海流发电系统发展现状
海流能发电在南美洲国家能源供应中的应用

海流能发电在南美洲国家能源供应中的应用引言:随着全球对可再生能源的关注不断增加,海流能发电作为一种新兴的清洁能源形式,正在受到越来越多南美洲国家的关注。
南美洲拥有丰富的海洋资源和辽阔的海域,这为海流能发电提供了良好的条件。
本文将探讨海流能发电在南美洲国家能源供应中的应用,并总结利用海流能发电的优势和面临的挑战。
一、南美洲的海流能发电潜力南美洲作为一个拥有大量海洋资源的大陆,拥有广阔的海域和丰富的海流能发电潜力。
根据研究,南美洲的海流能资源主要分布在巴西、阿根廷、智利、秘鲁等沿海国家。
其中,巴西的北大西洋海流是南美洲最具潜力的海流能发电区域之一,智利的太平洋海流也具有较大的潜力。
二、海流能发电的优势1. 可再生性:海流能是一种不会枯竭的可再生能源,与传统能源相比,具有更长久的持续供应。
2. 清洁性:海流能发电过程中没有直接的二氧化碳排放,对环境几乎没有负面影响,使其成为一种环保的发电方式。
3. 稳定性:相比于风能和太阳能等不稳定的可再生能源,海流能发电具有更高的可预测性和稳定性,能够满足南美洲国家对稳定能源供应的需求。
4. 潜力巨大:南美洲拥有大量海洋资源和辽阔的海域,使得海流能发电在这个地区有着巨大的潜力。
三、南美洲国家海流能发电的现状与应用1. 巴西:巴西位于大西洋沿岸,拥有丰富的海流资源。
近年来,巴西积极推动海流能发电项目的开展。
例如,巴西北部巴利亚州已经开展了大规模的海流能发电试点项目,并取得了一定的成果。
此外,巴西还与国际合作伙伴合作,共同开展海流能发电技术的研究与发展。
2. 阿根廷:阿根廷拥有南美最长的海岸线,具有丰富的海流能资源。
尽管阿根廷在海流能发电方面的应用相对较少,但该国政府已经开始关注海流能发电的潜力,并制定了相关政策和法规,以吸引国内外投资者参与海流能发电项目。
3. 智利:智利拥有3200多公里的海岸线,位于太平洋东岸。
该国海流能发电潜力巨大,并且与海洋资源相关的电力技术已经发展成熟。
海洋能发展现状

海洋能发展现状
海洋能是一种可再生能源,包括潮汐能、波浪能和海流能等形式。
随着全球对可持续发展的需求不断增长,海洋能正逐渐成为能源行业的关注焦点。
潮汐能是海洋能中最成熟的形式之一。
通过利用潮汐的涨落,可以产生电力。
这一技术已经在一些地区得到应用,例如英国的布里斯托尔海峡。
在那里,潮汐发电站利用大海的潮汐运动,将海水引入到涡轮机中,产生电能。
尽管潮汐能在利用效率和成本上仍有挑战,但它被认为是可持续发展的重要选择之一。
波浪能是另一种有前景的海洋能形式。
波浪能的开发利用海浪的运动,将机械能转化为电能。
目前,已有多个国家在开展波浪能的研究与实践,包括英国、葡萄牙、澳大利亚等。
波浪能的挑战在于如何捕捉和转化海浪的能量,并将其稳定地输送到岸上。
海流能是利用海洋中的水流来产生电力。
由于海洋中的洋流稳定且持久,海流能具有很大的潜力。
目前,一些国家已开始探索海流能的可行性,例如爱尔兰和荷兰。
然而,由于海流能技术的复杂性和高成本,海流能的商业化还面临一些挑战。
总的来说,海洋能的发展前景广阔,但目前仍面临一些技术和经济挑战。
随着技术的不断进步和投资的增加,相信海洋能将成为未来能源领域的重要组成部分。
海洋能量转换技术的现状与发展趋势

海洋能量转换技术的现状与发展趋势海洋,占据着地球表面约 71%的面积,蕴藏着无尽的能量资源。
随着全球对清洁能源的需求不断增长,海洋能量转换技术逐渐成为研究和开发的热点领域。
海洋能量主要包括海浪能、潮汐能、海流能、温差能和盐差能等多种形式,这些能量的开发和利用为解决能源危机和环境问题提供了新的途径。
目前,海洋能量转换技术在全球范围内取得了一定的进展。
潮汐能发电技术相对较为成熟,已经有一些商业运行的潮汐电站。
例如,法国的朗斯潮汐电站是世界上最大的潮汐电站之一,其装机容量达到 24万千瓦。
潮汐能发电的原理是利用潮汐的涨落驱动水轮机旋转,从而带动发电机发电。
这种技术的优点是能量输出相对稳定,可预测性强,但缺点是建设成本高,对海洋生态环境可能产生一定影响。
海浪能转换技术也在不断发展。
常见的海浪能转换装置有振荡水柱式、摆式和筏式等。
振荡水柱式装置通过海浪的上下运动推动空气在气室内压缩和膨胀,从而驱动涡轮机发电。
摆式装置则利用海浪的水平运动带动摆体摆动来发电。
然而,海浪能的能量密度较低且分布不均匀,导致目前海浪能发电的成本较高,效率有待提高。
海流能发电技术也逐渐受到关注。
海流能是指海洋中大规模的定向水流所蕴含的能量。
海流能发电装置通常类似于风力发电机,但工作在水下环境。
一些国家已经开展了海流能发电的试验项目,但目前仍面临着设备可靠性、维护成本高等挑战。
温差能和盐差能的开发利用则处于研究和试验阶段。
温差能利用海洋表层和深层的温度差来驱动热力循环系统发电。
盐差能则是基于海水和淡水之间的盐度差产生的能量。
这两种能源的开发面临着技术复杂、成本高昂等诸多难题。
在海洋能量转换技术的发展过程中,还面临着一些共同的问题和挑战。
首先,海洋环境复杂恶劣,对设备的耐腐蚀性、密封性和稳定性提出了很高的要求,这增加了设备的制造和维护成本。
其次,海洋能量的分布较为分散,能量收集和传输存在困难,需要研发高效的能量收集和传输系统。
此外,海洋生态环境保护也是不容忽视的问题,海洋能源开发项目必须确保对海洋生态系统的影响最小化。
潮汐能发电技术的现状与发展趋势

潮汐能发电技术的现状与发展趋势潮汐能作为可再生能源中的一种,具有巨大的发展潜力和优势,一直备受关注。
通过利用海洋潮汐涨落产生的动能,可以实现对电力的高效产出。
本报告对潮汐能发电技术的现状进行了分析,并提出了存在的问题以及对策建议,以期推动潮汐能发电技术的进一步发展。
一、潮汐能发电技术的现状分析1.概述潮汐能发电技术是指利用潮汐能源,通过海水潮汐的周期性变化,将潮汐动能转化为电能的过程。
常见的潮汐能发电技术包括水轮发电、潮汐槽发电、压力差发电和潮汐涡轮发电等。
目前,世界各国对潮汐能发电技术的研究和应用都在不断深入。
2.发展现状在英国、法国、加拿大、挪威等国家,潮汐能发电技术已经得到广泛应用。
其中,英国的斯旺西湾潮汐能发电项目是目前全球最大的潮汐能发电项目之一,有效利用了潮汐涨落的动能,为当地提供清洁能源。
另外,法国的布列塔尼地区也是潮汐能发电技术的重要实践区域,多家公司在该地区展开了潮汐能发电项目。
3.发展趋势随着清洁能源的重要性日益凸显,潮汐能发电技术具有较大的发展潜力。
未来,潮汐能发电技术将逐步实现规模化生产,并在海洋工程领域发挥重要作用。
随着技术的不断创新和成熟,潮汐能发电技术的成本将逐渐下降,从而更好地满足能源需求。
二、存在的问题1.技术成熟度不高当前,潮汐能发电技术的技术成熟度相对较低,存在一定的技术难点和挑战。
例如,对潮汐资源的准确评估、材料的耐候性、装备的长期稳定性等问题尚待解决。
2.成本较高潮汐能发电技术的建设和运维成本相对较高,给实际应用带来一定压力。
尤其是在初期投资高、回收周期长的情况下,很多国家和地区在采用潮汐能发电技术时面临经济上的挑战。
3.环境影响难以评估潮汐能发电技术的应用会产生一定程度的环境影响,包括改变海洋生物栖息地、影响海底地形等。
如何准确评估潮汐能发电技术对环境的影响,以及如何有效降低环境风险,也是当前亟需解决的问题。
