智能优化方法2-蚁群优化算法

合集下载

人工智能系统中的群体智能算法优化

人工智能系统中的群体智能算法优化

人工智能系统中的群体智能算法优化群体智能算法(Collective Intelligence Algorithms)是一种基于群体行为和智能协作的人工智能算法,通过模拟自然界中的群体行为和社会行为,实现了人工智能系统中的优化问题。

群体智能算法在解决复杂问题、优化搜索和决策等方面展现出了巨大的潜力。

本文将对人工智能系统中的群体智能算法进行深入研究,探讨其优化方法、应用领域以及未来发展方向。

一、群体智能算法概述在自然界中,很多生物都通过集体行为来解决复杂问题。

例如,蚂蚁通过信息素沟通来找到最短路径;鸟群通过集体协作来捕食;蜜蜂通过集中决策来选择巢穴等。

这些生物集合起来形成了一个具有自组织、自适应和鲁棒性特征的群体系统。

基于这些生物现象,研究者们提出了一系列模拟生物行为的算法,并将其应用到人工智能领域。

1.1 蚁群优化算法蚁群优化(Ant Colony Optimization, ACO)算法是一种模拟蚂蚁寻找食物路径的算法。

蚂蚁在寻找食物的过程中,会释放一种称为信息素的化学物质,其他蚂蚁会根据信息素浓度选择路径。

通过模拟这一过程,ACO算法能够在解决优化问题中找到最优解。

ACO算法已经在旅行商问题、图着色问题等领域取得了显著的成果。

1.2 粒子群优化算法粒子群优化(Particle Swarm Optimization, PSO)算法是一种模拟鸟群觅食行为的算法。

PSO算法通过模拟鸟群中个体之间的信息交流和协作来寻找最优解。

每个个体根据自身经验和邻居经验来更新自己的位置和速度,从而逐步靠近最优解。

PSO算法已被广泛应用于函数优化、神经网络训练等领域。

1.3 其他群体智能算法除了ACO和PSO之外,还有许多其他类型的群体智能算法被提出和应用于人工智能领域。

例如,鱼群搜索(Fish Swarm Optimization, FSO)模拟能够在多个目标优化问题中找到最优解;蜜蜂算法(Artificial Bee Colony, ABC)模拟了蜜蜂寻找花朵的行为,用于解决连续优化问题;人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)模拟了鱼群觅食行为,用于解决连续优化问题等等。

蚁群优化算法的研究及其应用的开题报告

蚁群优化算法的研究及其应用的开题报告

蚁群优化算法的研究及其应用的开题报告一、研究背景及意义蚁群优化算法(Ant Colony Optimization,简称ACO)是一种基于自然界蚂蚁的行为特性而发展起来的群智能优化算法。

它通过模拟蚂蚁在寻找食物时的集体行为,通过正反馈和信息素等机制进行迭代搜索,最终达到问题最优解的全局优化方法,被广泛运用于组合优化、机器学习、数据挖掘、图像处理、网络计算等领域。

ACO算法在应用过程中存在的核心问题是参数的选择:如何确定信息素的启发式因子、挥发系数、蚁群大小、局部搜索参数等,以及如何在不同的问题中选择合适的参数组合。

因此,对ACO算法的研究不仅可以提高ACO算法在不同领域应用的效率和性能,还可以对其他基于自然界智慧的算法进行改进和优化。

对此,本研究将重点研究ACO算法的自适应参数优化算法及其在不同应用领域的性能评估和优化探究。

二、研究内容和方向1. ACO算法的原理、模型和迭代搜索过程研究;2. 研究ACO算法的参数选择算法,并结合实际问题进行验证和优化;3. 在不同应用领域(如组合优化、机器学习、数据挖掘等)中,探究ACO算法的性能表现及其在问题求解中的优化效果;4. 侧重于自适应参数优化的ACO算法,探究其在各种应用中的适用性、性能表现和求解效果;5. 探究ACO算法在较大规模问题优化中的可行性和效率,并对其进行实际应用。

