三维地质建模技术及其在城市建设中的应用

三维地质建模技术及其在城市建设中的应用
三维地质建模技术及其在城市建设中的应用

第35卷第5期

2010年9月

测绘科学

Sc i ence o f Survey ing and M app i ng

V o l 135N o 15

Sep 1

作者简介:王浩天(1982-),男,辽宁铁岭人,在读硕士,主要从事图像处理与模式识别技术应用与研究。E -ma i:l whatian @1631com

收稿日期:2009-01-07

基金项目:国家科技部重大科技支撑项目(2007B A F09B01)

三维地质建模技术及其在城市建设中的应用

王浩天

1o

,李一波1,席剑辉

1

(1沈阳航空工业学院,沈阳110000;o北方重工集团有限公司,沈阳110000)

=摘 要>本文围绕三维地质建模技术,分类介绍了基于面模型、体模型和混合模型的典型建模方法。分析这些方法的基本原理,比较其优、缺点,并探讨了三维地质建模技术在城市建设中的应用,继而对三维建模技术的发展方向进行了展望。

=关键词>三维地质模型;构模;T I N /GT P /TEN;城市地质建模

=中图分类号>P642;TP39 =文献标识码>A =文章编号>1009-2307(2010)05-0220-03

1 引言

传统地质信息模拟与表达技术主要采用平面图和剖面图技术,其实质是将三维空间中的地层、构造、地貌及其他地质现象投影到某一平面上进行表达。存在的主要问题是空间信息损失与失真、制图过程繁杂及信息更新困难。三维地质建模(3D G eo sc i ences M ode li ng )技术正是针对传统地质信息模拟与表达方法的缺陷,以计算机技术为基础,在三维环境下将空间信息管理、地质解译、空间分析和预测、地学统计、实体内容分析以及图形可视化等工具结合起来,运用于地质分析的技术,已广泛应用于水利水电、道路交通、城市建设和采矿等工程中[1]。三维地质建模技术的难点集中于如何应用离散地质数据结构来正确表达复杂的地质结构体。

城市建设过程中,对灾害地质体的正确识别以及对各种潜在地质灾害的有效预防将有助于城市的建设和发展,减少地质灾害过程中的生命财产损失。借助三维可视化技术、数据库技术以及地理信息系统的相关技术,建立一个真三维的地质信息可视化与管理系统,能为城市建设、发展和管理提供基于三维地质数据的信息服务;便于城市管理人员有效管理和监控城市地质资源。

2 三维地质建模技术主要类型

计算机辅助三维地质建模技术最早由加拿大的S i m on

W H ou l d i ng [2]

于1994年提出,他针对地质钻孔和地层分布特点,提出了适于层状地质体建模的三棱柱(T P )模型建模方法。到现在,三维地质建模已逐步发展形成了基于面模型、基于体模型和基于混合模型的构模方法[3-4]。吴观茂等人将具体的建模方法归纳如表1所示。其中基于面模型的构模方法侧重于3D 空间实体表面表示,在构造简单的地区进行三维地质模拟是一种简便的方法。基于体模型的构模方法以TEN 、T P 及So li d 构模方法较为常见,其中TEN 模型的优点是可以描述实体内部,而不能表示三维连续曲

面,同时用该方法生成三维空间曲面也较为复杂;T P 模型不能运用偏斜钻孔数据来构建3D 地质模型,在实际应用中有较大的限制,类三棱柱模型(ATP )、广义三棱柱模型(GT P)及似三棱柱模型(STP )对TP 模型进行了有效补充,解决了基于偏斜钻孔数据建模问题。So li d 模型适合于具有复杂内部结构(如复杂断层、褶皱)的地质构模,但人工交

互工作量巨大[5]

表1 3D 空间模型构模方法

面模型(Faci a lm odel )体模型(Vol um etri c m odel)混合模型(M i xed m od el )

规则体元非规则体元不规则三角网

(TI N )结构实体

几何(CSG )

四面体网格(TEN )T I N -CSG 混合格网G ird 体素(Voxel )金字塔(Pyra m i d)T I N -Octree 混合或H yb ri d 模型边界表示模型(B-Rep )八叉树(O ctree)三棱柱(TP)W ire Fra m e -B l ock 混合线框(W i re Fram e)或相连切片(L i nked S lice)

针体(Needle)地质细胞(Geocellular)Octree -TEN

混合断面(Secti on )规则块体

(R egu l ar B loc k )非规则块体

(Irregu l ar B loc k )

断面-三角网混合(Secti on-T I N m i xed )

实体(Soli d)多层DEM s

3D Voronoi 图广义三棱柱(GTP)

适用于城市建设(地铁隧道工程、管网工程线路设计等)的三维地质模型构建方法归纳为表2所示。L e m on A M 、朱合华及朱良峰等人提出的基于钻孔信息的地层数据表2 适用于城市建设

的三维地质建模方法

基于钻孔信息的地

层数据模型方法

超体元实体建模方法面向对象的方法[6]钻孔-层面模型[7]

地层-模型算法[10]超体元实体模型、断层数学模型及

褶皱几何模型[13]模型方法能够充分

利用钻空信息来快

速建立地层模型,

并可以充分借助D e launay 三角网来构造三维拓扑关系,允许用户交互操作并结合专家经验和其他勘测手段对模型进行修正[5-7]。

而武强等人提出的超体元实体模型根据/任何复杂几何形

第5期 王浩天等 三维地质建模技术及其在城市建设中的应用状都可以由有限个简单形状拟合而成[8]0的空间分割原理,将研究区域分割为有限个超体元,利用T I N 、GR ID 或TEN 网格,对每个超体元执行剖分连接,最后形成实体模型,该方法可以完整描述复杂地质体的空间几何形态[9],适用于城市精细地质模型建立。

3 城市建设中的三维地质建模方法

311 基于面模型的三维地质模型构模方法

在城市建设中,常以钻孔勘探数据为基础,基于面模型构造三维地质模型。其中,不规则三角网构模法最为常用,其基本思路是:基于离散的钻孔数据,应用D elaunay 剖分算法形成不规则三角网(T IN )来表达地质分层层面,由不同的分层层面来表

达地质体结构。

图1 Bowyer

-W atson 算法示意图如何把一个散点集合剖分成不均匀的三角形网格是散点集的三角剖分问题,散点集的三角剖分对三维地质模型构建是极为重要的一项预处理技术。在实际中运用最多的是D e launay 三角剖分,L a w son 在1977年提出的L awson

算法思路简单,易于编程实现。Bo w yer 和W atson(1981)提出了D elaunay 三角剖分优化算法[11-12],基本原理为:首先建立一个大的三角形或多边形,把所有数据点包围起来,向其中插入一点

,图2 三角剖分形成T I N 示意图该点与包含它的三角形三个顶点相连,形成三个新的三角形,然后逐个对它们进行空外接圆检测,最后将所有的散点集形成三角剖分曲面(如图1所示),即不规则三角网(T I N )(如图2所示)

图3 GTP 体元的三种形式基于面模型的构模方法侧重于3D 空间实体表面表示,多应于城市建筑物(构筑物)及地下工程轮廓与空

间框架表示。其中使用较多的T I N 与G rid 模型一般用于

地形表面构模;边界表示(B -R ep)模型在描述结构简单的3D 物体时十分有效,常用于描述地下隧道及规则回填物,但对于表达不规则3D 物体则很不方便,且效率低下;多层DEM 构模对处理简单层状地质体,如构造简单的地层进行三维地质模拟是一种简便方法[5]。

312 基于体元模型的三维地质模型构模方法

基于体元模型的城市三维地质建模方法中,以非规则体元模型中的广义三棱柱(GTP )模型和四面体网格(T E N )模型最为常用。

1)广义三棱柱(GTP )模型构模技术S i m on W H ouldi ng(1994)阐述三维地质建模可视化技术时,率先提出了适于层状地质体建模的三棱柱(TP )模型建模方法,由于TP 模型不能用于偏斜钻孔数据建模,因此逐渐发展成为广义三棱柱(GT P)模型建模。图3为三棱柱体元的三种形式:a 为标准的三棱柱体元,3条棱的高度都

