4.2 Newton-Cotes求积公式

合集下载

数值分析7-牛顿-科特斯公式

数值分析7-牛顿-科特斯公式

0
n
(n − s − i) (−ds)
∫ ∏ ( ) n
= (−1)n+1 hn+2
i=0 n
n
s − (n − i) ds
n
n
∏ ∏ 又 (s − (n − i)) = (s − i)
0 i=0
R[ f ]= −R[ f ]
R[ f ]= 0
i=0
i=0
n 偶数
余项
梯形公式的余项
∫ ∫ RT =
0
(2) 若 n 为奇数, f (x) ∈Cn+1[a, b] ,则存在 η ∈(a, b) 使得
∫ ∫ b a
f
(x)
dx
=
Q[
f
]+
(b
− a)n+2 f (n+1) (η )
nn+2(n + 1)!
n t2(t − 1)"(t − n) dt
0
举例(一)

例:分别用梯形公式和simpson公式计算积分
∑ 解: T8
=
1 16
⎡ ⎢⎣
f
(
x0)
+
2
7 i=1
f (xi) +
⎤ f (x8)⎥⎦
=
0.9456909
S4
=
1 24
[
f
(x0) + 4( f (x1) + f (x3) + f (x5) + f (x7)) + 2( f (x2) + f (x4) + f (x6)) + f (x8)] = 0.9460832
故一般不采用高阶的牛顿-科特斯求积公 式。

第4章==牛顿求积

第4章==牛顿求积

f ′′(ξ ) b (b − a)3 RT = ∫a (x − a)(x − b)dx = − 12 f ′′(ξ) 2
(2)辛甫生公式余项Rs 辛甫生公式余项
RS = I − S = ∫
b a
f ′′′(ξ ) a +b (x − a)(x − )(x − b)dx 3 ! 2
b − a b − a 4 (4) =− ( ) f (ξ ),ξ ∈(a, b) 180 2
4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.5
0
0.5
1
1.5
b−a , (k = 0,1,2,3,4) (3)n=4时, xk = a + k ⋅ ) 时 4

b
a
f (x)dx ≈ I 4 =
b−a [7 f (x0 ) + 32 f (x1 ) +12 f (x2 ) + 32 f (x3 ) + 7 f (x4 )] 90
sin x 1 ∫0 x dx ≈ 90 (7 f (0) +32 f (0.25) +12 f (0.5) + 32 f (0.75) + 7 f (1)) = 0.9460830
1
I=0.9460831(准确值), 各阶牛顿 柯特斯求积结果 (准确值 各阶牛顿—柯特斯求积结果
n In m 1 2 3 0.9461109 3 4 0.9460830 5 5 0.9460830 5
且对应的函数值
f (xk ) = yk 为已知, 为已知,
n b
构造插值型求积公式

b
a
f ( x)dx = ∑ f ( xk ) ∫ lk ( x)dx

牛顿—柯特斯(Newton-Cotes)求积公式

牛顿—柯特斯(Newton-Cotes)求积公式
k =0
n
n)
f ( xk )
( ckn)
称为柯特斯求积系数 称为柯特斯求积系数
∫ f ( x ) dx ≈ ( b a ) ∑ c
b a k =0
n
(n)
k
f ( xk )
c
(n) k
n=1时
C
(1) 0
n n (1)nk = ∫0 ∏(t j) dt k ! (n k )!n j =0 j ≠k
3 b
2 b

b
a
a
( x b)2 dx ] 2
a
(b a ) 3 f ′′(η ) = 12
定理的其它证明从略。 定理的其它证明从略。
复合求积公式
Newton—Cotes求积方法的缺陷: 求积方法的缺陷 求积方法的缺陷: 从余项公式可以看出, 从余项公式可以看出,要提高求积公式的代数精 增加节点个数 必须增加节点个数,而节点个数的增加, 度,必须增加节点个数,而节点个数的增加,会导致 现象; (1)插值多项式出现 )插值多项式出现Runge现象; 现象 数值稳定性不能保证。( (2)Newton—Cotes数值稳定性不能保证。( ) 数值稳定性不能保证。(n>7) )
I4 ( f ) =
(b a ) [7 f ( x0) + 32 f ( x1) + 12 f ( x 2) + 32 f ( x3) + 7 f ( x 4)] 90
柯特斯公式
n=1时的求积公式 时的求积公式
1
梯形公式/*Trapezoidal Formula */ 梯形公式/*
I1 ( f ) = ∑ Ak f ( xk ) = A0 f ( x0 ) + A1 f ( x1 )

牛顿科特斯求积公式

牛顿科特斯求积公式
a
b
n
a Ln( x)dx (b a)
Ck(n) f ( xk )
k0
Newton-Cotes求积公式
Cotes系数性质
计算方法
(1)
Ck( n)