三、研究方法和技术路线1. 查阅相关文献,深入理解ACO算法的原理、模型和参数选择等关键技术;2. 基于现有研究,设计ACO算法的自适应参数优化算法,并根据不同问题调整和优化参数组合;3. 选择不同领域问题,研究ACO算法的性能表现及其优化效果,并与其他优化算法进行对比分析;4. 将自适应参数优化的ACO算法应用于实际问题中,对ACO算法的可行性和效率进行实验验证,并与其他优化算法进行比较;5. 探究ACO算法在大规模应用中的效率及其应用瓶颈,根据实际问题调整算法优化方案。

四、预期成果及创新之处本研究旨在设计、优化ACO算法的自适应参数选择方案,并将其应用于不同领域中的优化问题,探究ACO算法在不同应用领域中的性能和优化效果。

智能控制课件蚁群优化算法

智能控制课件蚁群优化算法

实验数据(算法复杂度)
摘自Ant Colony Optimization
4 实例:JSP
Job-shop Scheduling Problem
M:机器数量 J :任务数 ojm:工序 djm:工时
O ,o jm, :工序集合
JSP(Muth & Thompson 6x6)
m.t Job1 3.1 Job2 2.8 Job3 3.5 Job4 2.5 Job5 3.9 Job6 2.3
Update the shortest tour found
TSP蚁群算法(ant-cycle)
Step 4.2
For every edge (i,j) For k:=1 to m do
m
ij
k ij
k 1
k ij
Q Lk
0
if (i, j) tour described by tabuk otherwise
TSP蚁群算法(ant-cycle)
Step 6
If (NC < NCMAX) and (not stagnation behavior) then Empty all tabu lists Goto step 2 else Print shortest tour Stop
3 蚁群算法调整与参数设置
符合TSP规则; 完成一次旅行后,在经过的路径上释放信息
素; 无需按原路返回。
实例:TSP(参数与机制)
路径上的信息素浓度 ij (t) 信息素更新
ij (t n) ij (t) ij
信息素释放(ant-cycle)
m
ij
k ij
k 1
k ij
Q Lk
if k - th ant uses edge (i, j) in its tour (between time t and t n)

