第六章 拉压杆件的应力变形分析与强度设计.

合集下载

清华出版社工程力学答案-第6章 拉压杆件的应力变形分析与强度设计

清华出版社工程力学答案-第6章 拉压杆件的应力变形分析与强度设计
解得 AC 杆轴力大小为: FNAC = −21.2kN(压)
∑ Fx = 0 , FNAC cos 45D + FNAD = 0
解得 AD 杆轴力大小为: FNAD = 15kN(拉)
2. 强度条件
拉杆:
AAD
=
FNAD [σ ]+
=
15 ×103 120 ×10−6
= 125mm2
压杆:
AAC
=
2. 钢杆的伸长量:
ΔlBC
=
FPlBC Es As
=
60×103 × 2.1 200×109 × π ×152 ×10−6
= 3.565mm
4
3. 钢杆 C 端向下移动的距离: uC = ΔlAB + ΔlBC = 0.935 + 3.565 = 4.50 mm
6-3 螺旋压紧装置如图所示。现已知工件所受的压紧力为 F=4 kN。装置中旋紧螺栓
10
习题 6-10 图
解:1.活塞杆 受到的轴力为:
FN
=
pA
=
p
⎡π ⎢ ⎣
(
D
2− 4
d2)⎤ ⎥ ⎦
=
⎡π 2.5⎢

(5602 − 4
1002
)
⎤ ⎥ ⎦
=
596.12kN
活塞杆的正应力: σ = FN = 596.12 ×103 = 75.9MPa A杆 π ×1002 / 4
工作安全系数: n = σ s = 300 = 3.95 σ 75.9
弹性模量E和泊松比ν 。
l0
b
解:1.计算弹性模量E
h 习题 6-11 图
11
εx
=

工程力学(材料力学)6拉压杆件的强度与变形问题

工程力学(材料力学)6拉压杆件的强度与变形问题

机械制造中的拉压杆件
机械制造中的拉压杆件主要用于 实现运动传递、力的传递和变形 等,如连杆、活塞杆、传动轴等。
这些杆件需要在高速、高温、重 载等极端条件下工作,因此需要 具备优异的力学性能和耐久性。
在机械制造中,拉压杆件的设计 和制造需要精确控制尺寸、形状 和材料,以确保其工作性能和可
靠பைடு நூலகம்。
其他工程领域中的拉压杆件
总结词
新型材料如碳纤维复合材料、钛合金等具有高强度、轻质等优点,在拉压杆件中得到广 泛应用。
详细描述
随着科技的不断发展,新型材料如碳纤维复合材料、钛合金等逐渐应用于拉压杆件的制 作。这些新型材料具有高强度、轻质、耐腐蚀等优点,能够提高杆件的力学性能和使用
寿命。
高性能的拉压杆件设计
总结词
通过优化设计,可以显著提高拉压杆件的性能。
刚度分析
对杆件的刚度进行分析, 可以确定其变形程度和承 载能力,为结构设计提供 依据。
拉压杆件的稳定性问题
稳定性定义
01
稳定性是指杆件在受到载荷作用时,保持其平衡状态的能力。
稳定性分析
02
通过稳定性分析,可以确定杆件在受到载荷作用时是否会发生
失稳现象,以及失稳的临界载荷。
稳定性要求
03
在工程应用中,杆件的稳定性需要满足一定的要求,以保证结
强度失效准则
当拉压杆件内部的应力达到或超过材料的屈服极限时,杆件会发生屈服失效, 丧失承载能力。
拉压杆件的强度计算
静力分析
根据外力的大小和方向,以及杆件的几何尺寸和材料属性,计算杆件内部的应力 分布。
动力分析
考虑动载荷的影响,分析杆件在振动、冲击等动态过程中的应力变化。
拉压杆件的强度校核

第6章 拉压杆件的应力变形分析与强度设计

第6章 拉压杆件的应力变形分析与强度设计
B
D C
FP
图所示连接螺栓,内径d1=15.3mm,被连接部分的总长度l= 54mm , 拧 紧 时 螺 栓 AB 段 的 Δl=0.04mm , 钢 的 弹 性 模 量 E=200GPa,泊松比μ=0.3。试求螺栓横截面上的正应力及螺栓 的横向变形。
工程力学 第6章 拉压杆件的应力变形分析与强度设计
式中负号表示:纵向伸长时横向缩短;纵向缩短时则横向伸长。
【例题6-1】如图所示之变截面直杆,已知:ADEB段杆的横截面 面积 AAB=10·102mm2,BC段杆的横截面面积ABC=5*102mm2; FP=60KN;铜的弹性模量EC=100MPa,钢的弹性量 EC=210MPa ; 各段长度如图,单位为mm。试求:
FP
FP
l l1 杆件的伸长量: l l1 l
工程力学 第6章 拉压杆件的应力变形分析与强度设计
实验表明:对于由结构钢等材料制成的拉杆,当横截面上 的σ≤σp时,不仅变形是弹性的,且存在
l Pl A
引入比例常数E,得到
l Pl FNl EA EA
胡克定律
E:弹性模量,材料拉伸或压缩时抵抗弹性变形的能力,实验测定
其值为Fmax。取AC为研究对象,在不计杆件自重及连接处的摩擦时
,受力分析如图 所示。
根据平衡方程
ΣMC=0, Fmax sin AC W AC 0
解得
Fmax
W
s in
由三角形ABC求出
sin BC 0.8 0.388
AB 0.82 1.92
故有
Fmax
Байду номын сангаас
W
sin
15 0.388
38.7 kN
的最大载荷? B

