工厂化水产养殖中的水处理技术doc(精)

合集下载

水产养殖中的水质净化和废水处理技术

水产养殖中的水质净化和废水处理技术

水产养殖中的水质净化和废水处理技术随着人们对水产品需求的增加,水产养殖业发展迅速。

然而,水产养殖过程中废水产生量大、水质污染问题严重,给周围环境造成了一定的压力。

因此,水产养殖中的水质净化和废水处理技术成为了行业和环保部门关注的重点。

本文将探讨水产养殖中的水质净化和废水处理技术的应用。

一、水质净化技术1. 循环水养殖系统循环水养殖系统是一种常用的水质净化技术,通过过滤、曝气、杀菌等装置,将废水中的有机物、氨氮等污染物去除或转化,保持水体清洁。

同时,循环水养殖系统还能提高水产养殖的生产效率,并节约用水量。

2. 生物滤池生物滤池是一种利用微生物降解废水中有机物的水质净化技术。

在生物滤池中,通过种植不同种类的微生物,利用其降解能力将废水中的有机物转化为无害物质。

生物滤池具有体积小、净化效果好等优点,被广泛应用于水产养殖领域。

3. 植物净化法植物净化法是一种利用水生植物吸收和分解废水中的营养物质的技术。

通过种植浮萍、芦苇等水生植物,利用其吸收和生物降解能力将废水中的营养物质去除,净化水质。

植物净化法应用成本低、操作简单,被广泛应用于水产养殖行业。

二、废水处理技术1. 水质调理剂水质调理剂是一种常用的废水处理技术,通过添加药剂改善废水的化学性质,达到净化废水的目的。

常用的水质调理剂包括硫酸铜、硫酸锌等,它们能够有效降低废水中的氨氮、亚硝酸盐等污染物含量,改善水质。

2. 活性炭吸附法活性炭吸附法是一种利用活性炭对废水中的有机物进行吸附和去除的技术。

活性炭具有很大的比表面积和吸附能力,能够有效去除废水中的有机物,提高水质净化效果。

该技术操作简单、成本较低,被广泛应用于水产养殖废水处理中。

3. 生物处理技术生物处理技术是将废水中的有机物通过生物降解进行处理的方式。

通过添加适当的微生物菌种,提供合适的生境条件,使其降解废水中的有机物,达到净化废水的目的。

生物处理技术具有净化效果好、对环境友好等优点,在水产养殖领域得到了广泛应用。

水产养殖中的水质净化与养殖废水处理

水产养殖中的水质净化与养殖废水处理

水产养殖中的水质净化与养殖废水处理水产养殖是一种重要的农业养殖方式,以其高效利用水资源和满足人们对水产品需求的特点而备受关注。

然而,水质净化和养殖废水处理是水产养殖过程中的重要环节,对于保护水生生物的健康和饲养环境的稳定至关重要。

本文将深入探讨水产养殖中的水质净化和养殖废水处理的方法。

一、水质净化方法1. 物理方法物理方法是指通过物理手段来净化水质,包括过滤、沉淀等。

其中,过滤是常用的一种方法,其原理是利用过滤介质(如砂石、滤棉等)将水中的固体颗粒、浮游生物等截留下来,实现水质的净化。

沉淀则是利用重力将悬浮物和沉浸物沉淀到水底,通过清除底泥可以有效去除底部的污染物。

2. 化学方法化学方法是利用化学物质对水质进行净化。

例如,氯化铜和氧化铜等可以用于消毒水体中的病原微生物,过氧化氢可以用于氧化水中的有机物,从而提高水质。

3. 生物方法生物方法利用生物来净化水体,如利用生物滤池、活性炭等。

生物滤池通过微生物(如硝化细菌、硫酸盐还原菌)的作用来分解废物和有毒氨氮,将其转化为无害的物质。

活性炭则可以吸附水中的有机物和重金属离子,从而提高水质。