三、对策建议1.加强技术研究与创新针对潮汐能发电技术存在的技术难点,应加强技术研究与创新,提高技术成熟度。
海洋能发电技术的发展现状与前景

海洋能发电技术的发展现状与前景一、本文概述1、简述海洋能发电技术的概念海洋能发电技术,是指利用海洋中的可再生能源,如潮汐能、波浪能、海流能、海水温差能和海水盐度差能等,通过特定的装置或系统转换为电能的一种技术。
这些能源源于太阳辐射能,以热能、机械能等形式贮存于海洋之中,且可再生,因此被视为清洁、可持续的能源。
海洋能发电技术的开发利用,是对传统能源的一种补充和替代。
其核心技术在于如何将海洋中的自然能源有效转换为电能,这通常涉及到机械能、热能向电能的转换过程。
例如,潮汐能发电利用潮汐涨落产生的动力驱动水轮机转动,进而带动发电机发电;波浪能发电则是利用波浪装置将波浪能转换为装置的机械能,再驱动发电机发电。
随着全球能源需求的日益增长和对环境保护的日益重视,海洋能发电技术因其独特的优势,如储量丰富、清洁无污染、可再生等,越来越受到人们的关注和重视。
未来,随着技术的不断进步和成本的降低,海洋能发电技术有望在全球能源结构中占据更重要的地位。
2、阐述海洋能在全球能源结构中的重要性和意义在全球能源结构中,海洋能作为一种清洁、可再生的能源,具有极高的重要性和意义。
随着全球气候变化和环境问题日益严重,传统化石能源的消耗不仅加剧了温室气体的排放,也引发了资源枯竭的担忧。
因此,寻找可持续、环保的替代能源已成为全球共识。
海洋能,包括潮汐能、波浪能、海流能、海水温差能和海水盐差能等多种形式,是地球上最为丰富的能源之一。
它不受地理位置、天气条件等因素的限制,分布广泛且稳定可靠。
更重要的是,海洋能的开发利用几乎不产生污染物和温室气体,对环境的破坏极小,符合可持续发展的要求。
从全球能源战略的角度来看,海洋能的发展对于优化能源结构、保障能源安全具有重要意义。
随着技术的不断进步和成本的降低,海洋能发电在全球能源供应中的比重有望逐渐提升,成为未来能源体系的重要组成部分。
海洋能的开发利用还能带动相关产业的发展,创造就业机会,促进经济增长。
海流能发电技术的前沿研究与创新

海流能发电技术的前沿研究与创新随着世界能源需求的增长和对可再生能源的迫切需求,海流能发电技术作为一种新兴的清洁能源形式,受到越来越多国家和科学家的关注。
海流能发电技术利用海洋中的潮流和洋流的动能转化为电能,成为一种具有巨大发展潜力的可再生能源形式。
本文将介绍海流能发电技术的前沿研究与创新,包括当前的技术发展状况、面临的挑战以及未来的发展方向。
当前,海流能发电技术已经在一些国家开始商业化应用,如英国、挪威、加拿大等。
这些国家利用浮式机器、水下涡轮和底部固定机器等设备来捕获和转化海洋中的潮流和洋流能量。
其中,浮式机器是最常用的技术,它通常采用类似于风力发电机组的设计,通过叶片受到潮流或洋流的作用而转动,进而驱动发电机产生电能。
但是,海流能发电技术在实际应用中仍然面临一些挑战。
首先,海洋环境的复杂性使得设备的设计与维护成本较高。
海洋中的波浪、盐度、腐蚀等因素会对设备的稳定性和可靠性产生影响。
其次,大规模商业化应用需要解决设备的耐久性和可持续性问题,以确保设备的长期运营和维护。
此外,海流能发电技术的发展还面临着法规政策和环境影响评估等问题。
为了克服这些挑战,海流能发电技术的研究者们正在进行一系列的创新。
首先,他们通过改进设备的设计和材料选择,提高设备的稳定性和可靠性。
例如,采用更耐腐蚀的材料和防腐蚀涂层可以延长设备的使用寿命。
其次,他们研究和开发新型的海流能发电设备,以提高能量转化效率。
比如,利用涡轮和螺旋桨等技术可以提高设备的转速和功率输出。
此外,海流能发电技术的前沿研究还包括对海洋能源资源的评估和优化利用。
通过建立海洋能源资源数据库,研究者可以了解不同地区的海流能资源,并确定最佳的设备布局。
此外,他们还研究如何将海流能发电技术与其他可再生能源形式如风力发电和太阳能发电相结合,以实现能源的多元化和互补利用。
未来,海流能发电技术的发展方向主要包括提高设备的能量转换效率、降低成本,并实现大规模商业化应用。
海洋能发电技术的发展现状与前景

海洋能发电技术的发展现状与前景摘要: 海洋能是取之不尽、用之不竭的清洁能源。
海洋能多种多样, 主要包括波浪能、潮流能、潮汐能和温差能等。
利用海洋能发电能够改善能源结构和环境, 有利于海洋资源开发, 受到许多国家的重视。
文中对各种海洋能发电系统的主要技术原理、特点和技术现状作了综述和评价, 最后指出海洋能利用的意义和前景。
关键词: 海洋能波浪能潮流能潮汐能环境保护海洋能是指依附在海水中的能源。
海洋通过各种物理过程或化学过程接收、存储和散发能量, 这些能量以波浪、海流、潮汐、温差等形式存在于海洋之中。
海洋面积占地球总面积的71%, 到达地球的各种来自宇宙的能量, 大部分落在海洋上空和海水中,部分转化为各种形式的海洋能。
海洋能的大部分来自于太阳的辐射和月球的引力。
例如: 太阳辐射到地球表面的太阳能大部分被海水吸收, 使海洋表层水温升高, 形成深部海水与表层海水之间的温差, 因而形成由高温到低温的温差能;太阳能的不均匀分布导致地球上空气流运动, 进而在海面产生波浪运动, 形成波浪能;由地球之外其他星球( 主要由月球)的引力导致的海面升高形成位能, 称为潮汐能;由上述引力导致的海水流动( 其特征是在一日内发生的、有规则的双向流动) 的动能称为潮流能;非潮流的海流( 其特征是一日内不发生双向的流动) 的成因有受风驱动或海水自身密度差驱动等, 归根结蒂是由太阳能造成的, 其动能称为海流能。
海洋能是清洁的可再生能源, 开发和利用海洋能对缓解能源危机和环境污染问题具有重要的意义, 许多国家特别是海洋能资源丰富的国家, 大力鼓励海洋能发电技术的发展。
由于海洋能发电系统的运行环境恶劣, 与其他可再生能源发电系统, 如风电、光伏发电相比, 发展相对滞后, 但是随着相关技术的发展, 以及各国科技工作者的努力, 近年来, 海洋能发电技术取得了长足的进步, 陆续有试验电站进入商业化运行。
可以预见, 不远的将来, 随着海洋能发电技术日益成熟, 将会有越来越多的海洋能发电系统接入电网运行。
海洋能发电技术的现状与未来发展趋势研究

海洋能发电技术的现状与未来发展趋势研究一、绪论海洋能作为一种新兴的可再生能源,具有广阔的开发潜力和巨大的能源储备,受到了世界各国的重视和关注。
海洋能发电技术是利用海洋涡轮、浪能、潮汐能等形式的能量转化为电能的技术,具有环境友好、稳定可靠等优点。
本报告旨在对海洋能发电技术的现状进行分析,并探讨未来的发展趋势,为海洋能的进一步发展提出对策建议。
二、海洋能发电技术的现状分析1. 海洋能资源分布情况海洋能资源主要包括浪能、潮汐能和温差能等。
全球海洋能资源分布广泛,其中北冰洋、南极洋、北太平洋和北大西洋的浪能资源最为丰富,潮汐能资源主要分布在潮汐能资源最为丰富。
2. 海洋能发电技术现状目前,海洋能发电技术主要包括浪能发电、潮汐能发电和海洋温差发电等。
浪能发电技术主要通过浮标式装置或潜水泵装置来捕捉海浪能量,目前已有多个国家在海洋能发电方面进行了试验和实践。
潮汐能发电技术利用潮汐运动产生的动能来发电,主要有潮汐水轮机和潮汐涡轮机两种方式。
海洋温差发电技术则是利用海水表面和海水底部的温差来驱动涡轮发电机产生电能。
