的1/8内所包含的状态数,这样,如计
入自旋,E~EdE之间的状态数
dZ 28V14k2dk8k2Vdk
8
从(2)式知道, E h 2 k 2 2m
于是, dZ4V2m h3 3/2E1/2dE
状态密度为 g(E )d dE Z 4V2m h3 2/3E 1/2
从(7)式知道,在 k 空间中,每个状态代表点所占体积为
111 1 LLL V
因而 k空间中的状态密度为V,计入自旋,E~EdE之间的
状态数为
dZ4V2m3/2E1/2dE
h3
故状态密度
g(E )d dE Z 4V2m h3 3/2E 1/2
(8)
对比(6),(8)两式知道,利用驻波边界条件和周期性边界条件求 出的状态密度表示式是一样的。
2π L

因而在波矢空间每个状态的代表点占有面积为

2

L
在k~kdk面积元
dkdkxdky中含有的状态数为
L 2π
2
dk 。
每个波矢状态可容纳自旋相反的两个电子,则在面积元 dk 中
容纳电子数为
dz2 L2dk2 L22πkdk



2k 2 E
2m
dE 2k dk m
所以E到E+dE之间的状态数
可得
θ D 15π 2 4 b 1 R 3 15 2 8 2.. 3 1 5 J m 1 3 0 7 Jm 4 k o 3 4 k o 4 l.4 1 1 l13 4 91 k .1
4.5某晶体中电子的等能量曲面是椭球面
Ek 22m k1212 m k2222 m k3232

L2

m2 dEL π2m 2 dE
(2)在E到E+dE内的电子数为dN
dN fEdz
在绝对零度时
fE01
EEF EEF
N EF 0 0
L π2 m 2dEL π2 m 2 EF 0

EF 0 πL 22m Nπm 2n4h π2m N2L
4.2 设金属中的电子可看成是在边长为L的方匣内运动的自由
4.3 金属锂是体心立方晶格,晶格常数为a=3.5埃,试计算绝对 零度时锂的电子气的费米能量 E F(以电子伏特表示)。
解:
EF0
2 3nπ2 2m
23
体心立方
n
2 a3
又 1. 0 1 6 3 0J 4S m9.11031kg
a3.51 010 m 所以
E F 012 . 9 1 0 .3 1 0 6 1 2 4 J 3 0 2 k 1 S 2 g 3 3 .1 5 2 1 03 0 m 3 3.2 1 234
相关文档
最新文档