二、养殖废水处理1. 溶解氧和氨氮的处理养殖废水中的溶解氧和氨氮含量过高会对水生生物产生毒害作用。

因此,需要采取相应的处理方法来降低其浓度。

一种常用的方法是采用曝气池,在水中供氧的同时还能增加废水与大气之间的接触面积,从而提高水体中溶解氧的含量。

此外,可以运用生物滤池等处理手段,通过微生物的作用将氨氮转化为无害的亚硝酸盐和硝酸盐。

2. 污泥处理养殖废水中的有机物经过生物滤池等处理后会产生污泥,对于处理污泥需要采取合适的方法。

一种常见的方法是采用厌氧发酵池,通过厌氧发酵将污泥中的有机物转化为沼气和稳定的有机肥。

此外,还可以运用污泥浓缩、压榨等技术手段,减少污泥体积,方便后续处理和利用。

3. 水体循环利用水产养殖中的养殖废水可以通过合适的处理手段实现水体的循环利用,降低对环境的污染。

水产养殖用水处理技术

水产养殖用水处理技术

中 比较 经济 有 效 的 方法 之 一 . 被广 泛 如 曝 气 、 水 质 改 良机 ( 翻 动 淤 泥 或 将 其 吸 出暴 露 在 空 气 中 ) 或干池 曝晒 . 应 用 它 既 可 以作 为养 殖 用 水 的 预处 使 硫化 氢 氧 化 成硫 酸 根 离子 . 氨 氮 转 理 . 也 可 作 为 养 殖 用 水 的最 终 处 理 .


筛绢 , 主要 是 为 了 去 除浮 游 动 物 和尺 毒 害作 用 寸较 大 的有 机物 2 . 氧 化还 原 法 水 中 的无机 物 和 3 . 沉淀 沉 淀是 借 助水 中悬 浮 固 溶 解 有 机 物 可 通 过 氧 化 还 原 反应 转 体本 身重力 . 沉淀于池塘底 部 . 使 其 化 为无害物 质或 转化 为 易于从 水 中分 离 的气体 或 固体 . 从 而达到处 理要求 与水 分离 养 殖 生产 上 最 常 用空 气 氧 化 法 4 . 过 滤 过 滤 是 养 殖 用 水 处 理
深 井 水 先 用 增 氧 机 曝氧 、 增氧 . 利 用 空气 中的 氧气 . 一 方 面 向水 中增 氧 以 供 养 殖 用 水本 身需 要 .另 一 方 面 . 使 水 中 的 三 价 铁 可 形 成 絮 状 沉 淀 而 加 以除 去 。 3 . 混 凝 法 水 中 的 悬 浮 物 质 大 多可 通 过 自然 沉 淀 去 除 . 而胶 体 颗 粒 则不 能 依 靠 自然 沉 淀 去 除 在 这 种 情
3 8 2 0 1 4 年 第2 3 期江苏省南 京市高淳 螃蟹节网 上受热 捧。
编辑: 赵昕l z h a o x i n @j s a g r i . g o v , c r l




分析工厂化养鱼废水养殖南美白对虾高产技术

分析工厂化养鱼废水养殖南美白对虾高产技术

分析工厂化养鱼废水养殖南美白对虾高产技术工厂化养鱼是一种以工业化规模、高效率和环保性为目标的养殖方式,养殖南美白对虾是其中一种常见的养殖对象。

南美白对虾是一种优质的养殖物种,其高产技术的分析可以帮助养殖者提高养殖产量和效益。

本文将对工厂化养鱼废水养殖南美白对虾高产技术进行分析,并探讨其优势和挑战。

1. 废水处理技术:工厂化养鱼废水养殖南美白对虾需要处理废水以保证水质的稳定和安全。

常见的废水处理技术包括物理处理、化学处理和生物处理等。

物理处理主要是通过静态沉降、过滤和曝气等方式去除废水中的固体颗粒物和悬浮物;化学处理主要是通过加入化学试剂来去除废水中的有机物和重金属离子;生物处理主要是利用微生物和植物等生物体对废水进行降解处理。

