多水平统计模型

合集下载

二分类资料的多水平模型-

二分类资料的多水平模型-
u 0 为j 水平2单位的logit均值 0 j与总均值 0 之差,又称为随机效应(random effect)或 高水平的残差。
两水平logit模型

u
0
j
的方差

2 u0
又称为随机参数(random
coefficient),反映了高水平单位间的比数
(率)的差别。
性 u2越0 越强大。说明数据在高水平单位内的聚集
y i 为应变量:1 表示发生畸形
0 表示未发生畸形
x i 为处理因素 :1 表示高剂量花粉(甲组)
0 表示低剂量花粉(乙组)
各软件对例5.1拟合单水平logistic回归模型结检验统计量 P值
MLwiN -1.749 (0.313) 0.773 (0.381) 4.110 ( 2 值) 0.043
2 v a r (ˆ m ) v a r e x p ˆm x ˆ 1 e x p ˆm x ˆ 1
v a re x p L m 1 e x p L m 1
水平1误差的经验值
用VPC(variance partition coefficient)来进
行度量
VPC
当应变量为连续型变量时,VPC等价于组内相关 系数(intra-class correlation)
在两水平的方差成分模型中, VPC表示了水平2 的方差占总方差的比例
u20/(u20e20)
置尺度参数 为1 可允许 为待估参数,对水平1方差是否
“超二项变异” 进行检验,即考察水平1 方差是否满足二项分布的假定,可根据估 计的尺度参数值和1.0的差值与的估计标 准误之比作正态性Z检验而得。

混合效应模型多水平模型(英)课件

混合效应模型多水平模型(英)课件

数据预处理
在分析前,对原始数据进行清洗和整理,包 括处理缺失值、异常值以及进行必要的编码 转换。此外,还需对连续变量进行适当的离 散化或分段处理,以便更好地拟合模型。
模型的建立和拟合
模型选择
根据研究目的和数据特征,选择适合的混合 效应模型或多水平模型。在本例中,考虑到 学生成绩在不同课程中存在一定的相关性, 我们选择使用随机截距和斜率模型。
模型拟合
使用适当的统计软件(如R、Stata等)对模 型进行拟合。在拟合过程中,需要设置正确 的模型公式,指定固定效应和随机效应的参 数,并选择合适的估计方法(如最大似然估
计、限制极大似然估计等)。
结果解释和讨论
要点一
结果解释
根据模型的拟合结果,解释各参数的含义和估计值。在本 例中,需要关注随机截距和斜率的估计值及其显著性,以 及它们对学生成绩的影响。
混合效应模型多水平模型能够处理不同类型的数据,包 括连续数据、分类数据和二元数据等。
考虑个体差异
该模型能够考虑不同个体之间的差异,对个体进行更准 确的预测和推断。
混合效应模型多水平模型的优势和不足
• 适用于大型样本量:该模型适用于大型样本量,能够提高 估计的准确性和稳定性。
混合效应模型多水平模型的优势和不足
PART 03
多水平模型的理论基础
多水平模型的基本概念
定义
多水平模型是一种统计分析方法,用于分析具有层次结构的数据,例如学生嵌 套在学校,家庭嵌套在社区等。
目的
解释不同层次的数据对结果变量的影响,并估计和检验不同层次的效应。
多水平模型的参数估计
方法
使用最大似然估计或广义最小二乘法 等统计方法来估计多水平模型的参数 。
2023-2026

多水平统计分析模型(混合效应模型)

多水平统计分析模型(混合效应模型)

多⽔平统计分析模型(混合效应模型)⼀、概述普通的线性回归只包含两项影响因素,即固定效应(fixed-effect)和噪声(noise)。

噪声是我们模型中没有考虑的随机因素。

⽽固定效应是那些可预测因素,⽽且能完整的划分总体。

例如模型中的性别变量,我们清楚只有两种性别,⽽且理解这种变量的变化对结果的影响。

那么为什么需要 Mixed-effect Model?因为有些现实的复杂数据是普通线性回归是处理不了的。

例如我们对⼀些⼈群进⾏重复测量,此时存在两种随机因素会影响模型,⼀种是对某个⼈重复测试⽽形成的随机噪声,另⼀种是因为⼈和⼈不同⽽形成的随机效应(random effect)。