3. 国内外海洋能发电项目目前,世界各国都在积极推动海洋能发电项目的发展。
欧洲国家在海洋能发电领域处于领先地位,拥有成熟的技术和大规模的海洋能发电项目。
而我国在海洋能发电方面也取得了一定进展,如长江口潮汐发电等项目。
三、海洋能发电技术存在的问题1. 技术不成熟海洋能发电技术相对于其他能源技术而言仍处于发展阶段,存在着技术不成熟的问题。
特别是在海洋环境恶劣、设备耐久性等方面仍有待提高。
2. 经济问题海洋能发电项目的建设和运营成本较高,投资回报周期较长,需要支持和逐步完善的市场机制。
3. 环境影响海洋能发电项目在建设和运营过程中可能对海洋生态环境造成一定影响,如影响海洋生物迁徙和繁殖等。
四、海洋能发电技术发展的对策建议1. 加强技术研发应不断加大海洋能发电技术的研发力度,提升技术水平,解决技术难题,降低成本,提高效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
An Up-to-Date Review of Large Marine Tidal Current Turbine TechnologiesZhibin Zhou1,2,3, Franck Scuiller1, Jean FrédéricCharpentier11French Naval Academy, EA 3634 IRENav,Brest, FranceEmail: zhibin.zhou@ecole-navale.frMohamed Benbouzid2 and Tianhao Tang3 2University of Brest, EA 4325 LBMS, Brest, France 3 Shanghai Maritime University, Shanghai, ChinaEmail: Mohamed.Benbouzid@univ-brest.fr,thtang@Abstract—Owning to the predictability of tidal current resources, marine tidal current energy is considered to be a reliable and promising renewable power source for coastal areas or some remote islands. During the last 10 years, various original horizontal axis and vertical axis marine current turbines (MCT) have been developed around the world. Although various projects have been reported in the state-of-the-art research papers in recent years, many of these projects were only at the design stage when the papers were published. In fact, some projects do not have any further developments during the several years after the first reporting. In this paper, up-to-date information about large tidal turbine projects over 500 kW is focused. The newest achievements of these large tidal current turbine technologies are presented. These technologies represent the industrial solutions for several pre-commercial MCT farm projects in the coming years. This paper provides a useful background for researchers in the marine turbine energy domain.Keywords—Tidal current turbine, large machine, up-to-date review.I.I NTRODUCTIONOne of the main advantages of marine current energy is related to the predictability of the resource. The astronomic nature of tides is driven by the gravitational interaction of the Earth-Moon-Sun system and makes marine tidal currents highly predictable with 98% accuracy for decades [1]. There are basically two ways of generating electricity from marine tidal energies: either by building a tidal barrage across an estuary or a bay, or by extracting energy from free flowing tidal currents. The main drawback of the solution is that large barrage system would change the hydrology and may have negative impacts on the local ecosystem [2]. Therefore during the last few decades, developers have shifted towards technologies that capture the kinetic energy from tidal-driven marine currents. The exploitable marine current energy with present technologies is estimated about 75 GW in the world and 11 GW in Europe [3].In fact, various original horizontal axis and vertical axis marine current turbines (MCT) have been developed around the world in recent years [4-6]. The majority of MCT devices are horizontal axis turbines with rotation axis