综合运用这些废水处理技术可以有效地将废水处理成适合养殖南美白对虾的水质。

2. 养殖环境控制技术:工厂化养鱼废水养殖南美白对虾需要建立适宜的养殖环境。

养殖环境控制技术包括水温控制、光照控制、氧气供应和饲料控制等。

南美白对虾对水温较为敏感,适宜的水温是其正常生长和繁殖的基础,因此需要通过加热或降温设备来调节水温。

光照控制可以模拟自然光照条件,促进对虾的生长和繁殖。

氧气供应是保证对虾生存的关键因素,可以通过增加曝气设备来提供充足的氧气。

饲料控制需要根据对虾的生长阶段和养殖密度来合理配比,避免过度投喂和浪费。

3. 疾病防控技术:工厂化养鱼废水养殖南美白对虾需要做好疾病防控工作,以减少病害的发生和传播。

常见的疾病防控技术包括建立健康检疫制度、提高养殖环境卫生水平、加强饲料和水质的监测等。

健康检疫制度可以通过对虾苗种和引种物资进行检疫,减少疾病的传入。

养殖环境的卫生水平对疾病的发生起着重要作用,需要定期清洁池塘和设备,并注重饲料和水质的质量监测,以便及时发现异常情况并采取相应措施。

1. 规模化优势:工厂化养鱼废水养殖可以利用大规模的养殖设备和高效率的养殖管理技术,实现养殖规模的大幅度增加,从而提高养殖效益。

对虾工厂化循环水高效生态养殖技术

对虾工厂化循环水高效生态养殖技术

对虾工厂化循环水高效生态养殖技术一、技术概述随着我国经济和社会发展进入新时期,在市场需求量增加和土地资源紧缺等多重因素影响下,近年来对虾工厂化养殖发展迅猛,面积和产量不断增加,但主要还是以较为粗放的换水养殖模式为主,普遍存在地下水资源浪费、病害频发、养殖成功率不稳定、排放水有机污染严重等问题。

针对这些制约对虾养殖产业可持续发展的瓶颈问题,经过系统研究和应用实践而形成的对虾工厂化循环水高效生态养殖技术体系,以凡纳滨对虾为主要养殖对象,依托现代养殖工程和水处理设施,综合运用微孔增氧、免疫增强、水质调控、养殖尾水处理等技术,实现了全年的对虾高效、生态养殖,具备水体循环利用、生态环境稳定、养殖过程人工调控、尾水达标排放等明显特点,是符合我国新时代渔业“高效、优质、生态、健康、安全”理念的对虾养殖新模式。

二、技术要点1.设施设备及循环水处理工艺1.1设施设备主要包含蓄水池、养殖池、水循环处理设备和室外尾水处理池等四部分,养殖池、蓄水池和水循环处理设备可设置在封闭、保温性能好的养殖车间内,养殖池和蓄水池上方屋顶透光,而水循环处理设备安置区尤其是生物滤池上方需避光。

(1)蓄水池:蓄水池水容量应不低于养成总水体的三分之一且能完全排干,主要用于盐度调配和消毒处理,可应用紫外线、臭氧或漂白粉等进行消毒处理。

(2)养殖池:长方形圆角或圆形对虾池,材质多以水泥或玻璃钢为主,面积25~100平方米,水深0.8~1.2米。

池底平整光滑,中央设集污区和排水口,以3~5%坡度顺向排水口,并在池底靠近与池壁交接处设置条形纳米微孔增氧管,在保证养殖池充足供氧的同时,有利于水体集污和快速排污。

排水口处设置独立的循环回水管道和排污管道,分别接入循环水处理系统和室外尾水处理池,平时较清的养殖水经回水管道进入循环水处理系统,需要排污操作时则打开排污管道排入尾水处理池。

