核反应堆物理分析课后习题参考答案
核反应堆物理分析习题答案第二章

212E m u ¢=¢ 得:得: 2dE m d u u ¢=¢¢()(1)dE f E E dE E a ¢®¢¢=-- E E E a £¢£()f d u u u ¢¢®=22,(1)d u u a u¢¢-- a u u u £¢£ ()f d auuu u u u u =¢®¢¢ò第二章1、 H 和O 在1000eV 到1eV 能量范围内的能量范围内的散射散射截面似为常数,分别为20b 和38b.计算2H O 的x 以及在2HO和中子从1000eV 慢化到1eV 所需要的所需要的碰撞碰撞次数。
次数。
解:不难得出,2H O 的散射截面与平均的散射截面与平均对数对数能降应有下列关系:能降应有下列关系: 222H O H O H H O O s x s x s x ×=×+×即2(2)2H O H O H H O O s s x s x s x +×=×+×2(2)/(2)H OH H O O H O x s x s x s s =×+×+查附录3,可知平均对数能降: 1.000Hx =,0.120O x =,代入计算得:,代入计算得:2(220 1.000380.120)/(22038)0.571H Ox =´´+´´+= 可得平均碰撞次数:可得平均碰撞次数: 221ln()/ln(1.0001)/0.57112.0912.1C H ON E E x===»2.设()f d u u u ¢¢®表示L 系中速度速度u 的中子的中子弹性弹性散射后速度在u ¢附近d u ¢内的内的概率概率。
核反应堆物理分析习题答案

核反应堆物理分析习题答案第四章1.试求边长为,,a b c (包括外推距离)的长⽅体裸堆的⼏何曲率和中⼦通量密度的分布。
设有⼀边长0.5,0.6a b m c m ===(包括外推距离)的长⽅体裸堆,0.043,L m =42610m τ-=?。
(1)求达到临界时所必须的k ∞;(2)如果功率为15000, 4.01f kW m -∑=,求中⼦通量密度分布。
解:长⽅体的⼏何中⼼为原点建⽴坐标系,则单群稳态扩散⽅程为:222222()0a a D k x y zφφφφφ∞++-∑+∑= 边界条件: (/2,,)(,/2,)(,,/2)0a y z x b z x y c φφφ===(以下解题过程都不再强调外推距离,可认为所有外边界尺⼨已包含了外推距离)因为三个⽅向的通量拜年话是相互独⽴的,利⽤分离变量法:(,,)()()()x y z X x Y y Z z φ=将⽅程化为:22221k X Y ZX Y Z L∞-++=- 设:222222,,x y z X Y Z B B B X Y Z=-=-=- 想考虑X ⽅向,利⽤通解:()cos sin x x X x A B x C B x =+代⼊边界条件:1cos()0,1,3.5,...2x nx x a n A B B n B a aππ=?==?=同理可得:0(,,)cos()cos()cos()x y z x y z aaaπππφφ=其中0φ是待定常数。
其⼏何曲率:22222()()()106.4g B m a b cπππ-=++=(1)应⽤修正单群理论,临界条件变为:221gk B M∞-= 其中:2220.00248M L m τ=+=1.264k ∞?=(2)只须求出通量表达式中的常系数0φ3222002222cos()cos()cos()()a bc a b c f f f f f f VP E dV E x dx y dy z dz E abc a b c πππφφφπ---=∑=∑=∑??3182102() 1.00710f f P m s E abcπφ--?==?∑2.设⼀重⽔—铀反应堆的堆芯222221.28, 1.810, 1.2010k L m m τ--∞==?=?。
核反应堆物理分析课后习题参考答案

核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收前平均遭受的散射碰撞次数。
核反应堆物理分析 (谢仲生 吴宏春 张少泓 著) 西安交大、原子能出版社 课后答案3

