高考数学一轮复习 21函数及其表示课时作业 理 新人教B

合集下载

高考数学一轮复习 21函数的概念及其表示课时作业 理

高考数学一轮复习 21函数的概念及其表示课时作业 理

第1讲 函数的概念及其表示基础巩固题组(建议用时:40分钟 )1.给出下列各组函数:①f(u)=1+u 1-u ,g(v)=1+v 1-v;②f(x)=x2,g(x)=x ;③f(x)=1-x2,g(x)=1-|x|(x ∈[-1,1];④f(x)=x +1·x -1,g(x)=x2-1.其中表示相同函数的是________(填序号).解析 ①中两函数定义域、对应法则均相同,表示相同函数;②中对应法则不同;③中对应法则不同;④中定义域不同.答案 ①2.下列集合A 到集合B 的对应f 中:①A ={-1,0,1},B ={-1,0,1},f :A 中的数平方;②A ={0,1},B ={-1,0,1},f :A 中的数开方;③A =Z ,B =Q ,f :A 中的数取倒数;④A =R ,B ={正实数},f :A 中的数取绝对值.其中是从集合A 到集合B 的函数的为________(填序号).解析 其中②,由于1的开方数不唯一,因此f 不是A 到B 的函数;其中③,A 中的元素0在B 中没有对应元素;其中④,A 中的元素0在B 中没有对应元素.答案 ①3.(2014·郑州模拟)函数f(x)=3x21-x+lg(3x +1)的定义域是________. 解析 由⎩⎪⎨⎪⎧ 1-x >0,3x +1>0,得⎩⎪⎨⎪⎧ x <1,x >-13,所以定义域为⎝⎛⎭⎫-13,1. 答案 ⎝⎛⎭⎫-13,1 4.设函数f(x)=2x +3,g(x +2)=f(x),则g(x)的表达式是________.解析 ∵g(x +2)=f(x)=2x +3=2(x +2)-1,∴g(x)=2x -1.答案 g(x)=2x -15.(2015·无锡检测)已知函数f(x)=⎩⎪⎨⎪⎧2x ,x <0,f x -1+1,x≥0,则f(2 014)=________. 解析 f(2 014)=f(2 013)+1=…=f(0)+2 014=f(-1)+2 015=2-1+2 015=4 0312. 答案 4 0312 6.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x21+x2,则f(x)的解析式为________. 解析 令t =1-x 1+x ,由此得x =1-t 1+t(t≠-1), 所以f(t)=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t 1+t2, 从而f(x)的解析式为f(x)=2x 1+x2(x≠-1). 答案 f(x)=2x 1+x2(x≠-1) 7.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为________(填序号).①y =⎣⎡⎦⎤x 10;②y =⎣⎡⎦⎤x +310;③y =⎣⎡⎦⎤x +410;④y =⎣⎡⎦⎤x +510. 解析 设x =10m +α(0≤α≤9,m ,α∈N),当0≤α≤6时,⎣⎡⎦⎤x +310=⎣⎡⎦⎤m +α+310=m =⎣⎡⎦⎤x 10, 当6<α≤9时,⎣⎡⎦⎤x +310=⎣⎡⎦⎤m +α+310=m +1=⎣⎡⎦⎤x 10+1. 