[建筑]根据规范上提供的计算洞门土压力的计算公式

合集下载

土压力、地基承载力和土坡稳定计算要求

土压力、地基承载力和土坡稳定计算要求
静止土压力计算
z
z
Eo
1 2
h2Ko
K0z
h h/3
静止土压力系数 采用经验公式K0 = 1-sinφ’ 计算
作用在挡土结构背K面0h的静止土压力可视为天然土层自重
应力的水平分量。
6.2 作用在挡土墙上的土压力
若墙后填土中有地下水,则计算静止土压力时, 水中土的重度应取浮重度
6.3 朗金土压力理论
基本原理
朗金土压力理论是根据半空间的应力状态和土的极限平 衡条件而得出的土压力计算方法。
弹性平衡状态
6.3 朗金土压力理论
当整个土体都处于静止状态时,各点都处于弹性平衡状态,设土的重
度为γ,应力状态如图所示,此时应力状态用莫尔圆表示为所示圆Ⅰ,该
点处于弹性平衡状态,故莫尔圆没有与抗剪强度包线相切。
力两部分,可分作两层计算,一般假设地下水位上下土层的抗剪强度
指标相同,地下水位以下土层用浮重度计算。
6.3 朗金土压力理论
土压力强度
A点
aA 0
B点
aB h1Ka
水压力强度
B点
wB 0
C点
aCh 1K ah2K a C点
wC wh2
作用在墙背的总压力为土压力和水压力之和,作用 点在合力分布图形的形心处。
=17kN/m
3
c=8kPa
=20o
h=6m
• 【解答】
2c√Ka
主动土压力系数 Ka ta2n4o 52= 0.49
6m
z0 (h-z0)/3
墙底处土压力强度
Ea
ah K a 2 cK a = 3 8 .8 k P a
hKa-2c√Ka
临界深度
z02c/( Ka)= 1.3m 4

土水压力的计算方法

土水压力的计算方法

12.4 土水压力的‎计算方法12.4.1 作用于支挡‎结构上的土‎压力(一)概述作用在挡土‎支护结构上‎的侧压力包‎括土压力、水压力、冰荷载(寒冷地区)、地震力及地‎面荷载所产‎生的侧压力‎等。

土压力是作‎用于挡土支‎护结构的主‎要荷载,特别是在大‎型深基坑工‎程中若能较‎准确地估算‎土压力,对于确保深‎基坑工程的‎顺利进行具‎有十分重要‎的意义。

从广义来说‎,土压力是土‎作用在挡土‎支护结构上‎的或作用在‎被土体所包‎围的结构物‎表面上的压‎力及其合力‎。

这些压力(及合力)是由土的自‎重、土所承受的‎恒载和活载‎所产生的,其大小由土‎的物理与力‎学性质、土和结构之‎间的物理作‎用、绝对位移、相对位移以‎及变形值与‎特性所决定‎。

水压力、冰荷载、地震力及地‎面荷载等均‎是通过土这‎一载体作用‎于挡土支护‎结构上,因此,均属于广义‎土压力,也可称为特‎殊情况下的‎土压力。

【例题17】在下列各项‎中,属于广义土‎压力的是( )。

A、水压力;B、地震力;C、冰荷载;D、地面荷载;答案:A、B、C、D (二)影响土压力‎的因素作用在挡土‎支护结构上‎的土压力受‎以下因素制‎约:1不同土类‎中的侧向土‎压力差异很‎大。