C (n) nk
(对

性)
n
(2)
C (n) k

1
k0
几种常用的Newton-Cotes求积公式
梯形公式,辛普生公式,Cotes公式

B 3C 8

B 9C 64 3
解得:
A 4, B 4,
9
3
所求公式为:
C 20 9
计算方法
4
0
f
( x)dx

14
9
f
(0)

12
f
(1)

20
f
(3)
计算方法
例3:试确定一个具有三次代数精度的求积公式
3
0 f ( x)dx A0 f (0) A1 f (1) A2 f (2) A3 f (3)
二 插值型求积公式
计算方法
基本思想:用插值函数的积分,作为数值积分 (取拉格朗日插值函数)
b
f ( x)dx
a
b
a LN ( x)dx
bN a
li (x) f ( xi )dx
i0

N i0
b a
li
(
x
)dx

f
(
xi
)
即:求积系数
Ai
b
Ai a li ( x)dx
能完全解决定积分的计算问题,因为积分学涉及的

4-2牛顿—柯特斯公式

4-2牛顿—柯特斯公式

而 n= 4时的牛顿—柯特斯公式为
ba C [7 f ( x0 ) 32 f ( x1 ) 12 f ( x2 ) 32 f ( x3 ) 7 f ( x4 )] 90 ba x k a kh, h 这里 4
特别称为 柯特斯(Cotes)公式*
注:其余柯特斯系数详见书上p104表4-1.
二、偶阶牛顿-柯特斯求积公式的代数精度
作为插值求积公式,n阶牛 顿 — 柯特斯公式至少具有 n 次 代数精度,那么
是否有更进一步的结果?
两个简单偶阶求积公式的代数精度
辛甫生(Simpson)公式
ba ab S [ f (a ) 4 f ( ) f (b)] 6 2
首先它是二阶公式,因此至少具有二次代数 精度,进一步考察当 f(x)=x3时,

n
0
t j dt j 0 k j jk
n
1 n 1 n j 0 k j
jk
0
n
( t j )dt ( h b a ) j 0
jk
n
n
n n 1 1 1 ( t j )dt n k ( k 1)...1 ( 1)( 2)...( k n) 0 j 0 jk
所以 余项为
max | f ( x ) | f (1) 8.1548
1 x 2
f ( ) | RT | (b a ) 3 12
( 2 1) max | f ( x ) | 0.6796 12 1 x 2
3
用辛甫生公式计算
1 1 21 1.5 2 e dx ( e 4 e e ) 2.0263 1 6

2
dx 的近似值,并估计余项。

Newton-Cotes求积公式

Newton-Cotes求积公式

n
推论1 求积系数满足: Aj b a j0
(可用此检验计算求积系数的正确性)
证:
b
b
n
a f (x)dx a Ln (x)dx Ak f (xk )
k 0
当节点为n 1个时,插值求积公式有n次代数精度,
对于f (x) xn ,上式严格相等,
所以取f (x) 1时,上式也严格相等,
解决方法:
4.2.1 插值型求积法
1、方法
插值多项式
插值基函数
已知 (xi,
f (xi )),求得 Ln (x)
n i0
f
(xi )li (x),其中li (x)
n l0
x xl xi xl
,

b
b
bn
a f (x)dx a Ln (x)dx a f (xi )li (x)dx
权Ak仅仅与节点xk的选取有关,而不依赖于被积函数f(x) 的具体形式。
使积分公式具有通用性
我们的目的就是根据一定原则, 选择求积节点xk和 系数Ak,使得求积一般公式(4.2.1)具有较高的精确度, 同 时又计算简单。

n
In[ f ] Ak f (xk )
k 0
(4.2.2)
b
n
R( f ) I[ f ] In[ f ] a f (x)dx Ak f (xk ),
数值求积法与代数精度 4.2.1 插值型求积法 4.2.2 Newton-Cotes求积公式 4.2.3 Newton-Cotes 公式的误差分析
总结
一、求积公式的代数精度
b
N
I[ f ]
a
f (x)dx
Ak f ( xk )

第1节 Cotes型求积公式

第1节 Cotes型求积公式

ik

n
0
f ( n1) ( )t (t 1)( t 2)(t n)dt
Ak yk Rn [ f ]
k 0
n
从而得到Newton-Cotes型求积公式:

b
a
f ( x )dx Ak f ( xk )
k 0
n
b a ( 1)n k n n Ak 0 (t i )dt n k! ( n k )! i 0
a a
b
b

