大学物理 第三篇 电磁感应(法拉第电磁感应定律 )ppt课件
合集下载
大学物理电磁感应-PPT课件精选全文完整版

的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线
形
状
电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关
性
静电场为有源场
质
EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场
法拉第电磁感应定律 课件

⑤公式E=n ΔΦ 中,若Δt取一段时间,则E为Δt这
Δt
段时间内的平均值.当磁通量的变化率 ΔΦ 不是均匀
Δt
变化的,平均电动势一般不等于初态与末态电动势的算术
平均值.若Δt 趋近于零,则E为瞬时值,故此式多用于求
电动势的平均值.
下列几种说法正确的是( ) A.线圈中磁通量变化越大,线圈中产生的感应电动势 一定越大
解析:磁通量的变化是由磁场的变化引起的,应该用 公式ΔΦ=ΔBSsin θ来计算,所以
ΔΦ =ΔBSsin θ=(0.5-0.1)×20×10-4×0.5 Wb
=4×10-4 Wb.
磁通量的变化率用公式
ΔΦ Δt
= Wb/s=8×10-3 Wb/s,
感应电动势的大小可根据法拉第电磁感应定律
E=n ΔΦ =200×8×10-3 V=1.6 V. Δt
能转化的过程.
(4)由于反电动势的存在,使回路中的I=
E电源-E反 R总
,所
以在有反电动势工作的电路中,不能用闭合电路的欧姆定律
直接计算电流.
1
E=ΔΔΦt
=BSΔ-t 0=
B·2·OB·l ≈4.33 Δt
V.
答案:(1)1.06 A (2)4.33 V
四、反电动势
1.反电动势的概念
如下图所示,当电动机通过如下图所示的电流时,线圈 受安培力方向可用左手定则判断,转动方向如图中所示,此时 AB、CD两边切割磁感线,必有感应电动势产生,感应电流方 向可用右手定则判断,与原电流反向.故这个电动势为反电动 势,它会阻碍线圈的转动.如果线
(2)B、L、v三者均不变时,在Δt时间内的平均感应电动
势才和它的瞬时电动势相同.
如图所示,导轨OM和ON都在纸面内,导体AB 可在导轨上无摩擦滑动,若AB以5 m/s的速度从O点开始沿导 轨匀速向右滑动,导体与导轨都足够长,它们每米长度的电 阻都是0.2 Ω,磁场的磁感应强度为0.2 T.求:
法拉第电磁感应定律ppt课件全

E n 算出的是平均感应电动势 t
当磁通量均匀变化时,某一时刻的瞬时感应电动 势等于全段时间内导体的平均感应电动势。
8
巩固练习:
1.穿过一个单匝线圈的磁通量始终为每 秒钟均匀地增加2 Wb,则:
A.线圈中的感应电动势每秒钟增加2 V
√B.线圈中的感应电动势每秒钟减少2 V
C.线圈中的感应电动势始终是2 V D.线圈中不产生感应电动势
由I
E R
r
知:大,总电指阻针一偏定转时角,越E大越。大,I越
问题3:该实验中,将条形磁铁从同一高度插入线圈
中,快插入和慢插入有什么相同和不同?
从条件上看 相同 Φ都发生了变化 不同 Φ变化的快慢不同
从结果上看 都产生了I 产生的I大小不等6
2.磁通量变化越快,感应电动势越大。
二、法拉第电磁感应定律
Φ
t3 t4
O
t1 t2
t
图1
图2
18
例2.如图 (a)图所示,一个500匝的线圈的两 端跟R=99 Ω的电阻相连接,置于竖直向下的 匀强磁场中,线圈的横截面积为20 cm2,电阻 为1 Ω,磁场的磁感应强度随时间变化的图象 如(b)图,求磁场变化过程中通过电阻R的电流 为多大?
19
【解析】 由题图(b)知:线圈中磁感应强度 B 均匀 增加,其变化率ΔΔBt =(504-1s0)T=10 T/s. 由法拉第电磁感应定律得线圈中产生的感应电动 势为 E=nΔΔΦt =nΔΔBt S=500×10×20×10-4 V=10 V. 由闭合电路欧姆定律得感应电流大小为 I=R+E r=991+0 1A=0.1 A.
巩固练习
2.一个矩形线圈,在匀强磁场中绕一个固定轴做匀 速转动,穿过某线路的磁通量Φ随时间t变化的关系 如图1,当线圈处于如图2所示位置时,它的:
法拉第电磁感应定律 课件

ΔΦ
Δt .