如果将⼀个⼈的测量数据看作⼀个组,随机因素就包括了组内随机因素(noise)和组间随机因素(random effect)。

这种嵌套的随机因素结构违反了普通线性回归的假设条件。

你可能会把⼈员(组间的随机效应)看作是⼀种分类变量放到普通线性回归模型中,但这样作是得不偿失的。

有可能这个factor的level很多,可能会⽤去很多⾃由度。

更重要的是,这样作没什么意义。

因为⼈员ID和性别不⼀样,我们不清楚它的意义,⽽且它也不能完整的划分总体。

也就是说样本数据中的路⼈甲,路⼈⼄不能完全代表总体的⼈员ID。

因为它是随机的,我们并不关⼼它的作⽤,只是因为它会影响到模型,所以不得不考虑它。

因此对于随机效应我们只估计其⽅差,不估计其回归系数。

混合模型中包括了固定效应和随机效应,⽽随机效应有两种⽅式来影响模型,⼀种是对截距影响,⼀种是对某个固定效应的斜率影响。

前者称为 Random intercept model,后者称为Random Intercept and Slope Model。

Random intercept model的函数结构如下Yij = a0 + a1*Xij + bi + eija0: 固定截距a1: 固定斜率b: 随机效应(只影响截距)X: 固定效应e: 噪声混合线性模型有时⼜称为多⽔平线性模型或层次结构线性模型由两个部分来决定,固定效应部分+随机效应部分,⼆、R语⾔中的线性混合模型可⽤包1、nlme包这是⼀个⽐较成熟的R包,是R语⾔安装时默认的包,它除了可以分析分层的线性混合模型,也可以处理⾮线性模型。

多水平Meta回归分析及其在流行病学研究中的应用

多水平Meta回归分析及其在流行病学研究中的应用

多水平Meta回归分析是多水平分析方法在Meta分析中的应用。

对多水平Meta回归分析及其在流行病学研究中的应用进行介绍,为流行病学资料的Meta分析提供参考。

1Meta回归分析概述1.1Meta分析简介Meta分析最早由英国教育心理学家Glass于1976年命名并将其定义为:“Thesta-tisticalanalysisoflargecollectionofanalysisresultsfromindividualstudiesforthepurposeofintegratingthefindings”。

此后,不少统计学家都对Meta分析下过定义,但都倾向于“Meta分析是对以往的研究结果进行系统定量综合的统计学方法”这一含义〔1~4〕。

1.2流行病学研究与Meta回归分析流行病学研究方法通常分为四大类:描述性研究、分析性研究、实验性研究和理论性研究。

前两类均属观察性研究,是流行病学最常用的研究方法。

观察性研究容易受到混杂偏倚和选择偏倚的影响,各项研究的对象选择、研究方法等的不同都会导致研究间的异质性,对异质性较大的资料进行传统的Meta分析可能会导致错误的结论,从而误导读者。

因此,在对流行病学研究资料进行Meta分析时,需分析各研究间的异质性,并对异质性的来源进行评估〔5〕。

Meta回归分析可评价研究间异质性的大小及来源。

根据统计模型的不同,可将Meta回归分析分为固定效应的Meta回归分析和随机效应的Meta回归分析两大类。

基于固定效应模型的Meta回归分析假设多项研究具有一个共同的效应尺度,各项研究效应尺度存在的差异主要是因为随机误差造成;随机效应模型则假设各项研究不具有共同的效应尺度,而是每项研究都有自己的效应尺度,并将其定义为多水平Meta回归分析及其在流行病学研究中的应用王安伟1,黄文丽2(1.大理学院公共卫生学院,云南大理671000;2.云南省地方病防治所,云南大理671000)[摘要]目的:介绍多水平Meta回归分析方法及其在流行病学研究中的应用。