不为0,表示某一地层在此三角形网格内有一定的高度;b

为三棱柱的一个变体,其中一条棱的高度为0,表示地层在此点缺失;c 为三棱柱的另一个变体,其中两条棱的高度为0,演变为四面体,表示地层在此三角形网格中有两点缺失。b 和c 两种特殊的三棱柱体元存在于地层的尖灭处。GTP 建模方法将不同层的体元赋予不同的属性,包括层的标志号、颜色等,连接这些GTP 体元,即形成了具有填充效果的三维地层模型[13]。典型广义三棱柱(GT P )模型建模效果如图4所示[14]。

图4 GTP 模型建模实例 图5 TEN 模型建模实例2)不规则四面体(TEN )模型构模技术

T E N 模型由GTP 模型演变而来,TEN 模型中体元全部为图3中c 模型所示。通过三维D elaunay 剖分建立起来的不规则四面体(TEN )有着许多优点,如拓扑关系简单便于维护、满足线性组合特性、便于进行三维分析和显示等。TEN 模型最早由C arlson 于1987年在G IS 数据分析时提出,L iQ i ngquan(2000)等人对基于TEN 的三维数据模型进行了研究,并针对三维地质建模工作提出了线约束条件。随着计算机三维建模技术的发展,基于TEN 的三维数据模型将成为今后建模技术的主流。

T E N 模型主要由四个基元构成:四面体(te trahedron )、三角形(triang l e)、边(edge)和节点(node),在具体实现时,可以通过关系型数据库表格来存储四个基元之间的关系。一个空间实体由四面体组成,四面体由三角形组成,线由三角形的边组成,点由节点组成。在TEN 模型当中,每个节点必须属于某一条边,每条边属于某一三角形,每个三角形属于某一个四面体。由于TEN 模型采用的是si m p l e -comp l ex 思想,因此它可以完全描述三维空间中的各种拓扑关系[15]。在应用TEN 模型时,对处于地层分界的节点,必须进行地层属性划分,从而正确地将四面体填充至相应的地层中,最后构建成完整三维地质形态。TEN 模型构建三维地质模型如图5所示[16]。

4 城市建设中三维建模技术的应用

城市建设中的三维地质建模多依赖于钻孔数据资料,它包含了基本的地质分层信息和地质属性。城市地下地质构造是多期次沉积、剥蚀交替作用的结果,空间分布上有很强的不均匀性,在三维地质建模时常采用层序分层的方法建立标准层序体系,用不规则三角网形成地层界面,并基于线性插值、克里金插值等插值算法对生成的地层曲面进行平滑处理,最后利用这些层面数据生成地质体模型[17]。

411 城市工程开挖体中三维地质建模技术的应用

工程开挖体是指在地层中进行各种人类工程活动所形成的开挖实体,如隧道、井巷、地下基坑等,这些开挖实体在空间上都占有一定的位置与范围,具有一定的形态和属性,并与自然地质对象紧密联系。

在城市建设过程中,建立工程开挖体模型要求包括:1工程体模型与地质体模型是一个整体,实现工程体的任意3D 显示,既可精确地独立显示工程体的空间位置与形状,又可与围岩地质体联合显示,观察工程体在地质体中

221

测绘科学 第35卷

的空间分布;o工程体模型与地质体模型真实切割,能够进行工程体内部的虚拟漫游,观察工程体开挖揭露的地质体情况;?工程体模型必须具有支持有限元数值模拟分析的能力,能够进行相关计算与分析,如工程体开挖量计算、工程开挖对周围地层环境的影响等;?要求工程体模型与地质体模型具有拓扑一致性,即能够进行相关拓扑查询,如工程体处于什么地层内,工程体沿上下前后左右前进一定距离会遇到什么地质体,掘进头距离透水岩体多远等。

吴立新(2003)等人对GTP 模型进行拓展,提出了工程开挖体3D 模型即工程GT P (Eng i neer i ng GTP,E-GTP )的概念与建模方法。解决了横断面形状不变的开挖体建模、横断面形状变化的开挖体建模及工程体转弯连接处建模问题[18]。图6为城市

地下隧道模型展示。

图6 城市地下隧道模型 图7 北京奥运公园场区

地质模型412 城市建筑群规划中断层地质结构分析的应用

大型建筑群如果跨越地质断裂带,建筑安全将会受到严重威胁,利用钻孔数据建立断层模型并对建筑规划进行指导是三维地质建模技术运用于城市建设的一个重要应用,断层构模方法大体上分为基于地层恢复的断层构模技术(整体法)和基于分区插值的断层构模技术(局部法)的断层构模方法。朱良峰(2008)等人基于体元模型地质构模方法,提出了断层与地层的统一构模技术,并在v isua l c++下运用openGL 技术将该方法实现,精确界定了黄庄)高丽营断裂带和隐伏断层的空间位置,为北京奥运公园场区的大型建筑物建设提供了合理化意见,从图7中可以清楚地看出该区域内的两条断裂带[19]。

5 结束语

为解决城市建设过程中的实际问题,研究者正逐步探索形状复杂、地质结构变化多样的地质形态建模方法。其中,断层建模的精细化和地质构造的演变模拟正逐步为大家所重视,如何确立一套完整的地质断层建模与可视化分析应用技术方案,深化对三维空间地质实体及其建模方法的认识,成为三维地质建模的热点问题。同时,在城市建设特别是地铁隧道工程和地下管网规划中,如何在地质三维建模过程中正确显示地下异构体问题也将成为三维地质建模研究的一个发展方向。

参考文献

[1]王明华,等1三维地质建模研究现状与发展趋势[J]1土工基础,2006,20(4)1[2]

S i m on W H oul d i ng 13D geo -scientific modeli ng :Co m-puter techn i ques for geo l og ical charac terization [M ]1Spr i nge r -V er l ag ,19941

[3]

L i Q i ngquan ,L i D eren 1A lgo rith m s F or T e trahedra l N e-t

w ork (TEN )G enerati on [J]1G eo -spati a l Infor m a tion Sc i ence ,2000,3(1)1

[4]吴立新,史文中1地理信息系统原理与算法[M ]1北京:科学出版社,20031

[5]吴观茂,等1三维地质模型与可视化研究的现状分析[J]1测绘工程,2008,17(9)1

[6]朱合华,等1基于钻孔数据重构地层周围表面模型算法[J].计算机工程与应用,2006,251

[7]朱良峰,等1基于钻孔数据的三维地层模型的构建[J]1地理与地理信息科学,2004,20(3)1[8]

Berlioux A 1Depth M igration of Co mples Surface W i th GO-C AD:Study of the Curvature of a T r i angu l ated Surface [R ]1Stanford Exp l orati on P ro jec,t Report 82,20011[9]

Q iang W u ,H ua X u ,Xuka i Z ou 1A n effecti ve m ethod fo r 3D geo l og ica l m ode li ng w ith mu lt-i source data i ntega tion

[J]1Co m pute rs &G eosc iences,2005,311[10]

A l an M 1L e m on ,N or m an L 1Jones 1Buil d i ng so li d m od -els fro m bo reho les and user -defi ned cross -sec tions [J]1Co m pute rs &G eosc iences ,2003,29:547-5551[11]Bowy er A 1Co m ptuti ng dir i chlet T esse l a ti ons [J].The -Co m puterJou m a,l 1981,241[12]

W atson D F 1Com puti ng the n -d i m ension de launay tesse -lation w ith appli cation to vorono i Po lytopes [J]1T he Co m pute r Journa ,l 1981,2(2)1