parallel to the current flow direction. The main disadvantages associated with vertical axis turbines are relative low self-starting capability, high torque fluctuations and generally lower efficiency than horizontal axis turbine design. Currently, only horizontal axis MCTs appear to be the most technologically and economically solution for large-scale marine current turbines with power capacity over 500 kW.Although various turbine projects have been reported in some state-of-the-art research papers, many of these projects were only at the design stage when the papers were published [4], [7]. However, some projects are abandoned or never have been built, for instance, the Lunar Energy Tidal turbine. And some projects do not have further developments during the several years after the first announcement, such as Atlantis Resource Nereus and Solon turbines. Therefore, an up-to-date review of industrialized turbine technologies is necessary.In this paper, up-to-date information and the newest achievements of industrialized large tidal current turbine technologies (over 500 kW) will be focused. In Section II, the pilot pre-commercial MCT farms information and the industrialized large turbine technologies are presented. The conclusion and perspective are then given In Section III.II.L ARGE M ARINE C URRENT T URBINE T ECHNOLOGIESSeveral horizontal axis turbine technologies are developed more than one or two generations and have been chosen by the industrial communities to realize pilot demonstrative MCT farms before the final commercial stage. These projects illustrate the up-to-date developments of large MCT technologies which will provide electricity to coastal or island areas in the coming years. Table I summarizes the main information about some of these pilot MCT farm projects and their planned/estimated operational dates. From this table, it can be seen that most of these turbine technologies have attended megawatt-level power capacity.A.OpenHydro Turbine TechnologyOpenHydro is an open-center turbine technology; a 250 kW prototype was installed and tested at European Marine Energy Center (EMEC) off Orkney islands in Scotland and was connected to the UK national grid in 2008. This turbine technology has been chosen by the French companies EDF and DCNS to build a demonstrative MCT farm off the coast of Paimpol-Bréhat in Brittany, France.This work is supported by Brest Métropole Océane (BMO) and the Shanghai Maritime University.TABLE I. P ILOT MCT F ARMS IN THE C OMING Y EARS [3],[8-10].Companies Location Turbine Name PitchableBladesTurbineNumberTotal Capacity(MW)OperationalYearDCNS, EDF Paimpol-Bréhat OpenHydro No 4 2 2014/2015MeyGen Pentland Firth(Scotland)HS1000 Yes6 6 2015/2016or AR1000 NoMCT, SiemensKyle Rhea(Scotland)SeaGen S Yes 4 8 2015 Anglesey (Wales) SeaGen S Yes 5 10 2015Andritz Hydro Hammerfest Sound of Islay(Scotland)HS1000 Yes 10 10 > 2015GDF Suez, Eole Generation Raz Blanchard Voith Hytide No 3~6 3~12 2016 Fromveur Sabella No > 4 > 4 2016The first 500 kW OpenHydro turbine (Fig. 1) was tested in September 2011 near Brest. This 850 tonnes