答案 ②8.(2015·武汉一模)若函数f(x)=2-1的定义域为R ,则a 的取值范围是________. 解析 由题意知2x2+2ax -a -1≥0恒成立.∴x2+2ax -a≥0恒成立,∴Δ=4a2+4a≤0,∴-1≤a≤0.答案 [-1,0]二、解答题9.已知f(x)是二次函数,若f(0)=0,且f(x +1)=f(x)+x +1.求函数f(x)的解析式. 解 设f(x)=ax2+bx +c(a≠0),又f(0)=0,∴c =0,即f(x)=ax2+bx.又f(x +1)=f(x)+x +1.∴a(x +1)2+b(x +1)=ax2+(b +1)x +1.∴(2a +b)x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,解得⎩⎨⎧ a =12,b =12.∴f(x)=12x2+12x. 10. 根据如图所示的函数y =f(x)的图象,写出函数的解析式.解 当-3≤x <-1时,函数y =f(x)的图象是一条线段(右端点除外),设f(x)=ax +b(a≠0),将点(-3,1),(-1,-2)代入,可得f(x)=-32x -72; 当-1≤x <1时,同理可设f(x)=cx +d(c≠0),将点(-1,-2),(1,1)代入,可得f(x)=32x -12; 当1≤x <2时,f(x)=1.所以f(x)=⎩⎪⎨⎪⎧ -32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.能力提升题组(建议用时:25分钟) 1.设f(x)=lg 2+x 2-x,则f ⎝⎛⎭⎫x 2+f ⎝⎛⎭⎫2x 的定义域为________. 解析 ∵2+x 2-x>0,∴-2<x <2,∴-2<x 2<2且-2<2x <2,解得-4<x <-1或1<x <4, 定义域为(-4,-1)∪(1,4).答案 (-4,-1)∪(1,4)2.(2014·扬州检测)设函数f(x)=⎩⎪⎨⎪⎧31-x ,x≤1,1-log3x ,x >1,则满足f(x)≤3的x 的取值范围是________.解析 依题意,不等式f(x)≤3等价于①⎩⎪⎨⎪⎧ x≤1,31-x≤3或 ②⎩⎪⎨⎪⎧x >1,1-log3x≤3.解①得0≤x≤1,解②得x >1. 因此,满足f(x)≤3的x 的取值范围是[0,1]∪(1,+∞)=[0,+∞).答案 [0,+∞)3.(2015·杭州质检)函数f(x)=ln 1|x|+1的值域是________. 解析 依题意,因为 |x|+1≥1,则0<1|x|+1≤1, ln 1|x|+1≤ln 1=0,即函数的值域是(-∞,0]. 答案 (-∞,0]4.某人开汽车沿一条直线以60 km/h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h 后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x(km)表示为时间t(h)(从A 地出发开始)的函数,并画出函数的图象.解 x =⎩⎪⎨⎪⎧ 60t ,0≤t≤52,150,52<t ≤72,150-50⎝⎛⎭⎫t -72,72<t ≤132.其图象如图所示.。