[13]文学东,等1基于三棱柱的三维地质体建模及可视化研究[J]1测绘科学,2005,(5)1

[14]张渭军,等1基于三棱柱体的三维地质体可视化研究[J]1工程地质学报,2006,14(05)1

[15]刘衍聪,等1基于TEN 的3D G IS 数据模型及其生成算法[J]1计算机应用,2004,24(7)1

[16]魏嘉,等1三维地质构造建模技术研究[J]1石油物探,2008,47(4)1

[17]李奕纲,等1城市钻孔数据地下三维地质建模软件的实现[J]1地质通报,2005,24(5)1

[18]吴立新,等1基于GTP 的地下工程与围岩一体化真三维空间构模[J]1地理与地理信息科学,2003,19(6)1[19]

朱良峰,等1地质断层三维构模技术研究[J]1岩土力学,2008,29(1)1

Three -d i m en sional geo l ogical modeli ng technology and th e app lication in c ity construction

Abstrac t :Centered on t hree d i m ensi ona l geo l og i ca l m ode li ng technology ,th i s paper i ntroduced the typ ica l m ode ling me t hods ,wh ich are respecti ve l y based on F acia lm ode,l V o l u m etr ic m ode l andM i x ed model 1By ana l y zi ng the pri nc i ple and comparing the ad -vantages and disadvantages o f the m ethods ,the pape r d i scussed t he appli ca tion o f three -d i m ensi onal geo l og ica lm ode li ng techno l ogy i n city constructi on 1In the end ,it gave the prospects of the techno log ical deve lop m ent 1

K ey word s :three -d i m ensi ona l geo l og ical mode;l m ode ling ;T I N /GTP /TEN;c it y g eo log ica lm ode li ng WANG H ao-tian 1o,LI Y i -bo 1,X I J i an -hu i 1(1Shenyang Insti tute o f A eronauti ca l Eng ineer i ng,Shenyang 110000,Ch i na ;oN o rt hern H eavy Industr ies G roup Co 1,LTD,Shenyang 110000,China)

222

三维数字城市建模技术

三维数字城市建模技术 发表时间:2017-10-16T16:33:38.407Z 来源:《基层建设》2017年第18期作者:梁莉 [导读] 摘要:数字理念应用于城市规划,工程检测,交通服务,政策决定等方面,并在应用中进一步推广了数字应用的纵深发展。 天水三和数码测绘院甘肃省 741000 摘要:数字理念应用于城市规划,工程检测,交通服务,政策决定等方面,并在应用中进一步推广了数字应用的纵深发展。使用较为先进的信息化手段,能够为城市的规划、建设、管理、运营以及一些应急措施的应用发挥良好作用。三维数字城市的建模,能够在很大程度上有效提高政府的实际服务和管理水平,从而有效增强城市的管理效率,为有效节约城市资源发挥重要的作用。 关键词:三维数字;城市建模;建模技术 1引言 城市三维空间信息则具有直观性强、信息量大、内容丰富等优点。三维GIS作为一种能够综合地处理各种空间和属性信息的工具在城市规划、国土监测、交通管理、辅助决策等方面都有广泛的应用,随着人们对三维GIS的认识的不断深入,对城市三维信息需求的不断增加进而提出了三维城市模型的概念。通过对三维GIS中三维城市模型理论及相关的技术方法的探讨,对今后三维城市模型的研究有更为深刻的认识,为今后的工作提供指导。 1.1数字城市概述 随着信息技术的高速发展,美国率先提出了国家信息基础设施和全球信息基础设施计划,随之越来越多的国家加入到全球信息化的行列,从而演变出了数字城市的基本概念。数字城市主要是通过对空间信息的应用,构筑一个虚拟的平台,其中,关于一些社会资源、基础设施、自然资源、人文以及经济方面的信息和内容,能够通过数字形式进行有效获取,从而为社会和政府提供众多的服务。通过数字城市的建设,能够为实现城市信息的综合应用,提供良好的效果。可持续发展是当前社会的重要发展原则之一,对于社会生产生活具有重要影响。建设数字化的城市,能够有效促进可持续发展,增强城市的发展效力。 1.2数字城市是数字地球建设中的重要节点,在实现数字地球计划中占有举足轻重的地位。数字城市建设随着计算机水平的提高,目前正向三维数字城市方向快速发展。自“数字地球”的概念提出以来,在国际国内已引起广泛的关注。数字城市作为数字地球的一个节点,是数字地球中一个不可缺少的重要组成部分。数字城市的建设不仅仅是城市地图的数字化和大比例尺地图测绘、计算机化,它有自身的技术体系。因此,进行相关技术的研究和理论的探讨对数字城市的建设不仅是必要的,而且是必须的。数字城市的建成将为城市各行各业提供权威的、唯一的、通用的空间信息平台,有力促进各部门地理信息资源共享与应用,充分发挥地理信息在政府宏观决策、应急管理、社会公益服务、人民生活改善等方面的作用。 2三维技术构建及建模方法 数字城市需要一个逼真的模拟,实时动态的环境中,考虑到硬件限制和虚拟现实系统。数字城市建模和模拟的动画要求建模方法有一个显着不同的数字城市建模模型分割和纹理映射技术。目前众多世界城市虚拟场景结构在以下方面:基于模型和BR这两种方法可以实现在3DSMAX中验证。多边形模式是第一次使用的建模技术,用一个小平面来模拟表面,从而形成各种形状的三维对象的一个小的平面可以是三角形,矩形或其它多边形,但在实践中更多的使用三角形或矩形。多边形建模的,直接创建基本几何体,根据要求修改调整对象的形状,或使用放样面片建模,组合对象创建的虚拟现实工程,多边形建模的主要优点是简单、方便、快捷,但它产生一个光滑的表面,因此适于构建规则形状的对象,如大多数的人造物体的多边形建模技术是困难的,同时可根据要求,只可通过调整的参数建立的虚拟现实系统该模型可以得到不同的分辨率的模型的虚拟场景的实时显示的需要和适应。 目前实现三维建模的方法大致有以下几种:一是直接利用三维建模软件,如计算机辅助设计软件(AutoCAD)、三维动画渲染和制作软件(3DStudioMax)等工具人机交互式三维建模;二是直接利用GIS的二维数据和高度信息建立三维模型,但这种方法只局限于规则对象的建模;三是基于数字摄影测量原理对物体快速建模。随着数据采集技术的不断发展和自动化,根据三维激光点云数据自动构建三维模型正成为研究的热点。 3三维数字城市建模技术 3.1数字摄影测量技术 数字摄影测量技术的飞速发展与高分辨率卫星影像的出现,使三维数据大批量地快速获取已成为可能。这种建模方法主要的原理是基于遥感影像数据,根据遥感影像之间的相互关系,利用数字摄影测量的基本原理,建立相应的交会模型,进而得到实际地物点的三维坐标,并且建立数字地表模型,再通过相应的纹理映射关系,实现三维景观模型的建立。该技术能够帮助设计人员进行目标建筑物的几何空间与高程数据的快速构建,并且精度高、快速成像。因此,数字摄影测量技术在三维建模中具有十分重要的作用。 3.2航空摄影测量技术 在三维建模领域,航空摄影测量技术的应用较早,在多年来的发展中,已经非常成熟。使用该技术,能够创建立体环境,实现三维模型数据的位置、高度、形状信息的快速与准确获取。然后结合外业纹理采集与正射影响屋顶信息能够进行精细三维模型的构建。然而该技术对建筑物纹理进行提取的过程中,侧面纹理无法被有效获取,因此,同新时期我国的精细化城市三维建模的要求不符。 3.3机载/车载激光扫描技术 在对该技术进行应用的过程中,所构建而成的模型在细节方面可以被充分的表现出来,因此能够形成较高的精度,不需要进行大量的外业就能够完成建模。然而,在应用该技术提取数据的过程中,需要经历复杂的算法过程,可供操作的软硬件短缺,在构建三维模型的时候,应对大量的数据进行应用,如果三维场景模型范围较大,那么在后期传输、存储数据以及浏览的时候,难度较高。 3.4倾斜摄影测量技术 在对近景测量技术和航空摄影技术进行综合应用的过程中,就产生了倾斜摄影测量技术。使用倾斜摄影技术时,能够有效及时地获取到较为丰富的空间影像情况,还能够将其分级别地进行应用,这对于三维建模工作的有效进行,具有较为明显突出的作用。倾斜摄影技术主要是通过倾斜的角度进行成像的,因而,相较于传统的直观角度,这种技术能够让用户们从多个角度进行观察,对于形象、直观地展示地理实际形态具有重要作用,有效改善了正射影像的不足之处。该技术可以从多个层面对建筑物进行观察,同时也能够对贴图纹理进行批量提取,拥有较快的建模速度,也能够更加真实的对地物周边环境进行反映,同时仅需要应用少量的数据就能够完成建模。该技术已经成