(3)水循环处理设备悬浮颗粒的过滤:常用设备有微滤机和弧形筛等,以微滤机为宜,出水水质较好(可通过调节筛网网目、转速及反冲压力等改善水质);弧形筛无需动力和清洗用水,造价相对较低,但出水水质一般。

工厂化水产养殖中的水处理技术.doc

工厂化水产养殖中的水处理技术.doc

工厂化水产养殖中的水处理技术工厂化水产养殖是应用工程技术、水处理技术和高密度水产养殖技术进行渔业工业化生产的技术模式。

随着水产养殖业向现代化水平的发展,工厂化水产养殖技术作为我国水产养殖业现代化的支撑技术,受到科学研究者和渔业生产部门的高度重视,在相关的养殖工艺、水质控制、净化处理等方面进行了深入研究,取得了较大进展,有些技术已经在生产中获得应用。

其中养殖水体的处理技术,作为工厂化养殖技术的关键技术之一,随着研究的不断深入,获得较快发展,形成了机械、化学、生物和综合处理等多项技术,为工厂化水产养殖的进一步发展奠定了基础。

工厂化水产养殖水体的处理主要包括几个方面,即:增氧、分离(分离固体物和悬浮物)、生物过滤(降低BOD、氨氮和亚硝酸盐)和暴气(去除二氧化碳等)、消毒、脱氮等处理过程,其中悬浮物和氨氮去除是需要解决的主要技术难点。

本文根据近年的研究进展和国内外研究资料,对养殖水处理技术及其应用进行了总结和归纳,为工厂化养殖的设计和管理提供必要的技术资料,并期望在此基础上,进一步研究先进技术和处理方法、开发出相关的高效养殖工程设施和设备。

1. 增氧技术养殖水体的溶解氧是养殖鱼类赖以生存和处理设备中的微生物生长的必备条件。

在工厂化养殖系统中,鱼类正常生长的溶解氧应该达到饱和溶解度的60%,或者在5mg/l以上;溶解氧低于2mg/l,用于工厂化养殖水体处理的硝化细菌就失去硝化氨氮的作用。

一般情况下,工厂化养殖系统溶解氧消耗主要来自养殖鱼类代谢、代谢物的分解、微生物氨氮处理等,系统所需溶解氧根据所养鱼类的不同而有所变化,并随着养殖密度和投饵的增加而增加。

因此,在工厂化水产养殖的工艺设计中,要根据养殖对象、养殖密度、水体循环量等因素来确定增氧方式。

1.1 空气增氧由于各种增氧机械设备在工厂化养殖池很难应用,因此,空气增氧多采用风机加充气器的办法,以小气泡的形式增氧。

这种办法虽然具有使用方便、投资小的特点,但是增氧效率低,一般在 1.3kg O2/kW-h(20℃温度),28 ℃时仅为0.455kg O2/kW-h, 养殖密度也只能达到30-40kg/m3。

工厂化水产养殖循环水处理系统

工厂化水产养殖循环水处理系统
[
D].西安:长安大学,
2015.
研究方向农业物联网;张 月 雯 (
1994
G),女,浙 江 绍
[
5] 贺文静 .活性 炭 纤 维 阴 极 电 芬 顿 高 效 去 除 草 甘 膦 机 理
(
1995
G),男,河 北 唐 山 人,本 科,主 要 从 事 物 联 网
[
6] 惠金枝 .山西 省 襄 垣 县 新 建 屠 宰 场 项 目 污 水 处 理 工 程
滤流量大等优点.缺点是残饵和粪便经常会被滤网
成氧气和水,不仅不会造成二次污染 [5],还能增加水
有无能源消耗、部 署 方 式 简 单 [1]、抗 冲 刷 能 力 强、过
活水中的微 生 物 [4].臭 氧 非 常 不 稳 定,极 易 反 应 生
切割成小块从而穿 过 滤 网 进 入 下 一 级,增 加 下 一 级
兴人,在 读 硕 士,主 要 研 究 方 向 农 村 发 展;李 伟
工程工作.
与机制研究[
D].哈尔滨:东北林业大学,
2013.
[
J].山西建筑,
ห้องสมุดไป่ตู้2017,
43(
34):
120