多水平统计模型简介SPSS操作

多水平统计模型简介SPSS操作

Chongqing Medical University Peng Bin
随机系数模型基本形式 第一层: 第二层:
yij 0 j 1 j xij e0ij
0 j 00 u0 j
1 j 10 u1 j
方差成份模型中协变量 xij 的系数估计为固定 的 1 ,表示示协变量 xij 对反应变量的效应是固定 不变的。在随机系数模型中协变量 xij 的系数估计 为 1 j ,示每个学校都有其自身的斜率估计,表明协 变量 xij 对反应变量的效应在各个学校间是不同的。
2 2 2 2 u0 e0 u0 u0 2 2 2 2 u0 e0 u0 u0 2 2 2 2 u0 u0 u0 e0 2 2 2 u0 e0 u0 2 2 2 u0 u0 e0
完整模型(水平1和水平2上均有解释变量)
第一层: 第二层:
yij 0 j 1 j xij e0ij
0 j 00 j u1 j
W1 j 为第二层的解释变量(可包含多个),可以在
零模型与完整模型之间,根据研究目的,设置不同的 随机成分和固定成分,构建一系列分析模型。
yij 和 xij 分别为第 j 个
00是0 j的平均值,为固定成分 ,u0 j 为0 j的随机成分 , 服从正态分布
01是1 j的平均值,为固定成分 ,u1 j 为1 j的随机成分 , 服从正态分布
E (u0 j ) 0, E (u1 j ) 0, E (eij ) 0,
次结构,可忽略学校的存在,即简化为传
2 统的单水平模型;反之,若存在非零的 u ,
0
则不能忽略学校的存在。

多水平混合效应概率回归 melogit

多水平混合效应概率回归 melogit

一、概述多水平混合效应概率回归(MELOGIT)是一种统计模型,用于分析多个层次数据的概率回归问题。

该模型允许研究者考虑不同层次因素对结果的影响,从而更准确地理解数据之间的关系。

MELOGIT模型在社会科学、医学、教育等领域有着广泛的应用,可以帮助研究者深入挖掘数据背后的规律和现象。

二、MELOGIT模型原理MELOGIT模型是混合效应模型的一种特殊形式,它结合了概率回归的思想和多水平数据的特点,可以分析不同层次的因素对观测结果的影响。

MELOGIT模型基于广义线性模型(GLM),通过引入随机效应和固定效应,考虑了个体之间和裙体之间的相关性,从而更好地捕捉数据之间的复杂关系。

三、MELOGIT模型应用场景1. 多水平调查数据分析在社会科学研究领域,研究者经常面临着多水平调查数据的分析问题。

MELOGIT模型可以帮助他们考虑个体因素和裙体因素对结果的影响,更好地理解调查数据背后的规律。

2. 医学疾病发病率分析在医学研究中,疾病发病率受到个体因素和环境因素的影响,MELOGIT模型可以帮助医学研究者分析不同层次因素对疾病发病率的影响,从而为疾病防控提供科学依据。

3. 教育评估数据分析在教育评估领域,研究者需要考虑学生个体特征和学校特征对学业成绩的影响。

MELOGIT模型可以帮助他们分析多层次数据,更好地发现影响学业成绩的因素。

四、MELOGIT模型优势1. 考虑多层次因素MELOGIT模型允许研究者同时考虑多个层次的因素对结果的影响,能够更全面地理解数据之间的关系。

2. 捕捉个体和裙体相关性MELOGIT模型通过引入随机效应和固定效应,可以更好地捕捉个体之间和裙体之间的相关性,提高了模型的解释力和预测能力。

3. 适用于不平衡数据MELOGIT模型适用于不平衡数据的分析,可以处理个体和裙体样本数量不均衡的情况,提高了模型的稳健性。

五、MELOGIT模型实例分析下面我们通过一个虚拟的例子来演示MELOGIT模型的应用。

多水平模型及其在卫生领域的应用

多水平模型及其在卫生领域的应用

【综述】文章编号:1004-6194(2007)05-0514-02多水平模型及其在卫生领域的应用李佳萌作者单位:天津市疾病预防控制中心,天津300011作者简介:李佳萌(1975-),女,主管医师,硕士,从事卫生统计工作。