基于航测的数字城市三维建模技术

基于航测的数字城市三维建模技术 [摘要]本文概述了数字城市的研究背景及意义,详述了数字城市三维模型的建设方法,重点讲解基于航测的数字城市三维建模技术的步骤,最后概述数字城市的未来发展状况及存在问题。 [关键词]数字城市数字城市三维模型基于航测的三维建模方法 0引言 数字城市的概念来源于数字地球,是数字地球的重要组成部分。同时数字城市也是信息技术发展的必然趋势,城市景观重建是数字城市的首要步骤和重要内容。随着城市化进程的进一步深入,城市建设和管理所需要解决的问题的复杂性和需要处理信息的广义性,都是前所未有的。在城市信息化建设过程中,二维空间数据一直作为空间信息基础设施框架重要的数据内容,其在城市规划、交通、市政等各领域应用广泛,但传统的二维数据很难表现城市三维空间形态的多样性和复杂性以及相互之间的关系。城市三维空间信息则具有直观性强、信息量大、内容丰富等优点。随着人们对三维GIS的认识的不断深入,对城市三维信息需求的不断增加进而提出了数字城市三维模型的概念。 1概述 数字城市三维模型由于其在城市规划、地籍管理、旅游、交通及环境仿真等领域显示出了巨大的潜力,已成为众多领域研究的热点。三维模型是以三维的手法进行建模,模拟出一个三维的建筑场景效果。规划者可以模拟在数字场景中任意游走驰骋、飞行缩放,达到一种惟妙惟肖、变化多姿的动态视觉效果。对规划及参观者来说是一种全新的体验,并能产生强烈的共鸣。 2数字城市三维模型的建设方法 数字城市三维模型数据生产是建设城市三维地理信息系统的核心。三维模型的精度和建模效率直接影响着三维GIS系统的实用性和建设周期,同时也是城市规划、建设与管理部门进行空间分析并做出正确决策的保障。在三维模型中除了建筑物的基本平面位置及高度信息外,还需要表达建筑物的色彩纹理与几何外形特征,这些色彩纹理与几何外形特征往往体现三维对象特别是建筑物对象的独特风格。现将比较有代表性的几种建模方式列出: (1)使用航空影像以及地面摄影对建筑物特征线进行自动提取。这种方法获取速度最快,成熟的DEM数据及DOM数据生产技术路线能快速重建三维场景中的地形数据,同时在立体环境下,能快速准确获取建筑物等三维模型数据的位置,形状及高度信息,真实展现城市风貌。但获取几何信息不够完整,需要外业采集建筑物侧面纹理。

GOCAD 软件三维地质建模方法

GOCAD 软件三维地质建模方法 1建模方法 GOCAD 三维地质建模主要包括两类:一类是构造模型(structural modeling)建模,一类是三维储层栅格结构(3D Reservoir Grid Construction)建模。 (1)构造模型(structural modeling)建模建立地质体构造模型具有非常重要的意义。通过建立构造模型能够模拟地层面、断层面的形态、位置和相互关系;结合反映地质体的各种属性模型的可视化图形,还能够用于辅助设计钻井轨迹。此外,构造模型还是地震勘探过程中地震反演的重要手段。 (2)三维储层栅格结构(3D Reservoir Grid Construction)建模根据建立的构造模型,在3D Reservoir Grid Construction 中可以建立其体模型;同时地质体含有多种反映岩层岩性、资源分布等特性的参数,如岩层的孔隙度、渗透率等,可对这些物性参数进行计算和综合分析,得到地质体的物性参数模型。 当采样值在地质体内密集、规则分布时,可以直接建立采样值到应用模型的映射关系,把对采样值的处理转化为对物性参数的处理,这样可以充分利用计算机的存储量大、计算速度快的特点。 当采样值呈散乱分布,并且数据量有限时,需要采用数学插值方法,拟合出连续的数据分布,充分利用由采样值所隐含的数据场的内部联系,精确的模拟模型中属性场的分布。 图1-1孔隙度参数模型分布图 2 建模流程 2.1数据分析 (1)钻孔、测井分布及数据分析 支持三维建模的数据主要为钻孔和测井。由于对区域范围和建立三维地质建模的精度要求不同,得对所得到的钻孔、测井的分布和根据其取得的数据进行分析和处理是的必要。根据钻孔、测井的分布范围和稠密程度可以大致确定地层的分布界限,对钻孔较少区域采取补充钻探或者采用其它方法进行处理。 (2)地质剖面

地质建模软件介绍

地质建模软件介绍 康文彬 摘要:随着信息技术手段的高速发展,传统工程地质学领域在地勘成果信息化设计方面渐渐形成了初步的理论与方法体系,并在此基础上对工程勘察全过程提出了一体化设计需求。实现工程三维地质信息建模与分析的目标,对工程全生命周期以三维地质模型作为支撑,将能够实现各方面的多种需求,而其最大的优势就是可以更为快速和准确、方便、直观的体现地质体的三维信息,还可以利用其剖切的功能实现二维图件的快速绘制。本文主要对地质建模理论和现有地质建模软件相关情况进行简要客观的介绍。 关键词:地质软件 1 三维地质建模的必要性 长久以来,对于地学信息的表示和处理都是基于二维的,通常将垂直方向的信息抽象成一个属性值,其实质就是将三维地质环境中的地质现象投影到某一平面(XY平面、XZ平面或YZ平面)上进行表达,称为2.5维或假三维,它描述空间地质构造的起伏变化直观性差,往往不能充分揭示其空间变化规律,难以使人们直接、完整、准确地理解和感受具体的地质情况,越来越不能满足工程设计和分析的需求,因此,真三维处理显得愈来愈迫切。与此同时,众多新型勘探手段的应用,诸如地震勘探、探地雷达、遥感,以及地球化学勘探等,致使各种地质资料急速膨胀,迫使地质工作者不得不采用新的手段来综合利用这些信息。因此,空间三维地质建模及可视化技术的研究是计算机在工程地质领域应用的一个必然趋势。 1994年加拿大学者Houlding最早提出了三维地学建模(3D Geosciences Modeling)的概念,即在三维环境下将地质解译、空间信息管理、空间分析和预测地质统计学、实体内容分析以及图形可视化等结合起来,并用于地质分析的技术。工程地质三维建模及可视化技术借助于计算机和科学计算可视化技术,直接从3D空间角度去理解和表达地质对象的几何形态、拓扑信息和物性信息,这对工程决策和灾害防治意义重大,已经成为岩土工程科学、工程地质学、数学地质学和计算机科学等多学科交叉领域研究的前沿和热点。 三维地质建模体系大致概括为地质数据处理、地质体建模和模型应用三个阶段。为充分了解现有三维地质建模软件的相关情况,选取满足当前工作使用需求的软件进行地质模型的创建,有必要对相关理论及各软件的相关情况进行简要介绍。

三维地质建模技术的作用

三维地质建模技术在开发阶段 油藏描述中的地位与作用
吴键
中国石油勘探开发研究院
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/6813578180.html,