高考数学一轮复习 21课时作业

高考数学一轮复习 21课时作业

高考数学一轮复习 21课时作业一、选择题1.下列表格中的x 与y 能构成函数的是( ) A.B.C.D.答案 C解析 A 中0既是非负数又是非正数;B 中0又是偶数;D 中自然数也是整数,也是有理数.2.函数y =11-1x的定义域是( )A .{x |x ∈R 且x ≠0}B .{x |x ∈R 且x ≠1}C .{x |x ∈R 且x ≠0且x ≠1}D .{x |x ∈R 且x ≠0或x ≠1} 答案 C解析 由⎩⎪⎨⎪⎧x ≠01-1x≠0得⎩⎪⎨⎪⎧x ≠0x ≠1,故选C3.已知集合M ={-1,1,2,4},N ={0,1,2},给出下列四个对应法则:①y =x 2,②y =x+1,③y =2x,④y =log 2|x |,其中能构成从M 到N 的函数的是( )A .①B .②C .③D .④答案 D解析 对于①、②,M 中的2,4两元素在N 中找不到象与之对应,对于③,M 中的-1,2,4在N 中没有象与之对应.故选D.4.(08·江西)若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2xx -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1)答案 B解析 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2x -1≠0,解得0≤x <1,故定义域为[0,1),选B.5.定义x ⊙y =3x-y ,则a ⊙(a ⊙a )等于( ) A .-a B .3aC .aD .-3a答案 C解析 由题意知:a ⊙a =3a-a ,则a ⊙(a ⊙a )=3a-(a ⊙a )=3a-(3a-a )=a .选C. 6.(2011·湖北八校联考)设定义在R 上的函数y =f (x )满足f (x )·f (x +2)=12,且f (2010)=2,则f (0)等于( )A .12B .6C .3D .2答案 B解析 ∵f (x +2)=12f x,∴f (x +4)=12fx +2=f (x ).∴f (x )的周期为4,f (2010)=f (4×502+2)=f (2)=2.又f (2)=12f 0,∴f (0)=122=6. 7.(07·安徽)图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)答案 B解析 当x ∈[0,1]时,y =32x =32-32(1-x )=32-32|x -1|;当x ∈[1,2]时,y =32-01-2(x -2)=-32x +3=32-32(x -1)=32-32|x -1|.因此,图中所示的图象所表示的函数的解析式为y=32-32|x-1|.8.定义运算a ⊕b =⎩⎪⎨⎪⎧a a ≤b ba >b,则函数f (x )=1⊕2x的图象是( )答案 A解析 f (x )=1⊕2x=⎩⎪⎨⎪⎧11≤2x2x1>2x=⎩⎪⎨⎪⎧1x ≥02xx <0,结合图象,选A.9.(2011·沧州七校联考)已知蟑螂活动在如图所示的平行四边形OABC 内,现有一种利用声波消灭蟑螂的机器,工作时,所发出的圆弧型声波DFE 从坐标原点O 向外传播,若D 是DFE 弧与x 轴的交点,设OD =x (0≤x ≤a ),圆弧型声波DFE 在传播过程中扫过平行四边形OABC 的面积为y (图中阴影部分),则函数y =f (x )的图象大致是( )答案 D解析 本题主要考查应用函数知识解决实际问题的能力.由图象知,函数先增得快,后增得慢,故选D.二、填空题10.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=________.答案 2解析 由图及题中已知可得f (x )=⎩⎪⎨⎪⎧-2x -2,0≤x ≤2x -2,2<x ≤6,f (0)=4,f (f (0))=f (4)=2.11.下图中建立了集合P 中元素与集合M 中元素的对应f .其中为映射的对应是________.答案 (2)(5)解析 (1)中:P 中元素-3在M 中没有象.(3)中,P 中元素2在M 中有两个不同的元素与之对应.(4)中,P 中元素1在M 中有两个不同的元素与之对应.12.(07·北京)已知函数f (x ),g (x )分别由下表给出x 1 2 3 f (x )231x 1 2 3 g (x )321则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 答案 1,213.(2011·江南十校)已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2000x -100,x >2000,则f [f (2010)]=________.答案 -1解析 由f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2000x -100,x >2000, 得f (2010)=2010-100=1910,f (1910)=2cos(π3×1910)=2cos(636π+2π3)=2cos 2π3=-1,故f [f (2010)]=-1.三、解答题14.一个圆柱形容器的底面直径为d cm ,高度为h cm ,现以S cm 3/s 的速度向容器内注入某种溶液,求容器内溶液高度y (cm)与注入时间t (s)的函数关系式及定义域.答案 y =4Sπd 2·t t ∈[0,πhd 24S]解析 依题意,容器内溶液每秒升高4Sπd 2cm.于是y =4S πd 2·t ,又注满容器所需时间h ÷(4Sπd 2)=πhd 24S (秒).故函数的定义域是t ∈[0,πhd 24S].15.(2011·沧州七校联考)下图是一个电子元件在处理数据时的流程图:(1)试确定y 与x 的函数关系式; (2)求f (-3),f (1)的值; (3)若f (x )=16,求x 的值.答案 (1)y =⎩⎪⎨⎪⎧ x +22,x ≥1,x 2+2,x <1.(2)11,9 (3)2或-14解析 (1)y =⎩⎪⎨⎪⎧x +22,x ≥1,x 2+2,x <1.(2)f (-3)=(-3)2+2=11;f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去).若x<1,则x2+2=16,解得x=14(舍去)或x=-14.综上,可得x=2或x=-14.16.函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式.答案(1)-2 (2)f(x)=x2+x-2解析用赋值法(1)由已知f(x+y)-f(y)=(x+2y+1)·x.令x=1,y=0,得f(1)-f(0)=2.又∵f(1)=0,∴f(0)=-2.(2)令y=0,得f(x)-f(0)=(x+1)x,∴f(x)=x2+x-2.。