121.
(
008)
组成:固液分离,气 浮 综 合 处 理,生 物 滤 池 和 消 毒 杀

菌,现对各处理系统进行如下简介.
质来去除水中的污染物.工厂化水产养殖集约化密
生物滤池是循环水养殖系统中的核心处理单
,其 原 理 主 要 是 通 过 生 物 膜 食 用 水 中 的 有 害 物
[
3]
度极高,其水中剩 留 的 饵 料、粪 便 分 解 产 生 的 氨 氮、
作者简介:刘晓 蒙 (

知识篇——工厂化水产养殖尾水处理

知识篇——工厂化水产养殖尾水处理

知识篇——工厂化水产养殖尾水处理知识篇工厂化水产养殖尾水处理WY INDUSTRY 海南万鳐随着海水养殖技术水平的提高和市场需求的扩大,近10年来我国海水工厂化养殖得到了迅速发展,养殖废水中所含的剩余饵料、化学品残留物、以及富含氮、磷、有机质和毒性物质的养殖生物排泄物会加剧养殖邻近海域海水富营养化程度和水质污染,引发有害赤潮等海洋生态环境问题,同时水体污染反过来制约水产养殖的发展。

因此,水产养殖废水的处理和循环利用逐渐受到关注。

近年来国内外学者针对海水工厂化养殖废水的特点,对常规的物理、化学和生物处理技术分别进行了应用研究,取得了许多实用性成果。

经过物理化学和生物处理后,养殖废水中化学耗氧量(COD)、悬浮物(SS)和氨氮(NH3-N)等物质浓度降低,然后进行循环利用。

工厂化池塘养殖是现阶段推广较多的养殖模式,工厂化池塘养殖模式与传统养殖模式相比,具有节水、节地、全自动、高密度集约化和排放可控的特点,将养殖系统中产生的废水集中处理并循环利用,实现节约水资源和减少对自然水体环境污染的目的。

在池塘内修建养殖单元,一般养殖水槽的面积占池塘的2%左右,实现鱼类的圈养和养殖粪污的集中排放,水体溶氧的均衡,其他辅助设施实现水质溶氧的稳定。

工厂化水产养殖水体的处理主要包括几个方面,即:增氧、分离(分离固体物和悬浮物)、生物过滤(降低BOD、氨氮和亚硝酸盐)和曝气(取出二氧化碳等)、消毒、脱氮等处理过程。

工厂化养殖的自动监测与控制自动监测和控制系统是封闭循环式工厂化水产养殖的保证条件。

由于养殖密度大,水质变化快,水质控制不好容易引起事故的发生,造成生产损失。

自动监测和控制参数主要包括水位、水温、溶解氧、浊度、盐度、pH、电导率、氨氮和硝酸盐等,通过监测和控制这些参数,把水质控制在养殖要求的范围内。

水产养殖尾水物理处理技术常规物理处理技术主要包括过滤、中和、吸附、沉淀、曝气等处理方法,是废水处理工艺的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工厂化水产养殖中的水处理技术工厂化水产养殖是应用工程技术、水处理技术和高密度水产养殖技术进行渔业工业化生产的技术模式。

随着水产养殖业向现代化水平的发展,工厂化水产养殖技术作为我国水产养殖业现代化的支撑技术,受到科学研究者和渔业生产部门的高度重视,在相关的养殖工艺、水质控制、净化处理等方面进行了深入研究,取得了较大进展,有些技术已经在生产中获得应用。

其中养殖水体的处理技术,作为工厂化养殖技术的关键技术之一,随着研究的不断深入,获得较快发展,形成了机械、化学、生物和综合处理等多项技术,为工厂化水产养殖的进一步发展奠定了基础。