采用同样的‎计算方法设‎计的挡土支‎护结构,对某些土类‎可能安全度‎很大,而对另一些‎土类则可能‎面临倒塌的‎危险。

因此在没有‎完全弄清挡‎土支护结构‎土压力的性‎能之前,对不同土类‎应区别对待‎。

2 土压力强度‎的计算及其‎计算指标的‎取值与基坑‎开挖方式和‎土类有关。

当剪应力超‎过土的抗剪‎强度时,背侧土体就‎会失去稳定‎,发生滑动。

由于基坑用‎机械开挖,一般进度均‎较快,开挖卸荷后‎,土压力很快‎形成,为与其相适‎应采用直剪‎快剪或三轴‎不排水剪是‎合理的。

但剪切前是‎否要固结,则根据土的‎渗透性而定‎。

渗透性弱的‎土,由于加荷快‎、来不及固结‎即可能剪损‎,此时宜采用‎不固结即进‎行剪切;反之,渗透性强的‎土,宜固结后剪‎切。

洞门检算参考

洞门检算参考

3. 洞门结构的设计及检算3.1 洞门结构的设计洞门是隧道洞口用圬工砌筑并加以建筑装饰的支档结构物。

它联系衬砌和路堑,是整个隧道结构的主要组成部分,也是隧道进、出口的标志。

洞门的作用在于支挡洞口正面仰坡和路堑边坡,拦截仰坡上方的小量剥落、掉块,保持边、仰坡的稳定,并将坡面汇水引离隧道,保证洞口线路的安全。

另外,洞门是隧道唯一的外露部分,对它进行适当的建筑艺术处理,可以起到美化环境的作用。

根据洞口地形、地质及衬砌类型等不同的情况和要求,洞门的结构形式主要有环框式、端墙式、柱式、翼墙式、耳墙式、台阶式及斜交式。

3.1.1设计原则(1) 选用洞门结构形式时,应根据洞口的地形、地质条件及工程特点确定。

(2) 当线路中线与洞口地形等高线斜交,经技术经济比较不宜采用正交洞门,且围岩分类在III级以上时,可采用斜交式洞门,其端墙与线路中线的交角不应小于45°。

(3) 设置通风帘幕的洞门或通风道洞口与隧道洞门相连时,洞门的结构形式应结合通风设备和要求一并考虑。

(4) 位于城镇、风景区、车站附近的洞门,必要时应考虑与环境相协调和建筑美观的要求。

(5) 铁路重点隧道应考虑国防要求,按铁道部《铁路建设贯彻国防要求的规定》文件的相关规定办理。

3.1.2洞门设计根据西格二线八号隧道沿线地形、地质状况,并结合隧道设计专业事前指导书,在确定进、出口洞门位置的基础上,拟定龙池山隧道进口和出口均采用台阶式洞门,边、仰坡坡度均为1:1.25,开挖方式为乙式,进、出口洞门各部分尺寸参照洞门标准图及隧道净空加宽来确定。

隧道进、出口洞门图分别见附录一中的图LCST-03。

3.2 洞门结构的检算洞门是支挡洞口正面仰坡和路堑边坡的结构物,因此洞门的端墙和挡墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。

3.2.1计算原理及方法根据《铁路隧道设计规范》的规定,洞门墙计算时,应按照表3.1的要求,与挡土墙一样用容许应力法检算其强度,并检算其绕墙趾倾覆及沿基底滑动的稳定性。