21新高考数学B人教A一轮复习课时规范练21函数y 含解析

21新高考数学B人教A一轮复习课时规范练21函数y 含解析

1课时规范练21 函数y=A sin (ωx+φ)的图象及应用基础巩固组1.(2019宁夏银川模拟)要得到y=sin x 函数的图象,只需将函数y=sin (2x +π6)的图象上所有的点的( )A.横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位长度 B.横坐标伸长到原来的2倍(纵坐标不变),再向左平移π个单位长度C.横坐标缩短到原来的12倍(纵坐标不变),再向右平移π6个单位长度D.横坐标缩短到原来的1倍(纵坐标不变),再向左平移π个单位长度2.已知函数f (x )=cos (ωx +π3)(ω>0)的最小正周期为π,则该函数的图象( )A.关于点(π3,0)对称 B.关于直线x=π4对称C.关于点(π4,0)对称 D.关于直线x=π3对称3.将函数y=sin (12x −π3)的图象向右平移π2个单位,再将所得的图象所有点的横坐标缩短为原来的12(纵坐标不变),则所得图象对应的函数的一个单调递增区间为( )A.[-π12,13π12]B.[13π12,25π12]C.[π12,13π12]D.[7π12,19π12]4.(2019浙江杭州西湖区模拟)据调查,某商品一年内出厂价按月呈f(x)=A sin(ωx+φ)+bA>0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,根据以上条件可确定f(x)的解析式为()A.f(x)=2sin(π4x-π4)+6(1≤x≤12,x∈N*)B.f(x)=9sin(π4x-π4)(1≤x≤12,x∈N*)C.f(x)=2√2sinπ4x+6(1≤x≤12,x∈N*)D.f(x)=2sin(π4x+π4)+6(1≤x≤12,x∈N*)5.(2019天津,理7)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且gπ4=√2,则f3π8=()A.-2B.-√2C.√2D.26.将函数f(x)=2sin(ωx+π4)(ω>0)的图象向右平移π4ω个单位长度后得到g(x)的图象,若函数g(x)在区间-π6,π3上为增函数,则ω的最大值为()2A.3B.2C.32D.547.(多选)对于函数f(x)=sin x+√3cos x,下列说法中不正确的是()A.函数f(x)的图象关于点(π6,0)对称B.存在α∈(0,π3),使f(α)=1C.存在α∈(0,π3),使函数f(x+α)的图象关于y轴对称D.存在α∈(0,π3),使f(x+α)=f(x+3α)恒成立8.已知α∈(0,π2),若sin2α+sin 2α=1,则tan α=;sin 2α=.9.(2019山西大同模拟)若函数f(x)=cos 2x-2cos x在区间-π2,a上的最大值是-1,则a的取值范围是.10.(2019湖南郴州期末)如图为函数f(x)=sin(ωx+φ) A>0,ω>0,|φ|<π2的图象.(1)求函数f(x)=A sin(ωx+φ)的解析式;(2)若x∈[0,π2]时,函数y=[f(x)]2-2f(x)-m有零点,求实数m的取值范围.3综合提升组11.(2019湖南衡阳二模)已知函数f(x)=sin x-cos x,将f(x)的图象向右平移π2个单位,得到函数g(x)的图象,则函数y=f(x)g(x)x∈-π12,π6的值域为()45A.[12,1]B.[-1,-12]C.[-1,-√32]D.[√32,1]12.将函数f (x )=2sin (2x +π6)的图象向左平移π12个单位,再向下平移1个单位,得到g (x )的图象,若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的最大值为( )A.55π12 B.53π12 C.25π6 D.17π413.已知函数f (x )=cos(2x+φ)的图象关于点(2π3,0)对称,若将函数f (x )的图象向右平移m (m>0)个单位长度后得到一个偶函数的图象,则实数m 的最小值为 .14.(2019上海徐汇区期中)某同学用“五点法”画函数f (x )=A sin(ωx+φ)ω>0,|φ|<π2在某一周期内的图象时,列表并填入的部分数据如表:-(1)请写出上表的x 1,x 2,y 2,及函数f (x )的解析式;(2)将函数f (x )的图象向右平移2π3个单位,再将所得图象上各点的横坐标缩小为原来的12,纵坐标不变,得到函数g (x )的图象,求g (x )的解析式及y=lo g 12[g (x )-√3]的单调递增区间;(3)在(2)的条件下,若F(x)=g2(x)+√3a·g(x)-1在x∈(0,2 019π)上恰有奇数个零点,求实数a与零点个数3n的值.6创新应用组15.(2019吉林梅河口市模拟)函数f(x)=√3sin(ωx+φ)(ω>0)的部分图象,如图所示,∠ABC=120°,则ω等于()A.