2-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U bσσσ===由289页附录3查得,0.0253eV 时:()0.00027ba O σ=以c 5表示富集铀内U-235与U 的核子数之比,表示富集度,则有:ε555235235238(1)c c c ε=+−151(10.9874(1))0.0246c ε−=+−=22M(UO )()N UO 所以,(N (8)N U =()2N O =22()()a f UO UO Σ=Σ2-2.和0.398,解:由18由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m −−Σ=Σ=,()238.03,M U =33()19.0510/U kg m ρ=×可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ−==×则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ−Σ=×=×=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m −Σ=Σ+Σ+Σ=P35,第6题1171721111PV V 3.210P 2101.2510m3.2105 3.210φφ−−−=Σ×××===×Σ××××Q P35,第12题每秒钟发出的热量:69100010 3.125100.32PTE Jη×===×运:'N =m =6吨2-3.为使铀的η=1.7,试求铀中U-235富集度应为多少(E=0.0253eV)。
核反应堆物理分析 (谢仲生 吴宏春 张少泓 著) 西安交大、原子能出版社 课后答案2

k∞ − 1 φ5 L2 5
方程 1
U-238: ∇ φ8 =
2
1 φ8 L2 8
方程 2
边界条件:
i. lim φ5 < ∞
r →0
ii. φ5 ( R ) = φ8 ( R )
iii. D5
∂φ5 ∂r
= D8
r =R
∂φ8 ∂r
iv. lim φ8 = 0
r =R r →+∞
令B =
2
k∞ − 1 (在此临界条件下, 既等于材料曲率, 也等于几何曲率) , 球域内方程 1 通解 : L2 5
(
所以(由题目已知参数: Σtr ,5 = Σtr ,8 ⇒ D5 =
1 1 = = D8 ) 3Σtr ,5 3Σtr ,8
R R + 1) exp(− ) L L8 D exp(− R / L8 ) R A 8 = 8A ⇒ sin BR − BR cos BR = ( + 1) sin BR sin BR − BR cos BR D5 sin BR L8
2 Bm = 2 2
k∞ − 1 = 9.33 ( m-2 ) M2
1 1 = = 0.6818 2 2 2 1 + Bg M 1 + Bm M2
在临界条件下: Λ =
(注意:这时仍能用 Λ = 1/ k∞ ,实际上在维持临界的前提条件下修正理论不会对不泄漏概 率产生影响,但此时的几何曲率、几何尺寸已发生了变化,不再是之前的系统了) 4 解: N 5 =
arc cot( −1/ BL8 ) π / 2 + arctan(1/ BL8 ) = = 0.06474 ( m ) B B 4 m = ρ5V5 = ρ5 × π R 3 = 21.3 ( kg ) 3
核反应堆物理分析修订版(课后习题答案)

由于外推距离很小可以忽略,可以只考虑堆体积内的吸收反应率: Ra
a
( x , y , z ) dxdydz
2a
ቤተ መጻሕፍቲ ባይዱ
0 .274 3 10 17 ( 1 .55 10 s
19 1
)3
(
a a ) 2 2
3-9,解:根据课本中(3-23)式和(3-24)式得:
第一章 核反应堆的核物理基础
1-2,解: 235U 单位体积内的原子核数:
N 235U 19.05 106 6.02 1028 4.88 1028 m 3 , a, 235U 680.9 10 28 m 2 235
通过以上方法求,也可以查附录 3 得:
H 2 O 单位体积内的分子数: N H 2O 3.34 10 28 m 3 , a, H 2O 0.664 10 28 m 2 ;
当 A>10 时
( A 1) 2 A 1 ), ln =1+ ln ( 1 A 1 2A
2
。
2 A 3
所以 H =1+
( A 1) 2 A 1 ) 1, ln ( 2A A 1
2 2 A 3
=0.12。
H O =
2
2 H H O O 0.57。 2 H O
293 ( TM 为介质的温度 570 K ) 6.1m 1 , TM
计算此反应堆的慢化能力:
S N H O ( S ) H O N Al ( S ) Al N
2 2
235
U
( S )U 1.16m 1
课本中(2-79)中子温度: Tn TM (1 C
核反应堆物理分析课后习题及答案

核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U -235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U -235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U -235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收前平均遭受的散射碰撞次数。
核反应堆物理分析作业一答案谢仲生

1-1.一出土文物中C-14与C-12质量之比为6.56:1013,而大气正常的C-14与C-12比值为1.2:1012,已知T1/2(C-14)为5730年,试计算该文物距今历史年代。
解:设大气正常的C-14与C-12的核密度分别为N 14与N 12,文物中C-14核密度为'14N ,则由衰变规律有:1/20.693/'1414t T N N e −×= 根据题意,0.693/57301314141212 6.56:10t M N e M N −×=,其中12141412121.2:10M N M N = 故有:130.693/57301213126.56:101.2:105730 6.56:10ln(5000()0.693 1.2:10t e t a −×==−×≈1-2.一核弹头中含有1.4kgU-235,其半衰期为7亿年,试计算100年后该弹头剩余U-235的质量(精确到8位有效数字)。
如果换为Pu-239,又会是多少(半衰期2.4万年)?Pu-240呢(半衰期6.6千年)?解:由衰变规律,有:'82352351/2exp(0.693/) 1.4exp(0.693100/710)m m t T =−×=−××=1.3999999 (kg) 同理可得:'4239239'3240240exp(0.693100/2.410) 1.3959795(kg)exp(0.693100/6.610) 1.3853748 (kg)m m m m =−××==−××=1-3.U-238半衰期为45亿年,当今地球上天然U-238与U-235质量份额分别为99.28%和0.72%。
试求45亿年前二者的质量份额。
解:设45亿年前地球上U-238和U-235质量分别为5m 和8m ,当今则为'5m 和'8m , 由'5''58100%0.72%m m m ×=+,可得:''85137.89m m = 由衰变规律,有:'555,1/2exp(0.693/)m m t T =−×''555exp(0.69345/7)83.91m m m =×= 同理,''8852275.78m m m ==所以45亿年前U-235质量份额为55883.91100%23.3%83.91275.78m m m ×==++ 相应U-238质量份额为76.7%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-6 1-7.有一座小型核电站,电功率为15万千瓦,设电站的效率为27%, 试估算该电站反应堆额定功率运行一小时所消耗的铀-235数量。 解:热能: 裂变U235核数:
俘获加裂变U235核数: 消耗U235总质量量:
8、某反应堆在额定功率500兆瓦下运行了31天后停堆,设每次裂变产 生的裂变产物的放射性活度为1.08×10-16t-1.2居里。此处t为裂变后的 时间,单位为天,试估算停堆24小时堆内裂变产物的居里数
同理可得,对于C: D = 0.0917 (m) 3-12 试计算T = 535 K,ρ = 802 kg/m3 时水的热中子扩散系数和扩散长 度。 