土压力和水压力的计算公式

土压力和水压力的计算公式

土压力和水压力的计算公式土压力和水压力是土木工程中非常重要的概念,它们在工程设计和施工中起着至关重要的作用。

土压力是指土壤对建筑物或结构物施加的压力,而水压力是指水对建筑物或结构物施加的压力。

在工程设计和施工中,准确计算土压力和水压力是确保工程安全和稳定性的关键步骤。

本文将分别介绍土压力和水压力的计算公式,并对其应用进行讨论。

土压力的计算公式。

土压力是由土壤的重量和土壤的侧向压力组成的。

在土壤力学中,土压力的计算公式通常使用库楔法或梁法。

库楔法是根据土壤的内摩擦角和土壤的重量来计算土压力的方法,其计算公式为:P = 0.5γH²K。

其中,P为土压力,γ为土壤的单位重量,H为土压力作用的深度,K为土壤的土压力系数。

在实际工程中,土压力系数K的取值通常根据土壤的性质和工程条件来确定。

梁法是根据土壤的重量和土壤的侧向压力来计算土压力的方法,其计算公式为:P = 0.5γH²。

其中,P为土压力,γ为土壤的单位重量,H为土压力作用的深度。

梁法适用于土压力作用深度较大的情况,计算结果相对准确。

水压力的计算公式。

水压力是由水的重量和水的静压力组成的。

在水利工程和海洋工程中,水压力的计算公式通常使用水的密度和水的深度来计算。

水的密度通常取1000kg/m³,水的深度为水面到作用点的垂直距离。

水压力的计算公式为:P = γH。

其中,P为水压力,γ为水的单位重量,H为水压力作用的深度。

水压力的计算公式简单直观,适用于各种水压力作用情况。

土压力和水压力的应用。

土压力和水压力在工程设计和施工中有着广泛的应用。

在基础工程中,土压力是影响基础稳定性和承载力的重要因素,准确计算土压力可以指导基础的设计和施工。

在水利工程和海洋工程中,水压力是影响水体结构物稳定性和安全性的重要因素,准确计算水压力可以指导水体结构物的设计和施工。

因此,准确计算土压力和水压力对于工程的安全和稳定性至关重要。

总结。

土压力和水压力是土木工程中非常重要的概念,它们在工程设计和施工中起着至关重要的作用。

洞门计算书

洞门计算书

洞门计算书隧道洞门设计及稳定性验算一、概况金鸡山隧道为分离式单向行车双线隧道,隧道右洞进口为W级围岩,隧道右洞进口为皿级围岩,隧道区中部为分水岭,两侧沟谷切割较深,地表径流水水量较少,仅进口段处于冲沟交汇处(尤其右洞口)地表水较发育,出口段左右洞口均为V级围岩。

隧道入口洞门形式皆按照W级设计,采用端墙式洞门,出口洞门形式皆采用翼墙式洞门。

洞门设计计算参数洞门墙主要验算规定二、进口段洞门结构设计计算(端墙式)(一)基本参数1.计算参数1)边、仰坡坡度1 : 0.752)计算摩擦角® =53°3)仰坡坡角tan £ =1.334)重度丫=24KN/m5)基底摩擦系数f=0.56)墙身斜度1:0.17)基底控制应力[(T ]=0.6MPa2.建筑材料容重及容许应力1)墙的材料为粗料石砌体,石料的强度等级为Mu10Q水泥砂浆的强度等级为M1Q2)容许压应力[(T ]=5Mpa,重度丫t=25KN/m。

3.洞门各部尺寸拟定根据《公路隧道设计规范》(JTG-2004),结合洞门所处地段的工程地质条件,拟定洞门的高度:H=12m其中基底埋入地基的深度为1.5m, 洞门与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度1m洞门与仰坡间的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.5m,洞口仰坡坡脚至洞门墙背的水平距离为2m墙厚1.3m,设计仰坡为1:1,具体见图。

(二)洞门土压力计算根据《公路隧道设计规范》(JTG-2004),洞门土压力计算图示具体见图1。

最危险滑裂面与垂直面之间的夹角:—=h° 饥tan2申+tan^ tan 色- J(1 +tan2®)(tan® -ta石j(tan® + tan^ ]1 - taz tan^ ) tan 2~: :tan呂(1 + tan ® )-tan®(1 — tan^ tan^)式中:£、a ——地面坡角与墙面倾角(°);「一一围岩计算摩擦角()当时当片0吋代入数据,得Tan w =0.4031, w =21.95°根据《公路隧道设计规范》(JTG —2004 ) , 土压力:1E H2 h0 h'—h b btan*:-tan : 1 -tan :tan ;tan[心亠「[1 -tan,tan ;atan ■ - tan_:i 式中:E——土压力(KN);地层重度 KN / m3 ;----- 侧压力系数;■——墙背土体破裂角;代入数据,得:■ =0.078; h o =3.0843m;h' = 6.7135m; E =87.1567kN由E计算得:E x = E *cos、:—iE y = E ・sin :••注 i:-■■3式中::——墙背摩擦角代入数据得:E x =72.2561kNE y =48.7374kN(三)洞门抗倾覆验算翼墙计算图示如图2所示,挡土墙在荷载作用下应绕时应满0点产生倾覆足下式:K0 M L 1.6Z M0' M y 二 G Z G E y Z y二.Mo 二 E xZx代入数值得:G=325kN ;Z x=4m;Z y= 1.72m; Z G= 1.28m;刀 M =499.8783kN • m 刀 M=289.0244kN • mG = bBHZ y Z GH tan。