摘要:在卫生领域的研究中,样本一般来自不同的层次和单位,用一般的统计分析方法分析会忽略层次间的差异而影响分析的准确性。

多水平模型能同时分析不同层次上的影响因素,在研究的资料有层次结构时,分析得到的结果更加准确可靠。

根据研究目的和资料的类型,多水平模型有不同的形式,如多分类离散数据多水平模型、重复测量数据多水平模型、多水平交叉分类模型、双变量多水平模型、非线性多水平模型、多水平时间序列模型等。

随着对多水平模型的认识,它在基础医学、临床医学、预防医学等不同卫生领域和医学专业的应用逐渐增多。

关键词:多水平模型;卫生领域;应用中图分类号:R195.1文献标识码:E许多社会科学家的研究目的是解释人类行为和态度的变化,以及通过所接触的家庭、学校、工作场所等社会环境后这些行为是如何改变的。

社会科学家虽然利用统计模型分析大量的数据来提高他们对社会行为的认识,但是这些应用于社会资料上的统计模型过分注意个体而忽略了个体所在的周围环境。

在这种情况下,需要一种可以纠正这种忽略个体所在周围环境的统计分析方法,它既可以关注个体又可以关注个体所处的环境〔1〕。

多水平统计模型是有效处理这种资料的统计方法,它是英、美等发达国家教育学界20世纪80年代中后期发展起来的一门多元统计分析新技术,可有效处理传统多元统计方法难以分析的具有层次结构特征或系统结构特征(hierarchicalorclusterstructure)的数据〔2〕。

所谓层次结构数据,是指若干单位聚集在不同水平的数据。

数据的系统结构现象广泛存在,在教育研究中,学生嵌套于学校;家庭研究中,儿童嵌套于家庭;医学研究中,病人嵌套于医生或医院等。

层次结构数据也可出现在特殊的研究设计中,例如流行病学调查或社区调查中,按照地区、个人进行分层随机抽样,所得数据具有地区和个人两个层次结构。

多水平模型基本原理与应用

多水平模型基本原理与应用

多水平模型基本原理与应用
多水平模型,也被称为混合效应模型、层次线性模型、随机系数模型等,是现代回归分析中应用最为广泛的统计模型之一,代表了现代回归分析主流发展方向。