工厂化水产养殖水体的处理主要包括几个方面,即:增氧、分离(分离固体物和悬浮物)、生物过滤(降低BOD、氨氮和亚硝酸盐)和暴气(去除二氧化碳等)、消毒、脱氮等处理过程,其中悬浮物和氨氮去除是需要解决的主要技术难点。

本文根据近年的研究进展和国内外研究资料,对养殖水处理技术及其应用进行了总结和归纳,为工厂化养殖的设计和管理提供必要的技术资料,并期望在此基础上,进一步研究先进技术和处理方法、开发出相关的高效养殖工程设施和设备。

1. 增氧技术养殖水体的溶解氧是养殖鱼类赖以生存和处理设备中的微生物生长的必备条件。

在工厂化养殖系统中,鱼类正常生长的溶解氧应该达到饱和溶解度的60%,或者在5mg/l以上;溶解氧低于2mg/l,用于工厂化养殖水体处理的硝化细菌就失去硝化氨氮的作用。

一般情况下,工厂化养殖系统溶解氧消耗主要来自养殖鱼类代谢、代谢物的分解、微生物氨氮处理等,系统所需溶解氧根据所养鱼类的不同而有所变化,并随着养殖密度和投饵的增加而增加。

因此,在工厂化水产养殖的工艺设计中,要根据养殖对象、养殖密度、水体循环量等因素来确定增氧方式。

1.1 空气增氧由于各种增氧机械设备在工厂化养殖池很难应用,因此,空气增氧多采用风机加充气器的办法,以小气泡的形式增氧。

这种办法虽然具有使用方便、投资小的特点,但是增氧效率低,一般在 1.3kg O2/kW-h(20℃温度),28 ℃时仅为0.455kg O2/kW-h, 养殖密度也只能达到30-40kg/m3。

研究工厂化养殖的增氧专用设备,是降低成本,提高效率的重要途径。

1.2纯氧增氧纯氧根据选择的方便性可分为氧气瓶纯氧,液体氧罐和纯氧发生器三种。

无论采用那种纯氧增氧,象空气增氧中利用充气器的办法都是非常浪费的,最高只有40%的纯氧可以利用,其余没有溶解的氧气逸出水面而浪费。

因此,必须有专门的设备充分利用氧气。

常用的1.3 微气泡增氧在利用空气和氧气增氧的研究中,为了提高增氧效率和氧气的利用率,各项研究集中在产生微气泡的技术上,有些学者研究了氧气气泡在水中的形成与溶解变化过程,以确定适宜氧气气泡大小。