解:查79页表3-2可得,294K时:m,由定义可知: 所以: 0.00195 (m) (另一种方法:如果近似认为水的微观散射截面在热能区为常数,且不 受温度影响,查附表3可得: 在T = 535 K,ρ = 802 kg/m3 时,水的分子数密度: 103×802×6.02×1023 / 18 = 2.68×1028 (m-3) 所以:276 (m-1) 1/(3×2.68×103×0.676)= 0.00179 (m) 这一结果只能作为近似值) 中子温度利用56页(2-81)式计算: 其中,介质吸收截面在中子能量等于kTM = 7.28×1021 J = 0.0461 eV 再利用“1/v”律: 0.4920 (b) Tn = 535×( 1 + 0.46×36×0.4920 / 103 ) = 577 (K) (若认为其值与在0.0253 eV时的值相差不大,直接用0.0253 eV热中子 数据计算: Tn = 535×( 1 + 0.46×36×0.664 / 103 ) = 592 (K) 这是一种近似结果) (另一种方法:查79页表3-2,利用293K时的平均宏观吸收截面与平均 散射截面:(m-1) 1 / (3×0.0016×0.676)= 308 (m-1) 进而可得到Tn = 592 K) 利用57页(2-88)式 0.414×10-28 (m2) 1.11 (m-1) 802 / ( 3×1000×0.0016×0.676 ) = 247 (m-1) 0.0424 (m) (此题如果利用79页(3-77)式来计算: 由于水是“1/v”介质,非1/v修正因子为1:
三章
3.1 有两束方向相反的平行热中子束射到235U薄片上,设其上某点自左 面入射的中子束强度为1012 cm-2·s-1。自右面入射的中子束强度2×1012 cm-2·s-1。计算: (1)该点的中子通量密度; (2)该点的中子流密度; (3)设Σa = 19.2×102 m-1,求该点的吸收率。 解:(1)由定义可知:3×1012 (cm-2·s-1) (2)若以向右为正方向:-1×1012 (cm-2·s-1) 可见其方向垂直于薄片表面向左。 (3)19.2•3×1012 = 5.76×1013 (cm-3·s-1) 3.2 设在x处中子密度的分布函数是 其中:λ,ɑ为常数,μ是与x轴的夹角。求:
第二章
.某裂变堆,快中子增殖因数1.05,逃脱共振俘获概率0.9,慢化不泄漏 概率0.952,扩散不泄漏概率0.94,有效裂变中子数1.335,热中子利用 系数0.882,试计算其有效增殖因数和无限介质增殖因数。 解: 无限介质增殖因数: 不泄漏概率: 有效增殖因数: 2-1.H和O在1000eV到1eV能量范围内的散射截面近似为常数,分别为 20b和38b。计算H2O的ξ以及在H2O中中子从1000eV慢化到1eV所需的 平均碰撞次数。 解:不难得出,H2O的散射截面与平均对数能降应有下述关系: σH2O∙ξH2O = 2σH∙ξH + σO∙ξO 即: (2σH + σO ) ∙ξH2O = 2σH∙ξH + σO∙ξO ξH2O =(2σH∙ξH + σO∙ξO)/(2σH + σO ) 查附录3,可知平均对数能降:ξH=1.000,ξO=0.120,代入计算得: ξH2O = (2×20×1.000 + 38×0.120)/(2×20 + 38) = 0.571 可得平均碰撞次数: Nc = ln(E2/E1)/ ξH2O = ln(1000/1)/0.571 = 12.09 ≈ 12.1 2-6.在讨论中子热化时,认为热中子源项Q(E)是从某给定分界能Ec以上 能区的中子,经过弹性散射慢化而来的。设慢化能谱服从Ф(E)=Ф/E分 布,试求在氢介质内每秒每单位体积内由Ec以上能区,(1)散射到能 量E(E<Ec)的单位能量间隔内之中子数Q(E);(2)散射到能量区间
核反应堆物理分析答案 第一章
1-1.某压水堆采用UO2作燃料,其富集度为2.43%(质量),密度为 10000kg/m3。试计算:当中子能量为0.0253eV时,UO2的宏观吸收截 面和宏观裂变截面。 解:由18页表1-3查得,0.0253eV时: 由289页附录3查得,0.0253eV时: 以c5表示富集铀内U-235与U的核子数之比,表示富集度,则有: 所以, 1-2.某反应堆堆芯由U-235,H2O和Al组成,各元素所占体积比分别为 0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。 解:由18页表1-3查得,0.0253eV时: 由289页附录3查得,0.0253eV时: 可得天然U核子数密度 则纯U-235的宏观吸收截面: 总的宏观吸收截面: 1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收 前平均遭受的散射碰撞次数。解:设碰撞次数为t 1-4、试比较:将2.0MeV的中子束强度减弱到1/10分别需要的Al,Na, 和Pb的厚度。 解:查表得到E=0.0253eV中子截面数据: Σa Σs Al: 0.015 0.084 Na: 0.013 0.102 Pb: 0.006 0.363 Al和Na的宏观吸收截面满足1/v律。 Q:铅对2MeV中子的吸收截面在屏蔽中是否可以忽略?(在跨越了可分 辨共振区后截面变得非常小) Σa=Σa(0.0253)(0.0253/2×106)^1/2 Σa Al 0.0169×10-4 Na 0.0146×10-4