拉压杆应力、变形分析

拉压杆应力、变形分析

通过这些数学模型,可以计算出在给定外力作用下物体的应 力和变形,从而对物体的力学性能进行评估。
应力与变形的实验验证
为了验证应力与变形的数学模型的正确性和可靠性,需要 进行实验验证。
实验中,可以通过测量物体的应力和变形数据,与数学模 型计算结果进行对比,以评估模型的准确性和适用范围。
05 拉压杆的优化设计
实验结果表明,拉压杆的应力分布不均匀,呈现 中间大、两端小的趋势。变形则表现为杆件中部 向下弯曲,两端向上翘起。
本研究采用有限元分析方法对拉压杆进行应力、 变形分析,得到了与实验结果较为一致的分析结 果,验证了有限元方法的可行性和有效性。
研究展望
虽然本研究取得了一定的成 果,但仍有许多问题需要进 一步探讨。例如,可以考虑 研究不同材料属性、不同截 面形状和不同边界条件等因 素对拉压杆应力、变形的影 响。
基于应力的优化设计
总结词
在基于应力的优化设计中,主要目标 是减小拉压杆的最大应力值,使其不 超过材料的许用应力。
详细描述
通过调整拉压杆的截面尺寸、长度、 材料等参数,可以改变其应力分布和 大小。常用的方法包括有限元分析和 数学优化算法。
基于变形的优化设计
总结词
基于变形的优化设计旨在减小拉压杆 的最大变形量,以确保其在工作过程 中具有良好的性能和精度。
根据应力的性质,可分为 拉应力和压应力;根据应 力的分布,可分为均匀应 力和非均匀应力。
应力状态
描述杆件内部各点的应力 状态,包括正应力和剪应 力。
拉压杆应力计算
轴向拉压杆
通过材料力学中的胡克定律计算拉压 杆的应力。
弯曲梁
扭转变形
利用扭矩和剪切模量计算扭转变形的 应力。
利用弯矩和剪力计算弯曲梁的应力。

工程力学课件-第6章 拉压杆件的应力变形分析与强度设计-1

工程力学课件-第6章 拉压杆件的应力变形分析与强度设计-1

关于加力点附近区域的应力分布
当杆端承受集中载荷或其它非均匀分布载荷时,杆件并非所有横截面都 能保持平面,从而产生均匀的轴向变形。这种情形下,上述正应力公式不是 对杆件上的所有横截面都适用。
圣维南原理(Saint-Venant principle):
如果杆端两种外加力静力学等效,则距离加力 点稍远处,静力学等效对应力分布的影响很小,可 以忽略不计。
对等截面直杆,最大工作应力必定发生在最大轴力 所在的横截面上;而对阶梯状直杆,还要视横截面尺寸 并通过计算、比较才能确定。
结论与讨论
拉、压杆横截面上正应力的计算公式
FN A ,
是在变形符合平面假设和材料均匀连续的基础上导出的,
也就是在横截面上的正应力处处相等的条件下才可应用。
• 对变截面杆,横截面上的正 应力并非处处相等,但当横截 面沿杆长的变化比较平缓时, 一般仍可应用。 • 横截面上法向分布内力的合力 通过形心,但横截面上的正应力 却不一定处处相等。
CD
说明:
LCD 5 10 5 4 2 . 5 10 LCD 200 10 3
(1)若求得杆段的轴向变形为正,则该杆段伸长; 反之,该杆段缩短。 如:AB段伸长,BC段缩短,整个杆也是缩短的。
(2)杆段的轴向变形也就是该杆段两个端截面之间 的相对轴向位移。
LAB AB 3.75 10 m (相互离开) 5 LBC BC 1.25 10 m (相互靠拢)
思考: 如何求某截面的绝对轴向位移?
5
D L AD A
L 0.025 mm ( )
A
B
C
D
拉压杆的强度设计
一、强度破坏形式
b点是弹性阶段的最高点。

轴向拉伸和压缩—拉(压)杆的强度计算(建筑力学)

轴向拉伸和压缩—拉(压)杆的强度计算(建筑力学)