日本东京大学研究了利用超声波击碎小气泡的办法,可产生平均直径小于20μm的微气泡,增加了增氧处理的效率。

2.悬浮物及其处理技术工厂化水产养殖中的悬浮物主要由于饵料的投喂而引起。

在一次性过流高密度养殖水体试验中,根据饵料投喂量的不同,其含量在5~50mg/l左右。

在饲料系数0.9~1.0情况下,鱼体每增重1kg就会产生150~200g悬浮物。

因此,作为循环使用的养殖水体,悬浮物在水中的积累是非常迅速的。

养殖水体中鱼类的固体排泄物,在正常代谢的情况下,以悬浮物的形式存在于水体中。

在流动的养殖水体中,悬浮物大部分以小于30μm的颗粒存在于水中。

悬浮物的比重略大于水,颗粒小、流动性好、有一定的黏附性,在有水流的条件下呈悬浮状态。

从养殖水体中去除30μm以下的悬浮物,一直是工厂化水产养殖设计研究的重要方向。

养殖水体中的悬浮物的积累,使水体浑浊,影响养殖鱼类鳃体的过滤和皮肤的呼吸, 增加鱼类环境胁迫压力,恶化水质、消耗水中的溶解氧。

工厂化水产养殖过程中及时清除养殖水体中的悬浮物是非常必要的。

2.1 固定式滤床固定过滤床一般由粗滤、中滤和细滤三层滤料组成。

根据其工作水流的不同可分为喷水式滤床(Trickling filter)和压力式滤床(Pressed filter),是比较普遍的过滤方式。

固定式滤床可根据需要调整滤料的粒度和过滤层的厚度,过滤不同大小的悬浮颗,达到理想的过滤效果。

其应用难度在于设备庞大、效率低、长时间运转容易堵塞,反冲困难。

2.2 滤网过滤滤网过滤是用细筛网进行悬浮物的过滤,主要有平盘滤网过滤和转鼓滤网过滤。

其中转鼓滤网过滤在不断过滤的同时进行反冲洗,过滤效率高、效果好,应用普遍。

滤网的网目一般约为30~100μm,可过滤36~67%的悬浮物,网目越小过滤越彻底,但是网目小于60μm就会影响过水性能。

为了改善其过滤性能,增加过滤面积,防止堵塞,减少尺寸和反冲用水是进一步研究的重点。

2. 3 浮式滤床浮式滤床应用比水比重小的塑料球作为过滤介质,在过滤过程中悬浮于水中形成过滤层。

塑料浮球具有表面积大、吸附性强、过水阻力小的特点,形成过滤层可有效过滤悬浮物。

浮球直径为3 mm 左右滤床,可过滤100%的30 μm以上79% 的30 μm以下的悬浮物颗粒,获得很好过滤效果。

由于养殖水体中的悬浮物具有结块的特性,为了防止反冲时堵塞和较好的过流量,浮球生物滤器需要频繁的反冲,增加了用水量和应用成本。

为了改善其应用效果,必须进一步研究防止堵塞的结构和方法。

2.4 自然沉淀处理自然沉淀技术是应用鱼池特殊结构或沉淀池,使悬浮物沉淀、集聚并不断排出。

设计良好的沉淀池可去除59%~90%悬浮物,其中设计的关键是确定悬浮物的沉降流速。

有资料表明,应用自然沉淀处理,过流流速应低于4 m/min,适宜流速为1 m/min;单位面积的流量为1.0–2.7 m3 /m2 h 。

自然沉淀虽然具有较好的效果,但是限制了水体循环的流量,从而使结构庞大,增加了成本。

2.5 气泡浮选处理气泡浮选处理的原理是通过气泡发生器持续不断的在水中释放气泡,使气泡形成象筛网一样的过滤屏幕,并利用气泡表面的张力吸附水中的悬浮物。

产生微小气泡(直径为10 ~100 μm),使气泡均匀持续与水体有效混合,可有效去除水产养殖水体中的悬浮物。

气泡越小,效率越高。

因此,研究产生微小气泡的发生装置,是该项技术应用的关键。

3.养殖水体中的氨氮及其处理技术工厂化养殖水体中的氨氮主要是由于养殖鱼类的代谢、残饵和有机物的分解而引起。

一次性过流试验表明,高密度流水养殖排水中的氨氮浓度一般为 1.4 mg/l 左右。

投喂的饲料中,大约有40%饲料蛋白的氮被鲑鳟鱼类转化成氨氮(NH3+ NH4+),在饵料系数为1.0的情况下,鲑鳟鱼类每增长1kg就会产生33g N 。

如不进行处理,氨氮在循环养殖水体中的积累呈快速直线上升的趋势。

养殖鱼类排泄的氨氮中,大约只有7–32%的总氮是包含在悬浮物中,大部分溶解于养殖水体中,分别以离子铵NH4+和非离子氨NH3的形式存在,并且随着pH值和温度的变化而相互转化。

研究物理、化学和生物的氨氮处理先进技术和有效方法,是工厂化水产养殖的重要课题。

氨氮在养殖水体中的积累会对鱼类产生毒性作用,其中非离子氨对鱼类毒性作用很大。

工厂化养殖水体的氨氮总量一般不应超过1mg/l ,非离子氨不应超过0.05mg/l。

由于离子铵NH4+和非离子氨NH3在不同pH值和温度条件下相互转换,因此在控制养殖水体氨氮积累的同时,应注意根据温度的变化调节pH 值,从而使非离子氨保持在较低水平。