三维地质建模的基本概念
? 三维地质建模(3D Geological Modeling):就是运用计算机技术,在三维 环境下,将空间信息管理、地质解译、空间 分析和预测、地学统计、实体内容分析以及 图形可视化等工具结合起来,并用于地质分 析的技术-Simon W.Houlding (加拿大) 1993 。 ? 三维地质建模技术就是综合地质学、地球物 理学、地质统计学、计算机技术对地质体进 行综合研究的一种技术方法。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/6813578180.html,

三维地质建模的基本概念
? 根据油田勘探和开发的不同阶段、资料的丰 富程度以及研究的任务的不同把储层地质模 型分为概念模型、静态模型和预测模型-裘 怿楠 ? 地质模型大致包括构造模型、相(沉积相、 岩相等)模型、储层物性参数模型、流体参 数模型等多种模型。 ? 三维地质建模以井资料为基础,通过地质统 计学方法进行井间参数的预测和插值。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/6813578180.html,

三维地质建模技术的发展简况
? 地质统计学是三维地质建模的主要基础,是法国巴黎国立高等 矿业学院马特隆教授(G.Matheron)于1962年创立的。他将传统统 计学理论与区域化变量的概念相结合,发展出一套以变差函数 为工具研究矿产特征区域分布的数学技术。 ? 目前在地质统计学上,多点地质统计是最新的研究领域。 ? 自上世纪80年代后期随着计算机技术的飞速发展逐步开发出应 用于三维地质建模的计算机软件。美国DGI公司开发的 EarthVision软件是较早的大型建模软件,目前已经有多种大 型建模软件被广泛的应用于三维地质建模工作,其中比较某种 的有RMS、GoCad、Petrel等。 ? 目前应用最为广泛,发展前景也最为良好的是Schlumberger公 司的Petrel。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/6813578180.html,

地质体三维建模方法与技术指南

内容简介 本书系统分析了目前国内外地质体三维模拟技术和应用软件开发的现状,由此提出了不同领域地质体 三维建模的数据需求、技术流程和主要建模软件的数据接口;详细阐述了Micmmine、surpac、Mapgis、3D-Grid等三维地质体模拟软件在矿山、地下水、城市地质等领域的应用实践和示范工作,以及提交的相 应三维模型成果;并对今后如何展开相关工作提出了建议。 本书可作为开展三维地质建模工作的指导用书,同时亦可作为地质及相关专业学生的专业参考书。 【节选】 (一)地下水三维地质建模所需数据类型 在地下水三维地质建模中,会涉及的地质现象主要有:地貌(或地形)、地层、褶 皱、断裂、透镜体及侵人体等,为刻画这些地质现象,就需要用到地表数字高程模型数据 (DEM)、遥感影像数据、地理信息数据、钻孔数据及剖面数据等。具体来说,为刻画三 维模型中的各种地质现象,需要的相关数据包括以下几种: 1.地表数字高程模型(DEM)数据 地表数学高程模型数据用于生成三维地质结构模型顶面(地表面),此部分数据可以 从测绘主管部门获取或向国家测绘局基础地理信息中心购买,从基础地理信息中心购买的 数据属于标准数据,数据以ARCINFO数据格式存放。DEM数据比例尺有多种,其中,全 国的1:25万数据库在空间上包含816幅地形图数据,覆盖整个国土范围,国外部分沿国 界外延25公里采集数据。地貌统一在TERLK层中存放,包括等高线、等深线、冲沟等, DEM等高线的等高距,在全国范围内共分40 m、50 m、100 m三种,使用时可参照等分 布图确定。对于标准数据,可以根据需要进行数据格式转换、比例变换、投影变换等多种 处理。 另外,如果不能获取现成的DEM数据,也可以自己使用专门的地理信息系统软件用 地形图生产。即把纸质地形图数字化及几何纠正校准,然后进行高程信息的提取——对等 高线进行屏幕矢量跟踪并对等高线标赋高程值,同时编辑、检查、拼接以生成各种拓扑关 系,最后用软件进行内插值、裁剪生成DEM数据。 2.遥感影像数据

4 项目建设技术路线与三维建模方案

4 项目建设技术路线与三维建模方案

朝阳区数字化三维仿真模拟城市管理系统 建设方案

版本控制 修改记录说明

1.概述 1.1.项目建设背景 “数字城市”是城市信息化发展的方向,是数字地球的一部分,三维地理信息是“数字城市”的重要基础空间信息。三维城市的建立能够全方位地、直观地给人们提供有关城市的各种具有真实感的场景信息,并可以以第一人称的身份进入城市,感受到与实地观察相似的体验感。 随着二十一世纪的互联网技术、计算机技术、3S(GIS/RS/GPS)技术、虚拟现实、航空与航天技术等的飞速发展,给地理信息技术手段带来前所未有的变革,利用高分辨率卫星影像以及航空像片,通过对影像的平面、高程、结构、色彩等的数字化处理,按照统一坐标无缝拼接而成可以迅速建立基于真实影象的“三维数字城市”,人们可以直观的从三维城市上判读处山川、河流、楼宇、道路。借助传统平面地图的概念,叠加空间矢量数据,地物兴趣点数据、以及三维模型数据形成可视化“三维数字”城市展示系统。 与传统二维地图相比,“三维数字城市”展示系统突破平面地图对空间描述二维化、三维空间尺度感差、没有要素结构与纹理信息等诸多限制,通过对真实地形、地物、建筑的数字化三维模拟和三维表达,提供给使用者一个与真实生活环境一样的三维城市环境。通过数字化三维仿真模拟城市的实现对城市的管理,把传统的限于二维的城市管理范围扩展到了三维甚至多维的管理范畴,为城市建设、政务管理、企业信息发布与公众查询提供多维的、可持续发展的信息化服务,将大大提高城市整体信息化管理和经营管理水平,并有利于提高公众参与城市管理的积极性和参与性。 1.2.项目建设目标 以先进的技术手段,在三维仿真模拟城市场景中实现朝阳辖区单位、人口、部件、事件、社区绿化等相关信息的管理,进一步提高朝阳区政府城市管理水平,提高居民参与城市管理的积极性。另一方面,能够很好的展现数字朝阳的建设成果。最终为建设和谐朝阳提供技术保障,为数字奥运做出贡献。

地质体三维建模方法与技术指南

地质体三维建模方法与技术 指南 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

内容简介 本书系统分析了目前国内外地质体三维模拟技术和应用软件开发的现状,由此提出了不同领域地质体 三维建模的数据需求、技术流程和主要建模软件的数据接口;详细阐述了Micmmine、surpac、Mapgis、 3D-Grid等三维地质体模拟软件在矿山、地下水、城市地质等领域的应用实践和示范工作,以及提交的相 应三维模型成果;并对今后如何展开相关工作提出了建议。 本书可作为开展三维地质建模工作的指导用书,同时亦可作为地质及相关专业学生的专业参考书。 【节选】 (一)地下水三维地质建模所需数据类型 在地下水三维地质建模中,会涉及的地质现象主要有:地貌(或地形)、地层、褶 皱、断裂、透镜体及侵人体等,为刻画这些地质现象,就需要用到地表数字高程模型数据(DEM)、遥感影像数据、地理信息数据、钻孔数据及剖面数据等。具体来说,为刻画三 维模型中的各种地质现象,需要的相关数据包括以下几种: 1.地表数字高程模型(DEM)数据 地表数学高程模型数据用于生成三维地质结构模型顶面(地表面),此部分数据可以 从测绘主管部门获取或向国家测绘局基础地理信息中心购买,从基础地理信息中心购买的 数据属于标准数据,数据以ARCINFO数据格式存放。DEM数据比例尺有多种,其中,全