第三章-土压力计算

第三章-土压力计算

Pp ( q ri hi )K p 2C K p
注意:式中 i 为天然密度,即使是地下水位以下也不 采用浮密度

2)、经验公式法
四、工程应用总结(jgj120-99) 建筑基坑支护技术规程
1)、地下水位线以下土压力与水压力
按有效应力原理分析时,水土压力分 算,概念明确,但对粘性土,由于指标不 易确定,往往合算,积累经验,但是低估 了水压力,需要分析。
z j —基坑外侧计算点深度。基坑外侧天

B、计算点位于开挖面以下
rk

r
ji 1
n
0
h
h—开挖深度 C、存在超载时
0 k q0
2)、水平荷载标准值(被动土 压力法)
A、碎石土和砂土 当计算点位于地下水位以上时

ajk ajk K ai 2Cik K ai


m j —计算参数,当 z wa —计算系数,当 z
j
h取
z j h 取h ; zj ,
wa
wa
h取
z 1,
h 取0


B、粉土及粘性土(总强度指标)
ajk ajk K ai 2Cik
K ai
3)、基坑内侧水平抗力标准值
如图所示: (被动)
hup
Z

A、碎石土、砂土

当计算点位于地下水位以下时
Z j hwa
ajk ajk Kai 2C Kai [( z j hwa ) (mj hwa )wa Kai ] w


式中:
K ai —主动土压力系数; ik、cik —三轴试验有效强度指标; ajk —竖向应力标准值; Z j —基坑外侧计算点深度; h —开挖深度; hwa —外侧水位深度; —水的重度; w

土水压力的计算方法

12.4 土水压力的计算方法12.4.1 作用于支挡结构上的土压力(一)概述作用在挡土支护结构上的侧压力包括土压力、水压力、冰荷载(寒冷地区)、地震力及地面荷载所产生的侧压力等。

土压力是作用于挡土支护结构的主要荷载,特别是在大型深基坑工程中若能较准确地估算土压力,对于确保深基坑工程的顺利进行具有十分重要的意义。

从广义来说,土压力是土作用在挡土支护结构上的或作用在被土体所包围的结构物表面上的压力及其合力。

这些压力(及合力)是由土的自重、土所承受的恒载和活载所产生的,其大小由土的物理与力学性质、土和结构之间的物理作用、绝对位移、相对位移以及变形值与特性所决定。

水压力、冰荷载、地震力及地面荷载等均是通过土这一载体作用于挡土支护结构上,因此,均属于广义土压力,也可称为特殊情况下的土压力。

【例题17】在下列各项中,属于广义土压力的是( )。

A、水压力;B、地震力;C、冰荷载;D、地面荷载;答案:A、B、C、D (二)影响土压力的因素作用在挡土支护结构上的土压力受以下因素制约:1不同土类中的侧向土压力差异很大。

采用同样的计算方法设计的挡土支护结构,对某些土类可能安全度很大,而对另一些土类则可能面临倒塌的危险。

因此在没有完全弄清挡土支护结构土压力的性能之前,对不同土类应区别对待。

2 土压力强度的计算及其计算指标的取值与基坑开挖方式和土类有关。

当剪应力超过土的抗剪强度时,背侧土体就会失去稳定,发生滑动。

由于基坑用机械开挖,一般进度均较快,开挖卸荷后,土压力很快形成,为与其相适应采用直剪快剪或三轴不排水剪是合理的。

但剪切前是否要固结,则根据土的渗透性而定。

渗透性弱的土,由于加荷快、来不及固结即可能剪损,此时宜采用不固结即进行剪切;反之,渗透性强的土,宜固结后剪切。

【例题18】对于侧壁为饱和粘土的基坑,宜采用( )三轴试验确定其抗剪强度指标。

A、固结排水剪;B、固结不排水剪;C、不固结不排水剪;D、不固结排水剪;答案:C3土压力是土与挡土支护结构之间相互作用的结果,它与结构的变位有着密切的关系,从而导致设计土压力值的不确定性。

端墙式洞门计算

3.1 . 洞门结构设计计算3.1 .1 计算参数计算参数如下:(1)边、仰坡坡度 1:0.5;(2)仰坡坡脚& =63.5°, tan& =2,a =6°;(3)地层容重丫 =22kN/m3;(4)地层计算摩擦角© =70 °;( 5) 基底摩擦系数 0.6;(6) 基底控制应力[(T ]=0.8Mpa3.1 .2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为 M10。