这种模型不需要建立在个体独立性的假设上,可以修正因观测数据的非独立性引起的参数标准误估计的偏倚。

它可以同时分析低水平和高水平自变量对结局的影响,也可以分析随机斜率和跨水平交互作用等。

此外,多水平模型还可以应用于处理具有层级效应的非连续型数据或离散型数据,如二分类数据。

在实际应用中,多水平模型的分析步骤包括拟合零模型(又叫空模型、截距模型),即不含任何自变量的模型,用于判断是否有必要考虑数据的多水平结构。

只有通过零模型判断数据存在显著的相关性,多水平结构不能忽略,才有必要继续多水平分析。

之后,需要引入自变量并不断调整模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“单位” (unit) :指数据层次结构中某水平上 的一个实体。例如,每个子女是一个水平 1 单位, 每个家庭是一个水平 2 单位。
整理ppt
临床试验和动物实验的重复测量 多中心临床试验研究 纵向观测如儿童生长发育研究 流行病学现场调查如整群抽样调查 遗传学家系调查资料 meta 分析资料
整理ppt
Anthony Bryk, University of Chicago Stephen Raudenbush, Michigan State University , Department of Educational Psychology
《Hierarchical Linear Models: Applications and
整理ppt
多水平模型将单一的随机误差项分解到与数 据层次结构相应的各水平上,具有多个随机误差 项并估计相应的残差方差及协方差。构建与数据 层次结构相适应的复杂误差结构,这是多水平模 型区别于经典模型的根本特征。
整理ppt
多水平模型由固定与随机两部分构成,与一 般的混合效应模型的不同之处在于,其随机部分 可以包含解释变量,故又称为随机系数模型 (random coefficient model),其组内相关也可为 解释变量的函数。换言之,多水平模型可对不同 水平上的误差方差进行深入和精细的分析。
例如,个体发生某种牙病的危险可能与个体 的遗传倾向、个体所属的社会阶层(如饮食文化和 口腔卫生习惯)、环境因素(如饮水中氟浓度)等有 关。
整理ppt
分解(disaggregation) 聚合(aggregation)
整理ppt
分解:不满足模型独立性假定,回归系数及 其标准误的估计无效,且未能有效区分个体效应 与背景效应。另一种分析策略是用哑变量拟合高 水平单位的固定效应。
多水平模型(multilevel models)最先应用于教育 学领域,后用于心理学、社会学、经济学、组织行 为与管理科学等领域,逐步应用到医学及公共卫生 等领域。
整理ppt
Harvey Goldstein, UK, University of London, Institute of Education 《Multilevel Models in Educational and Social Research》1987
聚合:损失大量水平1单位的信息,更严重的 是可能导致“生态学谬误”(ecological fallacy)。
整理ppt
多水平分析的概念为人们提供了这样一个框架,即 可将个体的结局联系到个体特征以及个体所在环境或背 景特征进行分析,从而实现研究的事物与其所在背景的 统一。
整理ppt
基本的多水平模型
经典模型的基本假定是单一水平和单一的随 机误差项,并假定随机误差项独立、服从方差为 常量的正态分布,代表不能用模型解释的残Fra bibliotek的 随机成份。
整理ppt
当数据存在层次结构时,随机误差项则不满足 独立常方差的假定。模型的误差项不仅包含了模型 不能解释的应变量的残差成份,也包含了高水平单 位自身对应变量的效应成份。
整理ppt
非独立数据不满足经典方法的独立性条件, 采用经典方法可能失去参数估计的有效性并导致 不合理的推断结论。
但非独立数据的组内相关结构各异,理论上, 不同的结构应采用相应的统计方法。如纵向观测 数据常用广义估计方程(GEE),但有两个局限性: 一是对误差方差的分解仅局限于2水平的情形, 二是没有考虑解释变量对误差方差的影响。当应 变量的协差阵为分块对角阵时,一般采用多水平 模型。
多水平统计模型简介
A Brief Introduction to Multilevel Statistical Models
整理ppt
概述 层次结构数据的普遍性 经典方法及其局限性 基本多水平模型 多水平模型的应用
整理ppt
概述
80 年代中后期,英、美等国教育统计学家开始 探 讨 分 析 层 次 结 构 数 据 (hierarchically structured data)的统计方法,并相继提出不同的模型理论和算 法。
整理ppt
✓ ML3 (1994) / MLN (1996) / MLwiN (1999) ✓ HLM (Hierarchical Linear Model)
SAS (Mixed) SPSS STATA
整理ppt
层次结构数据的普遍性
水平2 水平1
两水平层次结构数据
整理ppt
“水平” (level) :指数据层次结构中的某一层 次。例如,子女为低水平即水平 1 ,家庭为高水 平即水平 2 。
整理ppt
层次结构数据为一种非独立数据,即某观察 值在观察单位间或同一观察单位的各次观察间不 独立或不完全独立,其大小常用组内相关(intraclass correlation,ICC)度量。
例如,来自同一家庭的子女,其生理和心理 特征较从一般总体中随机抽取的个体趋向于更为 相似,即子女特征在家庭中具有相似性或聚集性 (clustering),数据是非独立的(non independent)。
整理ppt
经典方法框架下的分析策略
经典的线性模型只对某一层数据的问题进行 分析,而不能将涉及两层或多层数据的问题进行 综合分析。
但有时某个现象既受到水平1变量的影响, 又受到水平2变量的影响,还受到两个水平变量 的交互影响(cross-level interaction)。
整理ppt
个体的某事件既受到其自身特征的影响,也 受到其生活环境的影响,即既有个体效应,也有 环境或背景效应(context effect)。
Data Analysis Methods》1992
整理ppt
Nicholas Longford, Princeton University, Education Testing Service 《Random Coefficient Models》1993
整理ppt
多水平主成分分析 多水平因子分析 多水平判别分析 多水平logistic回归 多水平Cox模型 多水平Poisson回归 多水平时间序列分析 多元多水平模型 多水平结构方程模型
相关文档
最新文档