2.法拉第电磁感应定律 (1)内容:闭合电路中感应电动势的大小,跟穿过这 一电路的磁通量的变化率成正比.
ΔΦ
(2)数学表达式:__E_=___Δ__t __.
(3)若闭合电路是一个 n 匝线圈,每匝线圈中的磁通 量的变化率都相同,则整个线圈中的感应电动势是单匝
ΔΦ
的 n 倍,数学表达式为 E=n Δt . (4)在国际单位制中,磁通量的单位是韦伯,感应电
Φ 变化的多少
ΔΦ=Φ2-Φ1
磁通量的
表示穿过某一
变化率 Wb/s 面积的磁通量
ΔΦ
Δt
变化的快慢
ΔΔΦt =BΔΔ·ΔBΔt ·St S
ΔΦ 特别提醒 Φ、ΔΦ、 均与线圈匝数无关,它们
Δt ΔΦ
的大小没有直接关系,Φ 很大时, 可能很小,也可能 Δt
ΔΦ 很大;Φ=0 时, 可能不为零.
Δt
【典例 1】 如图所示,L 是用绝缘导线绕制的线圈,
此时电阻为 R=(OB+OA+AB)×0.2 Ω≈8.19 Ω,所 以 I=ER≈1.06 A.
(2)3 s 内的感应电动势的平均值为 E=ΔΔΦt =BSΔ-t 0
=B·12·ΔOt B·l≈4.33 V.
拓展三 电磁感应与电路问题的综合
1.电磁感应中的电路问题,实际上是电磁感应和恒 定电流问题的综合题.感应电动势大小的计算、方向的 判定以及电路的等效转化,是解决此类问题的关键.
(1)定义:电动机转动时,由于切割磁感线,线圈中 产生的削弱电源电动势作用的感应电动势.
(2)反电动势的作用:阻碍线圈的转动.如果要使线 圈维持原来的转动,电源就要向电动机提供能量,此时, 电能转化为其他形式的能.
拓展一 对法拉第电磁感应定律的理解
Δt .
2.法拉第电磁感应定律 (1)内容:闭合电路中感应电动势的大小,跟穿过这 一电路的磁通量的变化率成正比.
ΔΦ
(2)数学表达式:__E_=___Δ__t __.
(3)若闭合电路是一个 n 匝线圈,每匝线圈中的磁通 量的变化率都相同,则整个线圈中的感应电动势是单匝
ΔΦ
的 n 倍,数学表达式为 E=n Δt . (4)在国际单位制中,磁通量的单位是韦伯,感应电
Φ 变化的多少
ΔΦ=Φ2-Φ1
磁通量的
表示穿过某一
变化率 Wb/s 面积的磁通量
ΔΦ
Δt
变化的快慢
ΔΔΦt =BΔΔ·ΔBΔt ·St S
ΔΦ 特别提醒 Φ、ΔΦ、 均与线圈匝数无关,它们
Δt ΔΦ
的大小没有直接关系,Φ 很大时, 可能很小,也可能 Δt
ΔΦ 很大;Φ=0 时, 可能不为零.
Δt
【典例 1】 如图所示,L 是用绝缘导线绕制的线圈,
此时电阻为 R=(OB+OA+AB)×0.2 Ω≈8.19 Ω,所 以 I=ER≈1.06 A.
(2)3 s 内的感应电动势的平均值为 E=ΔΔΦt =BSΔ-t 0
=B·12·ΔOt B·l≈4.33 V.
拓展三 电磁感应与电路问题的综合
1.电磁感应中的电路问题,实际上是电磁感应和恒 定电流问题的综合题.感应电动势大小的计算、方向的 判定以及电路的等效转化,是解决此类问题的关键.
(1)定义:电动机转动时,由于切割磁感线,线圈中 产生的削弱电源电动势作用的感应电动势.
(2)反电动势的作用:阻碍线圈的转动.如果要使线 圈维持原来的转动,电源就要向电动机提供能量,此时, 电能转化为其他形式的能.