群智能优化算法及其应用

群智能优化算法及其应用

群智能优化算法及其应用群智能优化算法及其应用近年来,随着人工智能技术的快速发展,群智能优化算法逐渐受到广泛关注。

群智能优化算法是一类基于集体智慧原理的优化方法,在解决复杂问题方面显示出了独特的优势。

本文将介绍群智能优化算法的基本原理和常见应用,并展望其在未来的发展前景。

群智能优化算法是以模拟生物种群行为为基础,通过模拟自然界的进化、群体行为等原理,来解决复杂问题的一种智能优化方法。

其核心思想在于通过模仿种群智能,集体协同工作,从而获得更好的优化结果。

在群智能优化算法中,最具代表性的方法之一是粒子群优化算法(PSO)。

它的基本思想源于鸟群觅食行为。

在PSO中,每个搜索个体被看作是一个鸟或者粒子。

这些粒子通过不断地调整自身的速度和位置,并通过与其它粒子的信息交流获取更好的解。

通过不断的迭代,最终找到优化问题的全局最优解。

另一个常见的群智能优化算法是蚁群优化算法(ACO)。

蚁群优化算法模拟了蚂蚁找到食物源的行为。

在ACO中,蚂蚁在路径选择时会释放一定量的信息素。

而其它蚂蚁则通过感知和跟随这些信息素来逐渐形成路径,并逐渐寻找到更优的解。

ACO通过模拟蚂蚁的群体智慧,找到问题的最优解。

群智能优化算法在很多领域都得到了广泛的应用。

例如,在电力系统中,群智能优化算法可以用于解决电力调度问题,以提高电力系统的稳定性和效率。

在物流领域,群智能优化算法可以用于优化物流的路径规划和货物分配,以提高物流效率和降低成本。

在机器学习领域,群智能优化算法可以用于参数优化,以提高模型的准确度。

然而,群智能优化算法也存在一些挑战和问题。

首先,算法的收敛速度较慢,需要较长的时间来找到最优解。

其次,算法对参数的敏感性较高,参数的选择对算法的效果有较大的影响。

此外,群智能优化算法的鲁棒性较差,容易陷入局部最优解。

为了克服这些问题,近年来,研究者们提出了许多改进的群智能优化算法。

例如,引入自适应权重、多目标优化等策略,以提高算法的性能。

最短路径问题的智能优化算法

最短路径问题的智能优化算法

最短路径问题的智能优化算法最短路径问题是图论中的经典问题,其在各个领域都有着广泛的应用。

然而,当图的规模庞大时,传统的求解方法往往存在效率低下的问题。

为了提高求解最短路径问题的效率,智能优化算法应运而生。

本文将介绍几种常用的智能优化算法,并比较它们在求解最短路径问题上的表现。

1. 遗传算法遗传算法是模拟自然界的进化过程而设计的一种优化算法。

在求解最短路径问题时,可以将图中的节点看作基因,路径长度看作适应度。

遗传算法通过交叉、变异等操作对解空间进行搜索,并逐代筛选出较优的解。

在实际应用中,遗传算法能够在较短的时间内找到逼近最优解的结果。

2. 蚁群算法蚁群算法是受到蚂蚁觅食行为的启发而设计的一种优化算法。

蚁群算法通过模拟蚂蚁在搜索食物时释放信息素、路径选择等行为进行优化。

在求解最短路径问题时,可以将蚂蚁看作在节点之间移动的代理,蚁群中的每只蚂蚁通过释放信息素来引导搜索方向。

经过多次迭代,蚁群算法可以找到接近最短路径的解。

3. 粒子群算法粒子群算法是模拟鸟群觅食行为的一种优化算法。

粒子群算法通过随机初始化一群“粒子”,然后根据自身最优解和群体最优解来不断调整粒子的位置和速度,以找到最优解。

在求解最短路径问题时,可以将节点看作粒子,粒子的位置和速度表示路径的位置和前进方向。

通过迭代调整粒子的位置和速度,粒子群算法能够找到较优的解。

4. 模拟退火算法模拟退火算法是一种受到固体退火原理启发的优化算法。

在求解最短路径问题时,可以将节点看作原子,在不同温度下进行状态转移,以找到更优的解。

模拟退火算法通过接受差解的概率和降低温度的策略来逐渐搜索到接近最优解的结果。

以上是几种常见的智能优化算法在求解最短路径问题上的应用。

这些算法在实际应用中有着广泛的适用性,并且能够在较短的时间内找到较优的解。

在具体选择算法时,需要根据问题的规模和要求进行综合考虑。

未来随着智能优化算法的发展,相信将会有更多高效、灵活的算法被提出,为最短路径问题的求解提供更多选择。

蚁群优化算法

蚁群优化算法
规则虽然简单,但在地点数目增多后求解却极为复杂。以42个地点 为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之 大,几乎难以计算出来。 多年来全球数学家绞尽 脑汁,试图找到一个高 效的算法。 TSP问题在物流中的描 述是对应一个物流配送 公司,欲将n个客户的 订货沿最短路线全部送 到。如何确定最短路线。
第9章 智能优化方法
Contents
1 2
遗传算法
蚁群优化算法 粒子群优化算法
3
蚁群优化算法
先看1个最优化例子
“旅行商问题”(Travel Salesman Problem, TSP 问题)常被称为“旅行推销员问题”,是指一名推销员要 拜访多个地点时,如何找到在拜访每个地点一次后再回到 起点的最短路径。
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。

蚁群算法ppt课件

蚁群算法ppt课件
10
2 简化旳蚂蚁寻食过程
假设蚂蚁每经过一处所留下旳信息素为一种单位,则经过36个时间单位 后,全部开始一起出发旳蚂蚁都经过不同途径从D点取得了食物,此时ABD 旳路线来回了2趟,每一处旳信息素为4个单位,而 ACD旳路线来回了一趟, 每一处旳信息素为2个单位,其比值为2:1。
寻找食物旳过程继续进行,则按信息素旳指导,蚁群在ABD路线上增派一 只蚂蚁(共2只),而ACD路线上依然为一只蚂蚁。再经过36个时间单位后, 两条线路上旳信息素单位积累为12和4,比值为3:1。
8
2 简化旳蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线 ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位 行走一步,本图为经过9个时间单位时旳情形:走ABD旳蚂蚁到 达终点,而走ACD旳蚂蚁刚好走到C点,为二分之一旅程。
9
2 简化旳蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时旳情形:走ABD旳蚂 蚁到达终点后得到食物又返回了起点A,而走ACD旳蚂蚁刚好走 到D点。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上依然为一只蚂蚁。再经过36个时间单位后,两条线路上旳信息素 单位积累为24和6,比值为4:1。
若继续进行,则按信息素旳指导,最终全部旳蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是前面所提到旳正反馈效应。
11
3 自然蚁群与人工蚁群算法
15
5 初始旳蚁群优化算法—基于图旳蚁群 系统(GBAS)
初始旳蚁群算法是基于图旳蚁群算法,graph-based
ant system,简称为GBAS,是由Gutjahr W J在2023年
旳Future Generation Computing Systems提出旳.