turbine has a diameter of 16 m and is supposed to be installed at a depth of 35 meters. This technology uses multi-blades fixed between the open-center rim and the outside shell in a rim-driven configuration. The permanent synchronous generator is integrated into the outside rim shell. The planed MCT farm with 4 turbines is reported to be in operation in 2014 [10]. However, some delays in the final farm operation could still be envisaged.B.HS1000 and AR1000 Turbine TechnologiesThe 1MW pre-commercial turbine HS1000 (Fig. 2) was tested by Andritz Hydro Hammerfest (original Hammerfest Strøm) at EMEC tidal test site at the end of 2011. It started delivering energy to the grid in 2012. The HS1000 turbine is based on the technology of a smaller prototype HS300 (300kW, reported as E-Tide turbine project in [6-7]) which was installed in Norway and connected to the public grid in 2004. This megawatt-level HS1000 turbine technology is planed to be used in a 10 MW commercial array in the Sound of Islay on the west coast of Scotland; the tidal resource and seabed surveys are completed [13]. This technology is also reported to be chosen in the first phase of the MeyGen tidal current project in Inner Sound of the Pentland Firth [9].Another candidate for the MeyGen project is the AR1000 turbine (Fig. 3) technology developed by Atlantis Resources Corporation [14]. The Atlantis AR1000 turbine features fixed pitch configuration and is rated at 1 MW at 2.65 m/s current velocity. The AR1000 can be rotated in the slack period between tides using a yaw drive for optimally facing the tides. The first AR1000 was successfully deployed and tested at the EMEC facility during the summer of 2011. The AR1000 system is also scheduled to be installed on Daishan demonstration site in China during 2014. A larger turbine called AR1500 (1.5 MW at 3.0 m/s) is under development for future installation in the Pentland Firth in Scotland and the Bay of Fundy in Canada.Fig. 1. DCNS-OpenHydro turbine © [11].Fig. 2. Andritz Hydro Hammerfest HS1000 turbine © [12].C.SeaGen S Turbine TechnologyThe SeaGen S turbine (showed in Fig. 4) developed by Marine Current Turbine Ltd. (owned by Siemens since 2012) is a well-known system that can generate electricity from marine current energy. This technology has a twin axial-flow turbine supported on a structure with the ability to raise the moving components out of the water for maintenance [16]. It is the world first grid-connected megawatt-level MCT system. The 1.2 MW SeaGen S system (2×600 kW) was installed in Strangford Lough in Northern Ireland in 2008 and has generated 8 GWh electricity since the installation. During a strong spring tide, the SeaGen S system can deliver more than 20 MWh in a single day. It is reported that up-scaled SeaGen S systems with 20 meter rotor and 2 MW power rating will be installed in two commercial arrays in UK waters (as listed in Table 1) from 2015.D.Voith Hydro Turbine TechnologyFrench energy company GDF Suez has plans to install pilot tidal energy farms at Raz Blanchard off the coast of Lower Normandy and in the