轴向拉伸与压缩
例7-12 图示三角支架,在节点A处受铅直荷载FP作用。已 知AB为圆截面钢杆,直径d=30mm,许用应力[σ]=160MPa, AC为正方形木杆,边长a=100mm,许用压应力[σc]=10MPa试 求许用荷载[ FP ]。
解 (1)计算杆的轴力
由∑Fy=0 -FNACsin30°-FP=0
A FNAB 63 103 mm2 393.8mm2
[ ] 160
轴向拉伸与压缩
当拉杆选用角钢时,每根角型的最小面积应为
A1
A 2
393.8 2
mm 2
196.9mm2
查型钢表,选用两根25×4的2.5号等边角钢。
A1=185.9mm2 故此时拉杆的面积为
A=2×185.9mm2=371.8mm2>370.6mm2 满足强度要求。
材料的安全系数比塑性材料的大。建筑工程中,一般,取nS =1.4~1.7,nb=2.5~3.0。
轴向拉伸与压缩
3. 强度条件 为了保证轴向拉(压)杆在承受外力作用时能安全正常地
使用,不发生破坏,必须使杆内的最大工作应力不超过材料 的许用应力,即
σmax≤[σ]
塑性材料: 脆性材料:
max
FN max A
解(1)先求支座反力。
FAy = FBy= 0.5q l = 0.5×10×8.4 = 42kN
轴向拉伸与压缩
(2)再求拉杆的轴力。
用截面法取左半个屋架为研究对 象,如图示。
由 MC 0
FNAB
h
FAy
l 2
q
l 2
l 4
0
FNAB
42 42 10 4.2 2.1 kN 1.4
63kN
(3)校核拉杆的强度。

第六章拉压杆件的应力变形分析与强度设计xin

第六章拉压杆件的应力变形分析与强度设计xin

B
C
P3
x
N1 P 1 20KN
压应力 P3
N1 20 1000N 2 1 25 N / m m 25MPa 2 A1 20 40m m
N2 P3 0
N2 P3 60KN
N2
N2 2 75MPa 压应力 17 A2
11
3、斜截面上最大应力值的确定
由上述分析可知,杆件受拉或压时,横截面上只有正应 力;斜截面上既有正应力又有剪应力。而且,对于不同 倾角的斜截面,其上正应力和剪应力各不相同。
cos ,
2

2
sin 2
F


FN
x
( 1 ) max :
0,
max
(1) 轴向拉压杆,即外力的合力作用线与杆件 的轴线重合。 (2) 只适用于离杆件受力区域稍远处的横截面。 关于加力点附近区域的应力分布和应力集中的概 念详见教材P118。
(3) 横截面沿轴线变化,但变化缓慢,外力作用线与轴线 重合,如图所示。 (4) 也适用于阶梯杆,但要分段求。
9
三、轴向拉压杆任意斜截面上应力
5
拉伸
横向线——仍为平行的直线,且间距增大。
纵向线——仍为平行的直线,且间距减小。
6
压缩
横向线——仍为平行的直线,且间距减小。
纵向线——仍为平行的直线,且间距增大。
7
4、应力的分布规律——应力沿横截面均匀分布
5、应力的计算公式:
F

FN
A FN
FN A
N N 单位 2 Pa , 2 MPa mm m
N1 F1 20 1 200MPa A1 A1 100

第6章 拉压杆件的应力变形分析与强度设计

第6章 拉压杆件的应力变形分析与强度设计

FN 2 2Fw
39
3. 确定最大起吊重力
40
41
本例讨论
这种设计实际上是一种等强度的设计,是保证构件与结 构安全的前提下,最经济合理的设计。 另外要注意:如果起重机不在A点,那么AB杆将受到横向载 荷而主要承受弯曲,这时最大起重量将发生变化。
42
6.4 结论与讨论
主要结论:
通过拉、压构件的变形与强度问题约分析,可以看出, 材料力学分析问题的思路和方法与静力分析相比,除了受 力分析与平衡方法的应用方面有共同之处外, 还具有自身 的特点:


n
它由材料的拉伸实验确定。n为安全因数。
37
6.2.3 强度设计准则应用举例
38
1. 受力分析
2. 确定两杆的轴力
sin
1 2
cos
3 2
F F
x y
0 FN1 FN 2 cos 0 FN1 1.73Fw 0 Fw FN 2 sin 0
max
FN A
根据强度条件,可以解决三类强度计算问题 1、强度校核: 2、设计截面:
FN max A FN A
3、确定许可载荷: FN A
36
6.2.1 强度设计准则、安全因数与许用应力
所谓强度设计 (strength design) 是指将杆件中的 最大应力限制在允许的范围内,以保证杆件正常工作。 不仅不发生强度失效,而且还要具有一定的安全裕度。 对于拉伸与压缩杆件,也就是杆件中的最大正应力满足
12
0 AD段 DE段
2Fp 2Fp Fp Fp Fp Fp
2Fp
2Fp
2Fp 2Fp
Fp Fp Fp Fp
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档