拓展一 对法拉第电磁感应定律的理解
法拉第电磁感应定律 课件

[解析] MN 滑过的距离为L3时,如图甲所示,它与 bc 的接触点为 P, 等效电路图如图乙所示。
由几何关系可知 MP 长度为L3,MP 中的感应电动势 E=13BLv MP 段的电阻 r=13R MacP 和 MbP 两电路的并联电阻为 r 并=1313×+2323R=29R 由欧姆定律,PM 中的电流 I=r+Er并
别 某段导体的感应电动势不一定为零 感线时产生的感应电动势
由于是整个电路的感应电动势,因此 电源部分不容易确定
是由一部分导体切割磁感线的运 动产生的,该部分导体就相当于 电源
联 公式 E=nΔΔΦt 和 E=Blvsin θ 是统一的,当 Δt→0 时,E 为瞬时感应电动 系 势,只是由于高中数学知识所限,现在还不能这样求瞬时感应电动势,
甲
乙
丙
(4)该式适用于导体平动时,即导体上各点的速度相等时。 (5)当导体绕一端转动时如图所示,由于导体上各点的速度不同,是 线性增加的,所以导体运动的平均速度为 v =0+2ωl=ω2l,由公式 E=Bl v 得,E=Blω2l=12Bl2ω。
(6)公式中的 v 应理解为导线和磁场的相对速度,当导线不动而磁场 运动时,也有电磁感应现象产生。
[答案] (1)n3πRBt00r22 电流由 b 向 a 通过 R1 (2)nπ3BR0tr022t1
【总结提能】 解决与电路相联系的电磁感应问题时,关键是求出回路的感应电动 势,有时候还要正确画出等效电路图,或将立体图转换为平面图。
[典例] 如图所示,直角三角形导线框 abc 固定在匀强磁场中,ab 是 一段长为 L、电阻为 R 的均匀导线,ac 和 bc 的电阻可不计,ac 长度为L2。 磁场的磁感应强度为 B,方向垂直纸面向里。现有一段长度为L2,电阻为R2 的均匀导体棒 MN 架在导线框上,开始时紧靠 ac,然后沿 ab 方向以恒定 速度 v 向 b 端滑动,滑动中始终与 ac 平行并与导线框保持良好接触,当 MN 滑过的距离为L3时,导线 ac 中的电流为多大?方向如何?
法拉第电磁感应定律课件

思考2:将条形磁铁从同 一高度,插入线圈中,快 插入和慢插入由什么相同 和不同?
实验结论
磁通量变化越快,感应电流I越大,感应 电动势E越大。
进一步猜想:感应电动势的大小很可能与 磁通量的变化率有关,并且成正比。
二、法拉第电磁感应定律
E t
E k t 国际单位制k=1
单匝线圈产生的感应电动势:E t
有一面积为S=100cm2的金属环,电阻为 R=0.1Ω,环中磁场变化规律如图所示,磁场方 向垂直环面向里,则在t1-t2时间内通过金属环 某一截面的电荷量为多少?
巩固练习
解析:I= E
R E
t
I=
t R
又 Q=It
Q= = 0.2 0.01 0.1 0.01 =0.01C
R
0.1
导线切割磁感线产生的电动势
v
E=BLv sin
vv
巩固练习
匝数为N=200的线圈回路总电阻R=50Ω ,整个线圈平面均有垂直于线框平面的匀强磁场 穿过,磁通量Φ随时间变化的规律如图所示,求 :线圈中的感应电流的大小。
巩固练习
解析:
I= E R
EN
t
I=N
t R
I=30A
巩固练习
法拉第电磁感应定律
一、感应电动势 1、定义:在电磁感应现象中产生的电动势 叫感应电动势(E)
2、产生条件:穿过电路的磁通量发生变化
影响感应电动势大小的因素
实验:将条形磁铁如图所示插入线圈中,电 流计表指针发生偏转。
思考1:电流表指针偏转原 因是什么,电流表指针偏 转程度跟感应电动势的大 小有什么关系?
E
F
电机转动
课堂小结
1、法拉第电磁感应定律:电路中感应电动势的大小,跟穿
实验结论
磁通量变化越快,感应电流I越大,感应 电动势E越大。
进一步猜想:感应电动势的大小很可能与 磁通量的变化率有关,并且成正比。
二、法拉第电磁感应定律
E t
E k t 国际单位制k=1
单匝线圈产生的感应电动势:E t
有一面积为S=100cm2的金属环,电阻为 R=0.1Ω,环中磁场变化规律如图所示,磁场方 向垂直环面向里,则在t1-t2时间内通过金属环 某一截面的电荷量为多少?