(1) 中子总密度n( x ); (2) 与能量相关的中子通量密度φ( x, E ); (3) 中子流密度J( x, E )。 解:由于此处中子密度只与与x轴的夹角有关,不妨视μ为极角,定义在 Y-Z平面的投影上与Z轴的夹角φ为方向角,则有: (1)根据定义: 可见,上式可积的前提应保证ɑ < 0,则有: (2)令mn为中子质量,则 (等价性证明:如果不作坐标变换,则依据投影关系可得: 则涉及角通量的、关于空间角的积分: 对比: 可知两种方法的等价性。) (3)根据定义式: 利用不定积分: (其中n为正整数),则: 3.7 设一立方体反应堆,边长ɑ = 9 m。中子通量密度分布为 已知D = 0.84×10-2m,L = 0.175 m。试求: (1) 表达式; (2) 从两端及侧面每秒泄漏的中子数; (3) 每秒被吸收的中子数(设外推距离很小可略去)。 解:有必要将坐标原点取在立方体的几何中心,以保证中子通量始终为 正。为简化表达式起见,不妨设φ0 = 3×1013 cm-2•s-1。 (1)利用Fick’s Law: (2)先计算上端面的泄漏率: 同理可得,六个面上总的泄漏率为: L = 1.7×1017 (s-1) 其中,两端面的泄漏率为L/3 = 5.8×1016 (s-1);侧面的泄漏率为L-L/3 = 1.2×1017 (s-1) (如果有同学把问题理解成‘六个面’上总的泄漏,也不算错) (3)由可得 由于外推距离可忽略,只考虑堆体积内的吸收反应率: 1.24×1020 (s-1) 3.8 圆柱体裸堆内中子通量密度分布为 其中,H,R为反应堆的高度和半径(假定外推距离可略去不计)。试 求: (1) 径向和轴向的平均中子通量密度与最大中子通量密度之 比;
窄束中子衰减规律: I=I0e -∑x I=(1/10)I0 ∴ x=(ln10)/Σ 因此若只考虑吸收衰减: xAl=136.25×104m xNa=157.71×104m 对于轻核和中等质量核,弹性散射截面在eV~几MeV范围内基本不 变。所以只考虑弹性散射截面时,结果如下:(相比较之下能量为2MeV 时,弹性散射截面要比吸收界面大很多) 但是不清楚对于重核铅弹性截面基本不变的假设是否成立? xAl=27.41m xNa=22.57m xPb=6.34m
(2) 每秒从堆侧表面和两个端面泄漏的中子数; (3) 设H = 7 m,R = 3 m,反应堆功率为10 MW,σf,5 = 410 b, 求反应堆内235U的装载量。 解:有必要将坐标原点取在圆柱体的几何中心,以保证中子通量始终为 正。为简化表达式起见,不妨设φ0 = 1012 cm-2•s-1。且借用上一题的D 值。 (1)先考虑轴向: 且在整个堆内只在z = 0时为0,故有: 径向: 且在整个堆内只在r= 0时为0,故有: 已知,所以: 0.611 (2)先计算上端面的泄漏率: 易知,两端面总泄漏率为2.93×1014 (s-1) 侧面泄漏率: 利用Bessel函数微分关系式:,且已知J1(2.405) = 0.5191,可得: 所以: 4.68×1014 (s-1) (3)已知每次裂变释能(J) 所以: 其中: 利用Bessel函数的积分关系式:,可得 已知:J1(0) = 0,J1(2.405) = 0.5191,所以: = 5.44×1017 (m•s-1) 所以: 106/(3.2×10-11×410×10-28×5.44×1017) = 1.40×1024 (m-3) 所需235U装载量: 10-3×1.40×1024×3.14×32×7×235/(6.02×1023 ) = 108 (kg) 3.9 试计算E = 0.025 eV时的铍和石墨的扩散系数。 解:查附录3可得,对于E = 0.025 eV的中子: /m-1 Be 对于Be: C 0.0416 (m) 8.65 3.85 0.9259 0.9444