(2)容许压应力[(T a]=2.2MPa,重度丫 t=22KN/ m3。

3.1.3 洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为 1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1.38m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.7m,洞口仰坡坡脚至洞门墙背的水平距离为1.5m,墙厚2.0m,设计仰坡为1:1,具体见图纸。

3.2. 洞门验算3.2.1 洞门土压力计算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算图示具体见图 3.2图3-4洞门土压力计算简图最危险滑裂面与垂直面之间的夹角: tan 2tan tan (1 tan 2)(tan tan )(tan tan )(1tan tan ) 2 tan (1 tan ) tan (1 tan tan )式中: 一一围岩计算摩擦插脚& ――洞门后仰坡坡脚;a ——洞门墙面倾角代入数值可得:2 I 2tanw = ta 门7° tan6tan63.5 ^(1 tan 70 )(tan70 tan63.5)(tan70 tan6)(1 tan6 tan63.5)tan63.5(1 tan 70) tan70(1 tan6 tan63.5)=0.266故:w=14.89°根据《公路隧道设计规范》(JTG —2004), 土压力为;1 2E 2 [H 2 h °(h h °)]b(tan tan )(1 tan tan )tan( )(1 tan tan )式中: E ――土压力(kN );h atan tantanw地层重度(kN/m3)入一一侧压力系数;3 -- 墙背土体破裂角;b ――洞门墙计算条带宽度(m ),取b=1m ;E -- 土压力计算模式不确定系数,可取E =0.6把数据代入各式,得:止匕89 tan6)(1 仙6^63.5)=0.0559tan(14.89 63.5 )(1 tan 14.89 tan63.5 )由三角关系可得:h 。

端墙式洞门计算

3.1 .洞门结构设计计算3.1 .1 计算参数计算参数如下:(1)边、仰坡坡度1:0.5;(2)仰坡坡脚ε=63.5°,tanε=2,α=6°;(3)地层容重γ=22kN/m3;(4)地层计算摩擦角φ=70°;(5)基底摩擦系数0.6;(6)基底控制应力[σ]=0.8Mpa3.1.2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为M10。

(2)容许压应力[σa]=2.2MPa,重度γt=22KN/ m3。

3.1.3洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度1.38m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.7m,洞口仰坡坡脚至洞门墙背的水平距离为1.5m,墙厚2.0m,设计仰坡为1:1,具体见图纸。

3.2.洞门验算3.2.1洞门土压力计算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算图示具体见图3.2。

图3-4 洞门土压力计算简图最危险滑裂面与垂直面之间的夹角:tan w =式中: ϕ——围岩计算摩擦插脚;ε——洞门后仰坡坡脚;α——洞门墙面倾角代入数值可得:tan w =0.266故:w=14.89°根据《公路隧道设计规范》(JTG —2004),土压力为;2001[()]2E H h h h b γλξ'=+- (tan tan )(1tan tan )tan()(1tan tan )ωααελωϕωε--=+- tan tan a h ωα'=- 式中: E ——土压力(kN );γ——地层重度(kN/m 3)λ——侧压力系数;ω——墙背土体破裂角;b ——洞门墙计算条带宽度(m ),取b=1m ;ξ——土压力计算模式不确定系数,可取ξ=0.6。

隧道工程设计-毕业设计

第一章隧道工程概况1.1 工程简介本隧道位于建阳市将口镇将口村至将口芹口村,设计长度为左洞1167米,为中长隧道,左洞桩号ZK23+046~ZK24+213,最大埋深148米,其中桩号ZK23+046~ZK23+561为A1标段。

右洞桩号YK23+026~YK24+217,最大埋深140米,其中YK23+026~YK23+570为A1标段。

进出口采用端墙式门洞,隧道单幅宽度10.25米,隧道段基石为变粒岩、石英片岩。

1.2 工程地质、水文、气象1.2.1 地形地貌本隧道场址区洞身段属剥蚀丘陵地貌,进、出口处属山间冲洪积洼地与剥蚀丘陵交汇处,进、出口两侧分布有窄长冲洪积洼地,总体地形起伏大,进洞口自然山坡度约15度~30度,出洞口自然山坡坡度约20度~35度,自然山坡较稳定,洞身最高点海波348.1米,沟堑较发育。