(
b a k 0 i 0 ik
n
n
x xi ) yk dx xk xi
f ( n1) ( ) ( x x0 )( x x1 )( x xn )dx a ( n 1)! ba 由变换: x a th, xi a ih xk a kh , h n
(a , b)
为了估计误差限,设
M 2 max f ( x )
a x b
则得到
R1 f
M2 (b a ) 3 12
二、抛物线(辛普森-Simpson)公式(n=2)

b
a
f ( x )dx Ak f ( xk ) A0 f ( x0 ) A1 f ( x1 ) A2 f ( x2 )
则由
n
Π
i= 0 i¹ k
n n ti x - xi (a th) (a ih) ki xk - xi ii 0 (a kh) (a ih) ii 0 k k
xi=a+ih, xk=a+kh
得到

i 0 ik
n
n n x xi (a th) (a ih) t i xk xi i 0 (a kh) (a ih) i 0 k i i k ik

newton-cotes求积公式

newton-cotes求积公式


f ( (a ~t h))
1
t(t 1)dt

f ()
0
0
6
其中 (a ~t h) (a,b) 。
因此,梯形公式
b f (x)dx b a [ f (a) f (b)]
a
2
的截断误差为
R1
(b a)3 12
f (),
(a,b)


1 x2
1
ex
f
( x)

(
2 x3

1 x4
1
)e x
max f (x) f (1) 8.1548
1 x2
截断误差估计为
R1

(2 1)3 12
max
1 x2
f (x)
0.6796
用Simpson公式计算,得
2 1
e x dx

2
1 (e

1
4e1.5
b
f (x)dx (b a)
a
n
C (n) k
f
( xk
)

k 0
这就是一般的牛顿—科茨公式,
其中 C (n) k
称为科茨系数。
从科茨系数公式③可以看出,科茨系数
C (n) k
的值与积分区间及被积函数都无关。只要给出了
积分区间的等分数n,就能算出 C0(n) , C1(n) , , Cn(n)
在实际计算中,我们常用以下公式进行计算。
梯形公式
b f (x)dx b a [ f (a) f (b)]
a
2
辛普森公式
b f (x)dx b a [ f (a) 4 f ( a b) f (b)]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l1( x)


x

1 4

x

3 4

/
1 2

1 4

1 2

3 4


16
x

1 4

x

3 4

l2
(
x)


x

1 4

x

1 2

/
3 4

1 4

3 4

1 2

证明 充分性 若求积公式至少具有n次代数精度,则对n次多
项式
lk (x)
n j0
x xj xk x j
(k 0,1,, n)
jk
精确成立,即
b
n
a lk (x)dx Ajlk (x j )
j0

lk
(xj
)

kj

1 0
取 f (x) lk (x) 时

I1;
当f ( x)

x 2时(k

2), 1 f
3
(1)
4f
(0)
f (1)
1 (1 0 1) 3

2 3

I2;
当f (x)

x 3时(k

3), 1 f (1) 4
3
f (0)
f (1)
1 (1 3
0 1)

0

I3;
当f ( x)

P2
=
x2
:b a
x2dx

b3 a3 3

ba 2
[a 2

b2 ]
例4.5 确定求积公式1 f ( x)dx 1 [ f (1) 4 f (0) f (1)]的代数精度.
1
3
解:
Ik
1 xkdx
1
当f ( x) 1时(k
1 (1)k 1 k 1
0), 1 f (1)
3

4
0,


k
2
1
,
f (0) f
k为 奇 数
k为 偶 数
(1) 1 (1 4
3

1

1)

2

I0;
当f ( x)
x时(k
1),
1 f (1) 4 f (0)
3
f (1)

1 (1 4 0 1) 0 3
2、求积余项
若 f C (n1)[a,b] , (4.2.5)是插值型求积公式,
b
n
b
b
R[ f ] I In
f (x)dx
a
Ak f (xk ) a [ f (x) Ln (x)]dx a Rn (x)dx
k 0

特别地, 如果求积公式是插值型的, 按余项式, 对于次数≤ n的多项 式 f (x),其余项R[ f ] 等于0,因而这时求积公式至少具有n次代数 精度.
n
定理4.2 形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
该公式为k0插值型(即:Ak
b
a lk ( x)dx )
一组基函数,所以两个定义是等价的,但在具体应 用时,定义4.1′比定义4.1要方便的多.
b
N
I[ f ] f (x)dx a
Ak f ( xk )
k 0
由定义4.1’可知,若求积公式(4.2.1)的代数精度为m, 则求积系数Ak应满足线性方程组:





Ak b a ;
(i) 确定求积系数Ak和求积节点xk ; (ii) 求积公式的误差估计和收敛性
为了构造形如式(4.2.1)的求积公式,需要提供一种判定 求积方法精度高低准则.用什么标准来判定两个节点数相同的 求积公式的“好”与“差”呢?通常用“代数精确度”的高 低作为求积公式“好”与“差”的一个标准.在后面的讨论 中我们将看到,节点相同的求积公式,代数精确度越高,求 出的积分近似值精确度一般越好.下面给出代数精确度的定 义.
而当f(x)=x3时, 公式的左边=81h4 /4, 右边=18h4, 公式的左 边右边,说明此公式对 f(x)=x3不能准确成立. 因此,公式只具有2次代数精度.
二、数值求积公式的收敛性与稳定性
即:初始数据的误差没有引起计算结果的误差增大,即计算是稳 定的。
定理4.1 若求积公式(4.2.1)中系数Ak>0 (k=0,1,…,n), 则此求积公式是稳定的.
f (b)]
考察其代数精度。
分析:由等价定义, 求代数精度,只对最简单的函数xm来验证。
解:逐次检查公式是否精确成立
f(x)
代入
P0
=
1:
b
1
a
dx

b

a
=
ba 2
[1

1]
f(a) a
f(b) b
代入
P1 =
x
:bx dx a
b2 a2 2
=
ba 2
[a

b]
代数精度 = 1
代入
§4.2 Newton-Cotes求积公式
数值求积法与代数精度 4.2.1 插值型求积法 4.2.2 Newton-Cotes求积公式 4.2.3 Newton-Cotes 公式的误差分析
总结
一、求积公式的代数精度
b
N
I[ f ]
a
f (x)dx
Ak f ( xk )
k 0
(4.2.1)
又 f (x) Ln(x) R(x) 当f(x)为不高于n次的多项式时, f(x)=Ln(x) , 其余项R(f )=0。因而这时求积公式至少 具有n次代数精度。
注意:n+1个节点的内插型求积公式至少具有n次代数 精度,这里:代数精度数与节点数的关系要注意。
n
推论1 求积系数满足: Aj b a
f (x)dx 1dx
a
a
Ak b a
k 0
n
Ak b a 即A0 A1 An b a
k 0
例4.7 给定求积公式如下:
1
0
f ( x)dx
13 2
f

1 4


f

1 2


2
f

3 4

数值求积方法是近似方法,为要保证精度,我们自然希望求积 公式能对“尽可能多”的函数准确地成立,这就提出了所谓代数精 度的概念.由于闭区间[a,b]上的连续函数可用多项式逼近,所以一 个求积公式能对多大次数的多项式 f (x) 成为准确等式,是衡量该公 式的精确程度的重要指标,为此给出以下定义。
定义4.1 如果某个求积公式对于次数≤m的多项式均能准确地 成立,但对于m+1次多项式就不一定准确,则称该求积公式具有m 次代数精度.
故 Ak 有唯一解。
如果事先选定求积节点,如,以区间[a,b]的等距节点依次为节 点,这时取m=n,求解上述线性方程组(4.2.4), 即可确定系数 Ak 从而使求积公式至少有m=n次代数精度。具体示例在下面一节中 介绍。
梯形公式
例4.4
b
a f ( x)dx
b a[ f (a) 2
b a
f (n1) (x ) (n 1)!
n
(x xk ) dx
k 0
1 n1 !
b f n1
a
x
n 1 ( x)dx
则有余项公式
b
R[ f ] a
其中与变量x有关,记作 x 。
f
( n 1)
(n
( x
1)!
)
n1
(
x)dx,
(4.2.7)
其中n1 ( x) ( x x0 )( x x1 )( x xn )。
n

In[ f ] Ak f (xk )
k 0
(4.2.2)
b
n
R( f ) I[ f ] In[ f ] a f (x)dx Ak f (xk ),
k 0
(4.2.3)
称(4.2.2)为数值求积公式,(4.2.3)为求积公式余项(误差).
构造或确定一个求积公式,要讨论解决的问题有
i0
n
bb
f (xi ) aa li (x)dx
i0
(积分的性质)
n
与f 无关,记为Ai
Ai f ( xi ) (4.2.5)
由 节点 决定,
i0
与 f (x) 无关
其中求积系数
b
Ai a li (x)dx, i 0,1, , n
(4.2.6)
定义4.4 对给定互异求积节点a x0 x1 xn b ,若求积系数 Ai (i 0,1, ,n)是由(4.2.6)给出的,则称该求积公式是插值型的。 此时数值求积公式(4.2.5)称为(内插)插值型求积公式。
n i0
f (xi )li (x),其中li (x)
n l0
x xl xi xl
,

b
b
bn
a f (x)dx a Ln (x)dx a f (xi )li (x)dx
l i
i 0,1,, n
i0
相关文档
最新文档