巩固练习
解析:I= E
R E
t
I=
t R
又 Q=It
Q= = 0.2 0.01 0.1 0.01 =0.01C
R
0.1
导线切割磁感线产生的电动势
v
E=BLv sin
vv
巩固练习
匝数为N=200的线圈回路总电阻R=50Ω ,整个线圈平面均有垂直于线框平面的匀强磁场 穿过,磁通量Φ随时间变化的规律如图所示,求 :线圈中的感应电流的大小。
巩固练习
解析:
I= E R
EN
t
I=N
t R
I=30A
巩固练习
法拉第电磁感应定律
一、感应电动势 1、定义:在电磁感应现象中产生的电动势 叫感应电动势(E)
2、产生条件:穿过电路的磁通量发生变化
影响感应电动势大小的因素
实验:将条形磁铁如图所示插入线圈中,电 流计表指针发生偏转。
思考1:电流表指针偏转原 因是什么,电流表指针偏 转程度跟感应电动势的大 小有什么关系?
E
F
电机转动
课堂小结
1、法拉第电磁感应定律:电路中感应电动势的大小,跟穿
大学物理电磁感应(PPT课件)

路中都会建立起感应电动势,且此感应电动势正比于 磁通量对时间变化率的负值。
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
《法拉第电磁感应定律》共29张ppt精选全文

电学方面1821年法拉第完成了第一项重大的电发明,即第一台电动机,通俗来解释就是通过使用电流将物体运动。虽然在现代技术看来,这个装置十分简陋,但它却开创电动机的发展史。1831年法拉第在实验中发现了电磁感应,也就是当一块磁铁穿过一个闭合线路时 ,线路内就会有感应电流产生。这也成为了法拉第一生最伟大的贡献之一。同年法拉第发明了圆盘发电机,这是法拉第第二项重大的电发明。
在电磁感应现象中产生的电动势叫做感应电动势 。 产生感应电 动势的那部分导体就相当于电源。
感应电动势的大小跟哪些因素有关呢?
在实验中,速度越快、磁场越强、匝数越多, 产生的感应电动势就越ห้องสมุดไป่ตู้。
是不是感应电动势的大小可能与磁通量变化的快慢有关呢?
在法拉第、纽曼、韦伯等人工作的基础上,人们认识到:电路中感应电动势的大小,跟穿过这一电路的磁通量 的变化率成正比,这就是法拉第电磁感应定律 。
现代科学研究中常要用到高 速电子,电子感应加速器就是利用感生电场 使电子加速的设备。 它的基本原理如图所示,上、下为电磁铁的两个磁极,磁极之 间有一个环形真空室,电子在真空室中做圆 周运动。 电磁铁线圈电流的大小、方向可以变 化,产生的感生电场使电子加速。 上图为侧视 图,下图为真空室的俯视图,如果从上向下 看,电子沿逆时针方向运动。 当电磁铁线圈电流的方向与图示方向一 致时,电流的大小应该怎样变化才能使电子 加速?
导线切割磁感线时的感应电动势
=
∆Φ = Φ 2- Φ 是磁通量的变化量
是磁通量的变化率
n 是线圈的匝数 单匝时(n=1):
为有效长度
为与磁感线方向的夹角
为导线和磁场间的相对速度
与= 的对比
感生电动势
感生电场
变化的磁场周围所产生的电场
在电磁感应现象中产生的电动势叫做感应电动势 。 产生感应电 动势的那部分导体就相当于电源。
感应电动势的大小跟哪些因素有关呢?
在实验中,速度越快、磁场越强、匝数越多, 产生的感应电动势就越ห้องสมุดไป่ตู้。
是不是感应电动势的大小可能与磁通量变化的快慢有关呢?
在法拉第、纽曼、韦伯等人工作的基础上,人们认识到:电路中感应电动势的大小,跟穿过这一电路的磁通量 的变化率成正比,这就是法拉第电磁感应定律 。
现代科学研究中常要用到高 速电子,电子感应加速器就是利用感生电场 使电子加速的设备。 它的基本原理如图所示,上、下为电磁铁的两个磁极,磁极之 间有一个环形真空室,电子在真空室中做圆 周运动。 电磁铁线圈电流的大小、方向可以变 化,产生的感生电场使电子加速。 上图为侧视 图,下图为真空室的俯视图,如果从上向下 看,电子沿逆时针方向运动。 当电磁铁线圈电流的方向与图示方向一 致时,电流的大小应该怎样变化才能使电子 加速?