蚁群算法公式

蚁群算法公式

蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。

这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。

它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。

蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。

由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。

蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。

蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。

在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。

蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 算法流程
解:
步骤3:信息素更新。
Company Logo
计算每只蚂蚁构建的路径长度:C1=3+4+2+1=10, C2=4+2+1+3=10,C3=2+1+5+4=12。更新每条边上的 信息素:
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。
用轮盘赌法则选择下城市。假设产生的随机数 q=random(0,1)=0.67,则蚂蚁1将会选择城市D。 用同样的方法为蚂蚁2和3选择下一访问城市,假设 蚂蚁2选择城市C,蚂蚁3选择城市C。
5.2 算法流程
解:
步骤2.4:实际上此时路径已经构造完毕,蚂蚁1构建 的路径为(ABDCA)。蚂蚁2构建的路径为(BDCAB)。 蚂蚁3构建的路径为(DACBD)。
5.2 算法流程
ACO基本要素
路径构建
每只蚂蚁都随机选择 一个城市作为其出发 城市,并维护一个路 径记忆向量,用来存 放该蚂蚁依次经过的 城市。蚂蚁在构建路 径的每一步中,按照 一个随机比例规则选 择下一个要到达的城 市。
信息素更新
当所有蚂蚁构建完路 径后,算法将会对所 有的路径进行全局信 息素的更新。注意, 我们所描述的是AS 的ant-cycle版本,更 新是在全部蚂蚁均完 成了路径的构造后才 进行的,信息素的浓 度变化与蚂蚁在这一 轮中构建的路径长度 相关。
蚂蚁系统(Ant System,AS)是最基本的ACO算法, 是以TSP作为应用实例提出的。
5.2 算法流程
路径构建—— 伪随机比例选择规则(random proportional)
(i, j ) (i, j ) , if j J k (i) pk (i, j ) (i, u ) (i, u ) uJ k (i ) 0, otherwise
对于每只蚂蚁k,路径记忆向量Rk按照访问顺序记录了所有k已经经 过的城市序号。设蚂蚁k当前所在城市为i,则其选择城市j作为下一 个访问对象的概率如上式。Jk(i)表示从城市i可以直接到达的、且又 不在蚂蚁访问过的城市序列Rk中的城市集合。(i, j)是一个启发式信 息,通常由 (i, j)=1/dij直接计算。(i, j)表示边(i, j)上的信息素量。
怎么办?
变种:例如工程实施过程中,分很多阶段,每个阶段都可 以有多种不同的工程执行者、原材料、设计方案、效果等 等不同的选择,如何为每个阶段选择一种执行方案,使得 整个工程更快更好地完成?
当有很多阶段,每个阶段的选择也很多的时候,枚举变得不现实了, 但是不枚举又有什么办法呢? 遗传算法可以求解吗? GA求解TSP问题: 编码:{1 3 5 4 2 6} 交配、变异算子变得复杂了
5.2 算法流程
解:
步骤1:初始化。首先使用贪心算法得到路径 (ACDBA),则Cnn=f(ACDBA)=1+2+4+3=10。 求得0=m/Cnn=3/10=0.3。初始化所有边上的信 息素ij=0。
5.2 算法流程
解:
步骤2.1:为每只蚂蚁随机选择出发城市, 假设蚂蚁1选择城市A,蚂蚁2选择城市B, 蚂蚁3选择城市D。
自然界Байду номын сангаас蚁觅食行为
蚁群优化算法
觅食空间 蚁群 蚁巢到食物的一条路径 找到的最短路径 信息素 蚂蚁间的通信
问题的搜索空间
对 应 关 系
搜索空间的一组有效解 一个有效解 问题的最优解 信息素浓度变量 启发式搜索
5.1 基本原理
2:天哪,我一定是走错路了, 好远,得产生少点信息素
1:走哪条路比较好呢? 嗯,先自己瞧瞧, 再感受下兄弟们的气息