国的1:25万数据库在空间上包含816幅地形图数据,覆盖整个国土范围,国外部分沿国界外延25公里采集数据。地貌统一在TERLK层中存放,包括等高线、等深线、冲沟等,DEM等高线的等高距,在全国范围内共分40 m、50 m、100 m三种,使用时可参照等分布图确定。对于标准数据,可以根据需要进行数据格式转换、比例变换、投影变换等多种处理。 另外,如果不能获取现成的DEM数据,也可以自己使用专门的地理信息系统软件用 地形图生产。即把纸质地形图数字化及几何纠正校准,然后进行高程信息的提取——对等高线进行屏幕矢量跟踪并对等高线标赋高程值,同时编辑、检查、拼接以生成各种拓扑关系,最后用软件进行内插值、裁剪生成DEM数据。 2.遥感影像数据 遥感影像是地球空问数据最直接、时效性最强的数据形式,模型的表面需要用影像数 据进行贴图,来表达真实的地表景观。由于影像数据的容量大,为了能够快速、高质量地进行显示,需要根据显示的范围、显示的比例选择分辨率最合适的影像进行纹理映射。一个模型可以有不同分辨率的多套卫星/航测影像数据,某些影像数据有可能只局限于某个局部。因此,在显示时,所有的影像数据都需要读入内存,以实现多分辨显示。这就需要在技术上做一些处理,比如图像格式的转换,根据显示分辨率和比例的不同,转换为不同分辨率的图像如BMP、TIFF、GIF等图像格式。 对遥感影像数据的处理主要包括对遥感影像的几何精纠正和不同分辨率影像数据的融合。一般使用遥感处理软件ERDAS和ENVI软件进行处理。遥感影像几何精纠正的目的

S-GeMs软件基本原理及三维地质建模应用

目录 第一章 S-Gems软件简介及建模工区概况 (2) 1.1 S-GeMs软件的基本概况 (2) 1.2 建模工区及地质背景简介 (2) 第二章数据的导入及基本分析 (3) 2.1 数据的格式及导入操作 (3) 2.2 数据分析及处理(正态变换) (4) 第三章各变量的变差函数分析 (8) 3.1 变差函数的基本原理 (8) 3.2 S-GeMs软件变差函数分析模块及基本操作简介 (8) 3.3 变差函数分析结果 (10) 第四章三维沉积相建模 (14) 4.1 三维沉积相确定性建模(指示克里金方法) (14) 4.2 三维沉积相随机建模(序贯指示模拟方法) (15) 第五章三维储层参数建模 (20) 5.1 协同克里金方法(cokriging)三维储层参数确定性建模 (20) 5.2 协同序贯高斯模拟方法(cosgsim)三维储层参数随机建模 (22) 第六章 S-GeMs软件建模的优越性与局限性 (26) 6.1 S-GeMs软件建模的优越性 (26) 6.2 S-GeMs软件建模的局限性(约束条件) (26) 参考文献 (27)

S-GeMs软件基本原理与三维地质建模应用 ——《地质与地球物理软件应用》课程报告第一章 S-Gems软件简介及建模工区概况 1.1 S-GeMs软件的基本概况 S-GeMS(Stanford Geostatistical Modeling Software)是Nicolas Remy在斯坦福大学油藏预测中心(SCRF:The Stanford Center for Reservoir Forecasting)开发的一套开源地质建模及地质统计学研究软件。2004年首次发布,其后进行了更新和升级。该软件包括传统的经典地质统计学算法和新近发展的多点地质统计学方法。由于操作简单、源代码公开,而且有二次开发的接口,因此日益成为继Gslib之后又一重要的地质统计学研究和应用软件。 1.2 建模工区及地质背景简介 已知建模工区的范围沿x、y、z方向为1000×1300×20米。三维网格数为100×130×10,网格大小为10×10×2米。主要沉积的砂体为发育在泛滥平原泥岩上的河道砂体,且河道砂体近东西向展布。另有部分河道发育决口扇砂体。工区第6网格层的沉积相切片如图1所示。 图1-1 建模工区中部沉积相分布图 本次实验共提供350口井的井数据,所有350井均为直井。垂向上每口井分为10个小层,每层厚度为2米,如图 2 所示。

精细三维建模技术规定

精细三维建模技术规定

2011年10月31日

引用文件 本技术规定参考了以下标准及规范。 1)《基础地理信息三维模型生产规范(征求意见稿)》; 2)《基础地理信息三维模型产品规范(征求意见稿)》; 3)《基础地理信息三维模型数据库规范(征求意见稿)》; 4)《城市三维建模技术规范》(CJJ/T 157-2010); 5)《数字测绘成果质量检查与验收》(GB/T 18316-2008); 6)《测绘技术设计规定》(CH/T 1004-2005)。

1.工艺流程设计 项目实施的工艺主要包括四个主要阶段,分别是:项目准备阶段、基础数据整理阶段、三维数据生产阶段和三维效果整合阶段。项目准备阶段主要是成立项目组,并确定项目目标以及分配任务。基础数据整理阶段包括现有基础资料收集整理、管理细分与区域分级、建模基础资料的采集和补充和基础资料完备性检查四个步骤。三维数据生产阶段包括除三维模型数据生产、基础三维模型数据质检和基础三维模型数据成果抽样检查三个步骤。三维效果整合阶段包括三维模型效果整合与实时浏览和三维模型效果质检两个步骤。综合各阶段共为10个步骤,详见图2工艺流程图。 1.1.成立项目组并确定项目目标 根据合同要求,成立项目组负责项目实施。召开项目启动会议,要求项目组成员必须参加,明确项目要求,统一工作思路和项目目标,并明确现势性时点、工作分工并分配任务。 1.2.现有基础资料收集整理 该步骤主要收集项目实施需要的基础资料,包括实施标准,基础数据等。实施标准为项目相关的技术标准,作为项目实施的依据。基础数据为项目实施需要的基础测绘成果,主要包括大比例尺数字地形图,数字正射影像图,数字高程模型等。 1.3.管理细分与区域分级 该步骤主要分为两部分工作,一部分是管理单元和建模单元的划分,另一部分是区域的分级划分。建模单元和管理单元的划分依据为《基础地理信息三维模型生产规范(征求意见稿)》,根据要求对建模范围进行二级划分,分别为管理单元和建模单元,并根据标准中要求进行命名。区域分级的依据为《基础地理信息三维模型产品规范(征求意见稿)》,将整个区域分为四级,其中I、II、III、IV四级要求依次降低。

三维地质建模关键技术及其在水电工程中的应用

三维地质建模关键技术及其在水电工程中的应用范孝锋许国王长海陆瑞年许正权 (广西电力工业勘察设计研究院南宁530023) 【摘要】在实践的基础上,探讨三维地质建模技术在水电工程中的作用和意 义。利用GOCAD软件,准确构造地形面,进行岩层面、结构面建模,生成钻 孔和剖面,并最终建立网格/实体模型,为水电工程地质分析和工程设计提 供可视化参考。 【关键词】三维建模实体模型地质水电工程 GOCAD 1 引言 在水利水电工程中,地质体的稳定性是工程设计关注的重点之一。在地质体稳定性分析系统中引入三维地质建模,可以提高综合分析效果。一个好的三维地质模型是进行力学分析的基础,它对工程决策和工程建设具有重要意义。 在虚拟的三维地质环境中,地质体的显示可以更为直观、清晰、准确,更有助于地质师深刻地认识和分析工程区地质体的形成、演变和发展;对于进一步揭示隐伏地质构造的几何形态,判断断层运动规律,弄清地层接触关系,深入研究地学规律,都有启发和帮助。特别地,三维地质模型还可以提高地质师的空间想象力;对于设计人员认识地质空间关系将更为直观,设计更为合理。 GOCAD软件具有强大的三维建模、可视化、地质解译和分析的功能。它既可以进行表面建模,又可以进行实体建模;既可以设计空间几何对象,也可以表现空间属性分布。并且,该软件的空间分析功能强大,信息表现方式灵活多样。因此,将GOCAD引入水电工程地质三维建模,符合水电工程实际。