导线切割磁感线时的感应电动势
=
∆Φ = Φ 2- Φ 是磁通量的变化量
是磁通量的变化率
n 是线圈的匝数 单匝时(n=1):
为有效长度
为与磁感线方向的夹角
为导线和磁场间的相对速度
与= 的对比
感生电动势
感生电场
变化的磁场周围所产生的电场
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在任意坐标处取一面元 ds
ox
N N B dS
S
8
N N
B dS N
d a
Bds N
I
ldx
S
S
d 2 x
N Il d a
2 ln d
L
NI0l sin t ln d a
2
d
I ds l
i
d
dt
da
ox
0 r NI0l costln d a
2
d
交变的 电动势
×××××××× ×××××××× ××××××××
本质是电动势 electromotive force
2
二. 规律
1. 法拉第电磁感应定律
感应电动势的大小 induction emf 2. 楞次定律 Lenz law
d i dt
闭合回路中感应电流的方向,总是使它所激发
的磁场来阻止引起感应电流的磁通量的变化。
lB
sin
di
(v
B)
dl
vBdlcos
B
2
zl
B sin2 ldl
L
i di B sin2 ldl
r
b
v
B
dl
l
0
B L2 sin 2 >0 方向从 a
a0
b
2
16
. . S. . . . .
BS
. . .L. . . .
由
i
d
dt
dB S >0 d致
S i
两种绕行方向得到的结果相同
6
讨论
d 使用 i dt 意味着约定
磁链 magnetic flux linkage
对于N 匝串联回路 每匝中穿过的磁通分别为
S
求:面积S边界回路中的电动势 . . . . . . .
若绕行方向取如图所示的回路.方.
.
L
.
.L.
.
向按约定 磁通量为正 即 BS
由
i
d
dt
dB S < 0 dt
负号 电动势的方向
S i
说明 与所设的绕行方向相反 5
若绕行方向取如图所示的方向L
.
.
均.匀.磁场. B.
.
按约定 磁通量取负
i
v
B
dl
适用于切割磁力线的导体
di
ba
vB
dl
i
d i
z
B
例 在空间均匀的磁场中 B Bz
b
导线ab绕Z轴以 匀速旋转
L
导线ab与Z轴夹角为
设 ab L 求:导线ab中的电动a势
15
解:建坐标如图 在坐标 l处取 dl
该段导线运动速度垂直纸面向内
运动半径为 r
v
B
vB
rB
1,2, ,N
则有
i
1 2
N
d1 d2
dt dt
dN
dt
i
d
dt
i 磁链
i
7
例:直导线通交流电 置于磁导率为 的介质中
求:与其共面的N匝矩形回路中的感应电动势
已知 I I0 sin t
其中 I0 和 是大于零的常数
I
解:设当I 0时,电流方向如图
L ds l
设回路L方向如图 建坐标系如图 d a
动生电动势的非静电场? 感生电动势的非静电场?性质?
11
§2 动生电动势
一. 典型装置
l
导线 ab在磁场中运动
电动势怎么计算?
a
均匀磁场 B
v
b
1.中学:单位时间内切割磁力线的条数
i Blv
由楞次定律定方向
a
i
b
12
2. 法拉第电磁感应定律
L
建坐标如图 设回路L方向如图
Blxt
l 0
a
均匀磁场 B
9
i
0 r NI0l 2
costln
d
d
a
t
t 2
i> 0 i
i <0 i
L I ds l
da
ox
普遍
10
把感应电动势分为两种基本形式 动生电动势 motional emf 感生电动势 induced emf
下面 从场的角度研究电磁感应 电磁感应对应的场是电场
它可使静止电荷运动 研究的问题是:
v
bx
d
dx
i
dt
Bl dt
Blv
a
i
b
负号说明电动势方 向与所设方向相反
13
3. 由电动势与非静电场强的积分关系
非静电力--洛仑兹力
fm
EK
qv
B
qv
B
v
B
q
a
B
v
B
dl
e
v
fm
i
a
v
B
dl
b
a
b
i vBdl vBl >0
i
ba
b
14
讨论
d
i dt 适用于一切产生电动势的回路
楞次定律是能量守恒定律在电磁感应现象上的
具体体现。
3
3. 法拉第电磁感应定律 〔配以某些约定的 或考虑楞次定律的〕
d i dt
约定 首先任定回路的绕行方向
规定电动势方向与绕行方向一致时为正 当磁力线方向与绕行方向成右螺时
规定磁通量为正 4
如均匀磁场 B
dB >0
dt
. . 均.匀.磁场. B. .
第六章 电磁感应
electromagnetic induction
奥斯特
电流磁效应
对称性
磁的电效应?
反映了物质世界对称的
美
§1 法拉第电磁感应定律 Faraday law of ~
1
一. 现象
v
v
R
第一类
第二类
G
左面三种情况 均可使电流计 指针摆动
Φ 变化
××××××× × B
v ××××××××