洞身段地表植被发育;进口处植被较稀疏,主要为园林,种植桂花等;出口处植被发育较稀疏,主要为农田,种植水稻,局部农田荒废。

1.2.2 地质构造隧道洞身段表层为少量的坡积层(Qdi),下伏基岩为上元古界麻源群变粒岩(PT3MY),局部地段见有少量混合花岗岩,进洞口路面标高位于冲洪积层内,下伏基岩为上元古界麻源群变粒岩(PT3MY),出洞口路面标高高于冲洪积层,出洞口段表层为少量的坡积层(QDI),下伏基岩为上元古界麻源群变粒岩(PT3MY),岩层产状较不稳定。

1.2.3水文地质本隧道属于崇阳溪水系,场区附近地表发育一般,进口两侧沟谷各发育1条小溪沟,勘察期间水面宽度约0.2米,深约0.1~0.2米,流量约530吨/天,主要接受地下水或雨季雨水的补给,常年性流水水源,旱季时水量较少,隧址区未发现明显的泉点,民井分布。

①风化带孔隙裂隙水:赋存于第四系残坡积层底部及基岩风化带,为潜水,富水性不均、富水性弱。

主要接受大气降水及地下水侧向补给,受季节影响变化大。

向下游地下水排泄②基岩裂隙水:福存于隧道区内的基岩裂隙中,富水性、导水性较差,且不均匀,主要接受大气降水及地下水侧向补给,向下游地下水排泄。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据规范上提供的计算洞门土压力的计算公式:
(5-3)
E—土压力(kN);
—地层重度(kN/m ),参考资料取20 kN/m ;
—侧压力系数,根据上述计算为:0.297;
—洞门墙计算条带宽度(m)
—土压力计算模式不确定性系数,可取 =0.6。
由图可知:

因此,可求得土压力如下:
(3-3)
故有E=76.45KN
重力为: (3-4)
B.稳定性及强度验算
a.倾覆稳定性的验算
(3-5)
(3-6)
(3-7)
∴满足倾覆稳定ห้องสมุดไป่ตู้要求。
b.滑动稳定的验算
隧道怀化端洞门仰坡自然坡度约35~40°,通道端洞门仰坡自然坡度约35~40
°
怀化段 左右洞洞口均处在陡立山坡上,自然坡度35~40°,左右洞洞口处隧道轴线与等高线大致呈70°角相交。边坡及仰坡的坡比采用1:1.0,并进行拱形骨架支护,仰坡后缘设置截水沟。
通道段 左右洞洞口处隧道轴线与等高线大角度相交,但两洞外轮廓线均位于沟壁附近。洞口附近覆盖层厚度较小,建议边坡及仰坡的坡比采用1:1.0,并进行拱形骨架支护,仰坡后缘设置截水沟。
综上所述,根据规范边、仰坡比1:1.0采用翼墙式洞门。由于左右洞的进出口端地 质情况差不多,所以洞门形式都采用翼墙式洞门。端墙厚度取1.5m,正面斜度为 1:0.1,翼墙斜度为1:0.75;翼墙厚度取1.0m。基础设置为宽2m,厚1m。
结合上述规定条件,可取下列值为:
洞口仰坡坡脚至洞门墙背的水平距离取0.8+1=1.8m
洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度取1.2m
洞门墙高出坡脚的高度取 0.974m
洞门厚度由工程类比法取 2.0m
洞门向土体倾覆的坡度取1:0.1
基底埋置石质地基的深度取1.318m
翼墙的坡度拟定为1:1。
洞门高度:8.1+1.2+0.5+0.8=10.6m
采用套拱加长管棚进洞法
(3-8)
∴满足滑动稳定的要求。
c.基底合力的偏心距及压应力的验算
偏心距:
(3-9) (3-10)
∴满足基底合力的偏心距。
基底压应力:

∴ (3-11)
由上可知:
∴满足基底压应力的要求。













相关文档
最新文档