2 三维地质建模关键技术 所谓三维地质建模,是运用计算机技术,在虚拟的三维环境下,将空间信息管理、地质解译、空间分析和预测、地学统计、实体内容分析以及图形可视化等工具结合起来的综合性技术,也是计算机技术在工程地质应用中的一个前沿课题。它将工程地质的分析由平面延伸到立体,由二维发展到三维的一个飞跃。三维地质模型的准确程度,对于工程分析、判断和决策影响极大。因此,需要应用成熟的三维建模软件,建立高精度的三维地质模型。 2.1 构造地形面 工程区域的工程测量是严格按工程精度要求进行的,测量数据可以满足建模精度要求。测量数据为三维坐标点文件,基本格式为:测点编号,x,y,z。 图1 基于point构造的地形面 这样的数据文件可以直接读入GOCAD,成为一个点集对象,用于生成地形;当无测量原始数据点文件时,可由地形图提取等高线,以dxf文件导入GOCAD,得到一个曲线对象,按一定精度在这些等高线上提取数据点,生成点集,作为生成地形面的控制点。由点集生成一个曲线对象,作为地形面的边界。最后由点集和边界曲线离散平滑内插(DSI)生成地形曲面。GOCAD提供了由point和curve 两种方式生成地形图,基于point生成的地形面,速度快,但精度较低;而基于

三维地质建模的几点认识

严格的讲,地质建模已经不能算是很新的技术,在国外,地质建模已经发展了几十年,中国自上世纪80年代末开始引入EsrthVision以来,也已经发展了快二十年。但回顾一下地质建模在油田开发中的作用,我们不难发现,目前的三维地质建模主要有两个作用:一个是为数值模拟提供基础模型,第二是用于油藏的整体评价,例如油藏勘探开发的风险评价。但三维地质建模一直没能深入到油田的生产中。就像许多搞生产的人评价的:好看,但不中用。 在另一方面,油田开发地质研究工作中,目前还没有十分有效、先进的技术。油藏地质研究还主要依靠手工编制的厚度图、油藏剖面图、连通图等。十分需要新的技术的补充与提高。在整个开发阶段地质研究工作中,唯一可以称为新技术的就是三维地质建模。因此三维地质建模完全可以在开发阶段地质研究中起到更为突出的作用。实际上,三维地质建模应该,也完全可以成为油藏开发阶段油藏精细描述和生产措施部署的核心技术。 自上世纪五十年代马特龙把地质统计学引用地质研究以来,地质统计学就成了地质建模的核心。但是几十年的实际应用也表明,单纯依靠地质统计学是不能把三维地质建模更深入的引入到油田的开发生产中的。 如何更多的发挥三维地质建模技术的作用,真正使其成为油藏开发阶段油藏精细描述和生产措施部署的核心技术是每一个从事三维地质建模工作的人必须经常琢磨的问题。 三维地质模型中的不确定性: 由于地质体的复杂性,三维地质模型中的不确定性是固有的,不可回避的。面对不确定性,擅长地质统计学的专家更喜欢从统计的角度对不确定性进行分析和评价。这在油藏整体评价阶段是正确的,但当我们把三维地质模型直接应用于生产的时候,又是远远不够的。例如从统计学的角度,可以利用随机模拟技术得到多个实现,通过多个实现的分析,对不确定性进行分析和评价。但对于生产来说,我们有可能根据多个实现钻探多套开发井网吗?生产需要的是一个确定的模型。因为生产方案只能有一个,生产措施方案只能有一套,钻探井位也只能有一套。我们也可以计算出一个最大概率的模型做为最终的结果。但这个最大概率模型就真的更接近于地质体的实际状况吗?有生产经验的人都可以很容易的给与否定的回答。因此要想让地质模型能够被直接从事油藏开发生产的技术人员所接受,更合理的出路是想办法(通过更为充分的基础地质研究和基础数据的应用)尽量降低模型的不确定性。从而为生产方案提供一个更为合理可靠的(而不是多个等概率的)参考依据。 要想做到这一点,出路显然不在于更为合理的计算方法和计算参数上,而是更为充分合理的应用地质、物探基础数据。 三维地质建模与基础地质研究的结合 若要将三维地质建模技术直接应用到油藏开发生产,必须也能够与油藏地质研究相结合。

三维地质建模

三维地质建模技术在定边油田中的应用 petrel软件 自上个世纪九十年代,建模软件诞生以来,建模软件得到了不断的发展。从刚开始的简单构造建模到现在的精细、复杂的建模,产生了很多建模软件。根据本设计要求,我选择斯伦贝谢公司的petrel 2009建模软件(如下图4-1)。 图4-1 petrel 软件模型建立界面 Petrel是一种三维可视化建模软件,在众多建模软件中它在国际上占主导有十分重要的地位。Petrel软件在地质建模方面得到了比较广泛的应用,如地震解释、构造建模、岩相建模、油藏属性建模和油藏数值模拟显示等,因而使从事地质工作者可以获得更多的信息,为石油工业做出更大的贡献。同时为了满足油藏和地质工作者定位要求,Petrel中也采用了一些先进技术:有效的构造建模技术、精确的三维网格化技术、沉积相模型建立技术和虚拟现实技术等。 Petrel软件能够给开发工作提供详细的信息来使开发成本最大化地降低。它不仅能使人们对油藏内部细节的认识得到提高,而且能够准确描述透视油藏属性的空间分布、计算储层地质储量、估算开发的风险、设计井位和钻眼轨迹,发现隐蔽性油藏和剩余油藏[26]。同样重要的是,Petrel使管理者不再局限于传统的方式来做开发决策,他们根据软件所提供的数字模拟及虚拟现实技术和专业人员一起通过现实资料与虚拟技术结合,认真研究目的层的储油物性和岩性,运用不同思路的模型建立和模拟结果,降低开发风险优化生产方式。Petrel软件能够为地

质模型的精细研究提供更快、更精确和更经济等优良的特性。 储层地质建模的步骤 储层三维建模过程一般包括以下环节:数据准备、构造模型、储层属性建模、图形显示,具体的储层建模的基本步骤(见图4-2)。基本数据一般有: (1)坐标数据:包括井位坐标、地震测网坐标等; (2)分层数据:包括各井的砂组、油组、小层、砂体的划分对比数据,地震资料解释的层面数据等; (3)断层数据:包括断层位置、断点、断距等; (4)储层数据:储层数据是储层建模中最重要的数据,其中包括井眼储层数据、地震储层数据和试井储层数据。 图4-2 储层建模流程图

倾斜摄影与三维实景建模技术设计书

倾斜摄影与三维实景建模技术设计书

倾斜摄影与三维实景建模 技术设计书 承担单位:主要设计人: 审核意见: 审核人:设计负责人: (注册测绘师盖章)(注册测绘师盖章)年月日年月日 批准单位: 审批意见: 审批人: 年月日

目录 1.概述 (1) 1.1项目来源和目的 (1) 1.2项目作业范围和内容 (1) 2.作业区自然地理概况与已有资料情况 (1) 2.1作业区自然地理概况 (1) 2.2已有资料情况 (2) 3.引用文件 (3) 4.成果主要技术指标和规格 (3) 4.1测绘基准 (3) 4.2基本精度指标 (4) 4.3成果数据格式 (4) 5.设计方案 (4) 5.1软、硬件环境及其要求 (4) 5.1.1硬件环境及其要求 (4) 5.1.2软件环境及其要求 (4) 5.2作业技术流程 (4) 5.3各工序的作业方法、技术指标和要求 (5) 5.3.1准备工作 (5) 5.3.2航空摄影 (6) 5.3.2.1航高设计要求 (6) 5.3.2.2航线布设、飞行质量及影像质量要求 (6) 5.3.2.3飞行控制要求 (7) 5.3.3像控测量 (8) 5.3.3.1像控布设 (8) 5.3.3.2像控点判刺 (8) 5.3.3.3像控点联测 (8) 5.3.4空中三角测量 (9) 5.3.5全自动三维建模 (9)