Fromveur passage off the coast of Finistère in Brittany. These two sites represent 80% of the marine current energy potential in France [17]. For the Raz Blanchard project, GDF Suez has recently confirmed to use Voith Hydro HyTide turbine and Alstom tidal turbine technology. The Voith Hydro turbine system (shown in Fig. 5) is developed by German hydropower equipment maker Voith Company. The first test turbine of 110 kW has been in operation near the South Korean island of Jindo since 2011. The up-scaled version of 1 MW turbine is now installed and tested at EMEC tidal test site.The Voith Hydro turbine adopts robust design: it uses fixed-pitch blades and permanent magnet synchronous generator to achieve compact structure. Specially designed symmetric blade profile can be operated for bidirectional tidal currents avoiding pitch and yaw requirements. The nacelle system uses seawater lubrication technology to avoid grease and seals for the bearings. The electrical machine is protected from corrosion and marine fouling by proven coatings and sacrificial anodes. The low-maintenance characteristics makes the estimated system lifetime up to 20 years [18]. The 1 MW turbine has a rotor diameter of 16 m and reaches the rated power at a current velocity of 2.9 m/s.E.Sabella Turbine TechnologyOne of the potential MCT applications is to provide electricity for remote islands not connected to the continental electric grid. As example, in the near future, several MCTs are planed to be installed in the Fromveur passage (near Brest) in France to supply part of the load demand of Ouessant Island. For the Fromveur project, the Sabella tidal turbine technology will be used [19]. The Sabella D10 turbines have a rotor diameter of 10 m and a power capacity of 0.5~1.1 MW for 3.0~4.0 m/s current velocities. Figure 6 illustrates the perspective Sabella turbine farm. The Sabella D10 is based on the first French marine current turbine Sabella D03 (3 m rotor diameter) which was tested at Odet estuary near Brest in 2008. The prototype D10 turbine is now completing the construction and is scheduled to be installed in the Fromveur passage at the end of 2014. Larger turbines D12 and D15 with power capacities of 1~2 MW are under design for future turbine farm applications [19-20].Fig. 3. Atlantis AR1000 turbine © [14].Fig. 4. SeaGen S turbine © [15].Fig. 5. Voith Hydro turbine © [18].Fig. 6. Sabella turbine farm illustration © [20].F.Alstom Tidal Turbine TechnologiesIn 2010, Alstom announced a 1 MW turbine project named Beluga 9 for deployment in Canada's Bay of Fundy in 2012 [21]. Beluga 9 was a joint project with Canadian company Clean Current. It was intended for very powerful currents (up to 4.5 m/s) and for sites with depths of 30 meters or more. However, with the termination of the licensing agreements with Clean Current at the end of 2012, there is no further news about this megawatt turbine project. Clean Current has decided to focus on river turbines and shallower water tidal turbines (< 20 meters). While Alstom’s intention is to pursue the larger utility scale opportunities [22].In 2013, Alstom successfully installed a 1 MW tidal current turbine at EMEC tidal test site after the acquisition of Tidal Generation Limited (TGL) [23-24]. Figure 7 shows the Alstom’s 1 MW tidal turbine system. This tidal turbine weighs 150 tonnes and has three pitchable blades, a rotor diameter of 18 m and a nacelle length of 22 m. A standard drive train and power electronics device is inside the nacelle. This turbine system can be installed in a water depth between 35 and 80 meters. It can generate electricity with a tidal current between 1 m/s and 3.4 m/s, and reaches the rated power for a tidal current speed of 2.7 m/s. This 1 MW Alstom tidal turbine is under extensive testing and analysis in different operational conditions off Orkney islands throughout 2013 over an 18 month period.Fig. 7. Alstom tidal turbine © [23].Although the Alstom’s 1 MW tidal current turbine seems similar to a standard wind turbine system (with three pitchable blades and gearbox-integrated drive train), this tidal turbine have some special characteristics. Its buoyancy enables the turbine to be easily installed and retrieved by using small vessels, thus reducing the installation and maintenance costs. It has an intelligent nacelle which can be rotated by the water thrusts to orientate the turbine system to face the tide direction; that enables the system to harness energy efficiently from both ebb and flood tidesIII.C ONCLUSIONS AND P ERSPECTIVESThe turbines presented above represent the newest achievements in the megawatt-level marine current turbine technologies. The comment point is that they are all horizontal axis turbine. And it should be noted that more than half of these turbine technologies adopt the fixed pitch solution for the blades.In addition to these industrialized large turbine technologies, there are other megawatt turbine projects which are under development. For example, the TidalStream Triton technology mounts several turbines on a semi-submersible buoying platform to achieve high power harness capacity. The 1/23rd scale and 1/10th scale turbines (Triton T6 and Triton T3) were successfully tested in 2009 and 2011 respectively [25]. The first full-scale version Triton T36 system (with 2.5 MW power rating) is planned to be built at the Fundy Ocean Research Center for Energy (FORCE) tidal test site in Nova Scotia, Canada.It should be noted that in FORCE tidal test site, there are also several megawatt-level current turbine plans which are strongly related to the turbine technologies presented in this paper. High tidal current speed (up to 5.5m/s) and Nova Scotia's feed-in-tariff make FORCE one of the most attractive and economic tidal sites in the world [26-27]. Siemens and Bluewater are jointly developing a 2 MW floating tidal current turbine, called SeaGen F, to be installed in Bay of Fundy and it will supply electricity for 1,800 Nova Scotia households. OpenHydro, the DCNS tidal subsidiary, will proceed with plans for a grid-connected 4 MW tidal array to be installed at FORCE in later 2015. This array will consist of two 2 MW turbines with 16 m rotor diameters.R EFERENCES[1]S. Benelghali, R. Balme, K. Le Saux, M. E. H. Benbouzid, J. F.Charpentier, and F. Hauville, “A simulation model for the evaluation ofthe electrical power potential harnessed by a marine current turbine”, IEEE Journal of Oceanic Engineering, vol. 32, n o4, pp.786-797, Oct.2007.