规则虽然简单,但在地点数目增多后求解却极为复杂。以42个地点 为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之 大,几乎难以计算出来。 多年来全球数学家绞尽 脑汁,试图找到一个高 效的算法。 TSP问题在物流中的描 述是对应一个物流配送 公司,欲将n个客户的 订货沿最短路线全部送 到。如何确定最短路线。
4、5:好强的信息素浓度, 跟上跟上
3:(得意„„) 我这么快就到了, 产生多点信息素, 兄弟们不跟我跟谁?
食物
6:我自己走,说不定能探索 出一条更短的路径呢, 到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
5.1 基本原理
林盈/博士学位论 文答辨
在自然界中,蚂蚁通过在环境中释放信息素来交 流信息,完成协同寻路任务。
A 蚂蚁 巢穴
“双桥实验”
食物
• 蚂蚁总以较大概率选择信息素 浓度较高的路径;
• 较短路径上的信息素积累速度 较快; • “正反馈”作用使蚁群最终聚 集到较短路径上。
B
5.1 基本原理
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是 两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权 重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径, 算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。
有没有更好的办法?
事实上,意大利学者Dorigo教授早在1992年 已经通过模拟蚂蚁觅食行为,找到了一种求解 离散组合最优化问题的智能优化算法:蚁群优 化算法! 在2000年在《自然》上发表了相关论文
Marco Dorigo
比利时布鲁塞尔 大学教授 著名蚁群优化算法 的创始人 IEEE Fellow IEEE Trans on EC 副主编
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
有没有更好的办法?
蚁群优化算法(Ant Colony Optimization, ACO) 自然界的蚂蚁能够找到从蚁巢到食物的最短路径! 自然界的蜜蜂也能轻松解决“旅行商问题”?
2010年10月25日,英国一项最新研究说,在花丛中飞来飞去的小 蜜蜂显示出了轻易破解“旅行商问题”的能力,而这是一个吸引全 世界数学家研究多年的大问题,如能理解蜜蜂的解决方式,将有助 于人们改善交通规划和物流等领域的工作。 英国伦敦大学皇家霍洛韦学院等机构研究人员报告说,小蜜蜂显示 出了轻而易举破解这个问题的能力。他们利用人工控制的假花进行 了实验,结果显示,不管怎样改变花的位置,蜜蜂在稍加探索后, 很快就可以找到在不同花朵间飞行的最短路径。这是首次发现能解 决这个问题的动物,研究报告发表在《美国博物学家》杂志上。
顺便提一下
Dorigo等大V级人物也对PSO产生了兴趣
Marco Dorigo
比利时布鲁塞尔 大学教授 著名蚁群优化算法 的创始人 IEEE Fellow IEEE Trans on EC 副主编
粒子群优化算法的参数在线自适应调整的工作是一个有趣的研 究方向,已经取得了一些令人鼓舞的成果(encouraging results) ([60]),将算法进行自适应方面的拓展研究是值得探索的。
1 2 B : AB AB 0.3 (1/ 3) 0.033 1 2 A C : AC AC 0.3 (1/1) 0.3 1 2 D : 0.3 (1/ 2) 0.075 AD AD
用轮盘赌法则选择下城市。假设产生的 随机数q=random(0,1)=0.05,则蚂蚁1将会 选择城市B。 用同样的方法为蚂蚁2和3选择下一访问 城市,假设蚂蚁2选择城市D,蚂蚁3选择城 市A。
Company Logo
5.2 算法流程
解:
步骤2.2:为每只蚂蚁选择下城市。我们仅 以蚂蚁1为例,当前城市i=A,可访问城市集 合J1(i) ={B, C, D}。计算蚂蚁1选择B,C,D作 为下一访问城市的概率:
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
Contents
1 2
基本原理
算法流程 改进版本 相关应用 参数设置
3
4
5
5.1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
自然界蚂蚁群体在寻找食物的过程中,通过一种被 称为信息素(Pheromone)的物质实现相互的 间接通信,从而能够合作发现从蚁穴到食物源的最 短路径。 通过对这种群体智能行为的抽象建模,研究者提出 了蚁群优化算法(Ant Colony Optimization, ACO),为最优化问题、尤其是组合优化问题的 求解提供了一强有力的手段。
相关文档
最新文档