3.1 空气吹脱空气吹脱的原理是应用气液相平衡和介质传递亨利定律,在大量充气的条件下,减少了可溶气体的分压,溶解于水体中的氨NH3穿过界面,向空中转移,达到去除氨氮的目的。

空气吹脱的效率直接受到pH值的影响,在高pH值的条件下,氨氮大部分以非离子氨的形式存在,形成溶于水的氨气:HH4+ + OH- NH4OH H2O + NH3↑在pH值为11.5时,水气体积比为1:107的条件下,空气吹脱可去除95%的氨氮,在正常养殖水体也可获得一定的效果。

空气吹脱应用的关键是pH值的调整,使处理过程既能提高处理的效率,又能适应养殖鱼类对水体pH值的要求。

同时空气吹脱需要空气的流量大,养殖水体水温易受影响。

3. 2 离子交换吸附离子交换吸附是应用氟石或交换树脂对水体中的氨氮进行交换和吸附。

氟石的吸附能力约为1mg/g,设计适宜可吸附95%的氨氮,在达到吸附容量后,可用10%的盐水喷林24小时进行再生,重复使用。

在工厂化养殖中应用氟石有较好的效果,但其再生操作烦琐、时间长。

有些研究利用氟石作为生物处理的介质,在氟石上接种硝化细菌,达到提高生物处理效率的目的。

3. 3 生物处理生物处理是利用硝化细菌、亚硝化细菌和反硝化细菌对水中的氨氮进行转化和去除。

亚硝化细菌(Nitrosomonas europaea and Nitrosococcus mobilis)把氨氮转化为亚硝酸盐、硝化细菌(Nitrobacter winogradski and Genus Nitrospira)把亚硝酸盐转化为硝酸盐。

如果进行彻底脱氮处理,可利用反硝化细菌进行处理。

由于反硝化过程是在厌氧条件下(溶解氧低于1mg/l)进行,应用于水产养殖有一定的困难。

研究表明,硝酸盐对鱼类的影响很小,一些养殖鱼类可抵抗大于200 mg/l浓度的硝酸盐。

因此,水产养殖水体的处理,很少应用反硝化过程。

生物处理具有投资少,效率高的特点,受到广泛的关注和应用。

有资料显示,应用硝化和亚硝化细菌附着浮球进行氨氮处理,氨氮的转化率为380g /(m3·day),饵料负荷能力为32kg/(m3·day)。

但是,硝化细菌的最佳生长温度在30℃以上,温度降低其活性降低,处理能力下降,低于15℃已经很难利用。

有些研究涉及了低温下优势细菌的驯化、培养和利用技术,获得低温下生物处理的良好效果,是水产养殖水体处理的重要研究方向。

3. 4 臭氧氧化处理臭氧作为消毒和去除悬浮物在水产养殖上获得广泛应用,其也有一定的氨氮氧化效果。

研究表明臭氧的直接氧化可去除水体中氨氮的25.8%,在加入催化剂的条件下,可大幅度提高其氧化效率。

臭氧氧化氨氮的方法在水产养殖上还没有深入研究,利用催化方法提高臭氧氧化氨氮的效率,应用于养殖水体的处理,可为水产养殖的氨氮处理开辟新途径。

3. 5 电渗析处理电渗析处理的原理是水体在电场的两极流动时,水中的带电离子在直流电场的作用下定向移动,阴离子透过阴膜进入阴离子集水槽,阳离子通过阳膜进入阳离子集水槽,从而可把水体中的离子氨去除。

由于氨氮在pH值为7的中性条件下,非离子氨仅为氨氮总量的0.55%,99% 以上是离子氨,所以电渗析处理可获得好的处理效果。

电渗析处理具有分离效率高、装置紧凑、自动化容易的特点,已经广泛地应用于化工、食品、冶金和航天领域的水处理工程。

相关文档
最新文档