[2]R. Pelc, R.M. Fujita, “Renewable energy from the ocean”,MarinePolicy, vol. 26, issue 6, pp.471-479, Nov. 2002.[3]H. Boye, E. Caquot, P. Clement et al., “Rapport de la mission d’étudesur les énergies marines renouvelables,” March 2013. (in French)[4] F.O. Rourke, F. Boyle, A. Reynolds, “Marine current energy devices:Current status and possible future applications in Ireland,” Renewableand Sustainable Energy Reviews, vol. 14, n°3, pp.1026-1036, Apr. 2010.[5] A.S. Bahaj, “Generating electricity from the oceans,” Renewable andSustainable Energy Review, vol. 15, n°7, pp.3399-3416, Sept. 2011. [6]J. Zhang, L. Moreau, M. Machmoum, and P.E. Guillerm, “State of theart in tidal current energy extracting,” in Proceedings of the 2014 IEEE ICGE, Sfax (Tunisia), pp. 1-7, March 2014.[7]S. Benelghali, M.E.H. Benbouzid and J. F. Charpentier, “Marine tidalcurrent electric power generation technology: State of the art and current status,” in Proceedings of the 2007 IEEE IEMDC, Antalya (Turkey), vol.2, pp. 1407-1412, May 2007.[8]http://www.global-et-local.eu/?Hydroliennes-les-industriels(last accessed August 2014)[9]/the-project/meygen-news/(last accessed August 2014)[10]/view/26574/gdf-suez-investigates-french-tidal-potential/ (last accessed August 2014) [11]/2011/11/14/worlds-largest-tidal-power-array-off-french-coast/ (last accessed August 2014)[12]/50635/andritz-back-in-action-at-emec/ (last accessedAugust 2014)[13]/ (last accessed August 2014)[14]/technology/ar-series.html (last accessedAugust 2014)[15]/ (last accessed August 2014)[16]/en/news_press/index/news_archive/seagen-tidal-currant-turbine-milestone-hat-trick.htm (last accessed August 2014) [17]/en/journalists/press-releases/gdf-suez-bolsters-plans-for-marine-current-power-france-signing-partnership-agreement-alstom/ (last accessed August 2014)[18]/en/products-services/hydro-power/ocean-energies/tidal-current-power-stations--591.html (last accessed August 2014)[19]http://www.sabella.fr/ (last accessed August 2014)[20]/7/17093+sabella-implante-la-premiere-hydrolienne-francaise-connectee-au-reseau+.html (last accessed August 2014)[21]/press-centre/2010/12/alstoms-ocean-energy-business-established-at-nantes/ (last accessed August 2014)[22]/news?page=1 (last accessed August 2014)[23]/blog/2013/01/alstom-completes-purchase-of-tidal-generation-ltd-from-rolls-royce/ (last accessed August 2014)[24]/blog/2013/03/1-mw-alstom-tidal-turbine-generates-grid-electricity-in-orkney-waters/(last accessed August 2014)[25]/index.html (last accessed August 2014)[26]/News/2014/04/04/siemens-bluewater-and-minas-install-floating-tidal-current-turbines-canadas-bay(last accessed August 2014)[27]/environmental-permitting/north-american-turbine-testing-picks-speed-regulatory-support-and-hydro-his(last accessed August 2014)。