5.4管理体系保证措施 (10) 5.4.1质量保证措施 (10) 5.4.2环境、职业健康安全保证措施 (10) 5.5上交和归档成果及其资料 (11)

倾斜摄影与三维实景建模技术设计书 1.概述 1.1项目来源和目的 2013年8月,丰县被确定为全国第二批智慧城市创建试点县,并启动建设了数字丰县地理空间框架项目。该项目整合更新了多尺度、多分辨率、多类型和多时相的丰县基础地理信息数据体系,构建了丰县地理信息公共服务平台,为“智慧丰县”建设提供了坚实基础。为进一步完善基础地理信息数据,更加直观的辅助决策,丰富丰县国土资源“一张图”管理系统,丰县国土局决定实施丰县国土资源“一张图”管理系统倾斜摄影与三维实景建模项目。受丰县国土局委托,我院承担本项目工作。为规范作业、统一技术要求,保证测绘产品质量符合相应的技术标准,根据国家有关规范,编制本项目技术设计书。 1.2项目作业范围和内容 根据甲方需求对丰县主城区约50平方公里进行倾斜摄影和三维实景模型制作任务。 图1:丰县倾斜摄影范围图 2.作业区自然地理概况与已有资料情况 2.1作业区自然地理概况

gms软件在三维地质建模中的应用

前言 GMS(Groundwater Modeling System)是种综合性的图形界面软件,是一个各种软件于一体的,能够从钻孔到地层结构、从平面到空间、从单元到系统的综合性、系统性、全面性的软件。不仅具有地下水模拟、地下水溶质运移模拟的功能,其在实现地质结构可视化方面功能亦同样突出。经过10多年的发展,GMS软件的功能越来越完善,并在各个领域中取得广泛应用。本文重点介绍了GSM软件在工程地质方面的应用情况,与其他三维地质建模软件对比。对比显示GMS软件在当前广泛应用的三维建模软件软件中,如:GIS、FEFLOW、MOFDFLOW、FFMWATER、MT3DMS、RT3D、SEAM3D、MODPATH、SFFP2D,以其强大的功能明显优于其他三维地质建模软件。在本文最后的工程实例中对3D GMS软件在三维地质建模中的应用有更详尽的阐述。

1三维地质建模基本问题概述 1.1三维地质建模概述 三维地质建模技术在上世纪60年代被国外学者提出,在国外,地质建模已经发展了几十年,中国自上世纪80年代末开始引入EsrthVision以来,也已经发展了快二十年。 近10年来,地学领域将其理解为地理Geography、地质Geology、地球物理Geophysics和大地测量Geodesy等地学相关学科的统称,因其英文名称之前缀均(Geo-)关于三维空间信息的研究与日俱增,形成了两大并行发展的支流:一是三维地理信息系统 (3D GIS),二是三维地学模拟系统(3D Geosciences Modeling System,3D GMS)。真3D地学模拟、地面与地下空间的统一表达、陆地海洋的统一建模、三维拓扑描述、三维空间分析、三维动态地学过程模拟等问题,已成为地学与信息科学的交叉技术前沿和攻关热点。 三维地质建模(3D Geological Modeling)又称为三维地学建模(3D Geoscience Modeling)、三维地质数字化建模等,一般对其过程进行了概括:三维地质建模是指在原始的地质勘探数据基础上,在地质工程师的专家知识和经验指导下经过一系列的解译、修改后,以适当的数据结构建立地质特征的数学模型,通过对实际地质实体对象的几何形态、拓扑信息(地质对象间的关系)和物性三个方面的计算机模拟,由这些对象的各种信息综合形成的一个复杂整体三维模型的过程[1]。 1.2三位地质建模的研究目的和意义 近十几年来,中国经济的高速发展,极大地带动了土木建设领域的发展,大型工程活动数量之多、规模之大、速度之快,举世瞩目,如南水北调、青藏铁路、三峡工程、西气东输、龙滩水电工程、小湾水电工程、锦屏水电工程等。这些巨大型工程所处地区大多地质构造复杂、地质信息众多,给工程场址选择、枢纽布置、地下工程设计与施工,以及灾害防治等方面带来了极大的困难,这些问题的解决必须建立在对有关地质信息全面分析和把握的基础之上。工程勘察部门提交的遥感数据、地形测量数据、现场踏勘资料、地球物理勘探资料、钻孔资料、探槽和探洞资料

城市地质三维建模流程

三维地质结构建模 二,数据分析 1.了解当地情况:根据甲方提供的数据,了解当地的地质情况。特别是当地有断层、 软弱层、夹层等复杂地质体时,要根据文字报告,地质图,剖面图等确定复杂地质 体的范围,大小,以及切割地层的上盘,下盘。 2.确认甲方要求,反馈数据的有效性:在了解了当地的地质情况以后,还要进一步确 定甲方的要求。一般甲方的要求包括:模型要尽量多的利用甲方提供的数据;做出 的模型做切面,切块,要与原数据保持一致;模型的轮廓要满足甲方的要求;特殊 地质体的位置,范围,大小等要满足甲方的要求;模型体内不能有空的部分。另外,不同的客户还会有一些不同的要求。 明确了甲方要求以后,要重新审核一下甲方提供的数据,有异议的地方要尽快给甲方反馈,沟通,以免耽误下一步的工作进程。 3.构想模型:在明确了甲方的要求,并且熟悉了提供的数据之后开始构想模型。主要 包括对地质情况的理解(特别是一些复杂地质体的理解):一般从甲方提供的剖面 图中可以确定在特定区域内地质体的分层情况,同时参考地质图(剖面图)可以确 定一些复杂地质体的分布范围。建模的目的:一般城市地质结构建模分急促和地质 建模,工程地质建模和水文地质建模等等。在建模工作开始之前要确定甲方的目的。 总之,在完成了以上的工作就开始建模了,建模过程中要多思考,与甲方多沟通, 保证模型既精确又美观。 三,确定建模方法 按照方向(城市地质和矿山地质),以项目为例,简单分析几种建模方法,确定用哪种方法构建模型;包括其他平台 五,构建模型 1.基于约束剖面的钻孔建模 基于约束剖面的钻孔建模是根据钻孔和一些二维的约束剖面,来构建三维地质结构 模型的方法。其建模的操作和步骤可大致分为二维操作和三维操作两各部分。 (1)二维操作:二维操作的目的是为后面的三维操作做准备。通过二维系统将甲方提供的原数据转化为可以满足三维系统操作的点面数据。具体包括钻孔文 件(.drl文件)的生成;虚拟钻孔文件(.drl文件)的生成;剖面文件(.sec 文件)的生成;引导剖面(.sec文件)文件的生成;边界剖面(.sec文件) 的生成;剖面的修改和编辑。 a.钻孔文件的生成:理正数据(excel、access)格式的,可以通过二维系统操 作直接生成钻孔(.dll)文件。如果甲方提供的数据是mapgis或者CAD的 剖面图,可以根据剖面图的分层情况编写需要的钻孔文件。 b.虚拟钻孔文件的生成:在建模的过程中,有时我们需要添加一些虚拟的钻 孔来控制地层或者解决尖灭。虚拟钻孔的生成方法:先确定虚拟钻孔的坐 标和所在的剖面——在二维系统中打开剖面图——剖面图输入控制点坐标 完成坐标转换——在剖面图上添加虚拟钻孔——保存虚拟钻孔文件 c.剖面文件(.sec)的生成:一般甲方提供的剖面图多位mapgis或者CAD格 式的。将这些剖面图导入二维系统——剖面编辑——保存成二维剖面—— 编辑多边形,输入多边形属性(x-x-x格式)——给多边形的线赋属性—— 输入控制点坐标转换为三维坐标——另存为sec文件格式 d.引导剖面(.sec)的生成:为了解决地层的尖灭问题,有时需要添加一些引 导剖面。生成引导剖面的步骤:在合适的剖面上添加虚拟钻孔——将虚拟

相关文档
最新文档