π12B.π6C.π4D.π316.(2019湖南郴州期末)定义运算|a bc d|=ad-bc,如果f(x)=|sinx-12cosx√5|,并且不等式f(x)<m对任意实数x恒成立,则实数m的取值范围是.参考答案课时规范练21函数y=A sin(ωx+φ)的图象及应用71.A只需将函数y=sin(2x+π6)的图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),可得y=sin(x+π6)函数的图象;再向右平移π6个单位长度,可得y=sin x函数的图象,故选A.2.D由题意知ω=2,函数f(x)的对称轴满足2x+π3=kπ(k∈Z),解得x=kπ2−π6(k∈Z),当k=1时,x=π3,故选D.3.C将y=sin(12x-π3)的图象向右平移π2个单位,得到y=sin12(x-π2)−π3=sin(12x-7π12)的图象,再将所得的图象所有点的横坐标缩短为原来的12倍(纵坐标不变),所得的图象对应的解析式为y=sin(x-7π12 ),令2kπ-π2≤x-7π12≤2kπ+π2,k∈Z,解得2kπ+π12≤x≤2kπ+13π12,k∈Z,当k=0时,所得图象对应的函数的一个单调递增区间为π12,13π12,故选C.4.A由3月份达到最高价8千元,7月份价格最低为4千元,所以当x=3时,函数有最大值为8;当x=7时,函数有最小值4,即{A+b=8,-A+b=4,解得A=2,b=6.又函数f(x)的周期为T=2(7-3)=8,由T=2πω,得ω=2πT=π4,且x=3时,函数f(x)有最大值,所以3ω+φ=3×π4+φ=π2+2kπ,k∈Z;解得φ=-π4+2kπ,k∈Z;89又|φ|<π2,取k=0,得φ=-π4, 所以f (x )=2sin (π4x -π4)+6. 故选A .5.C 已知函数为奇函数,且|φ|<π,故φ=0.f (x )=A sin ωx.∴g (x )=A sin x.∵g (x )的最小正周期为2π,∴2π=2π,∴ω=1.∴g (x )=A sin x. 由g π4=√2,得A sin π4=√2,∴A=2.∴f (x )=2sin 2x.∴f3π8=2sin 3π4=√2.故选C .6.C 由题意知,g (x )=2sin ωx-π4π+π4=2sin ωx ,由对称性,得π3−(-π3)≤12×2πω,即ω≤32,则ω的最大值为32.7.ABD 函数f (x )=sin x+√3cos x=2sin (x +π3),对于A:函数f (x )=2sin (x +π3),当x=π6时,2sin (π6+π3)=2,不能得到函数f (x )的图象关于点(π6,0)对称,故A 错误;对于B:ω∈(0,π3),可得α+π3∈π3,2π3,f (α)∈(√3,2],不存在f (α)=1,故B 错误;对于C:函数f(x+α)的对称轴方程为x+α+π3=π2+kπ,可得x=kπ+π6-α,当k=0,α=π6时,可得图象关于y轴对称,故C正确;对于D:f(x+α)=f(x+3α)说明2α是函数的周期,函数f(x)的周期为2π,故α=π,所以不存在ω∈(0,π3),使f(x+α)=f(x+3α)恒成立,故D错误.故选ABD.8.1 245由sin2α+sin 2α=1,得sin2α+2sinαcosαsin2α+cos2α=1,所以tan2α+2tanαtan2α+1=1,解得tan α=12.sin2α=2sinαcosαsin2α+cos2α=2tanαtan2α+1=2×12(12)2+1=45.9.(-π2,π2]f(x)=2cos2x-2cos x-1,令cos x=t,则f(t)=2t2-2t-1,当t=0或t=1时,f(t)=-1,函数开口向上,即t∈[0,1],有最大值-1,∴cos x∈[0,1],则x∈-π2,π2.∴a的取值范围是-π2,π2.10.解(1)由图象可知T2=2π3−π6=π2,则T=π,ω=2,∵2×π6+φ=2kπ,k∈Z,及|φ|<π2,∴φ=-π3,而f(0)=A sin(-π3)=-1,A>0,∴A=2√33,∴f(x)=2√33sin(2x-π3).10(2)∵x∈[0,π2],∴2x-π3∈[-π3,2π3],∴f(x)∈[-1,2√33],又函数y=[f(x)]2-2f(x)-m有零点,∴方程m=[f(x)]2-2f(x)有实根,∵f(x)∈[-1,2√33],∴[f(x)-1]2-1∈[-1,3],因此,实数m的取值范围为[-1,3].11.A将函数f(x)=sin x-cos x=√2sin x-π4的图象向右平移π2个单位,得到函数g (x )=√2sin(x -3π4)的图象,则函数y=f(x)g(x)=√2sin x-π4·√2sin(x-3π4)=-2sin x-π4cos x-π4=-sin(2x-π2)=cos 2x.∵x∈[-π12,π6],∴2x∈-π6,π3,∴cos 2x∈[12,1],故选A.12.A由题意得g(x)=2sin2x+π12+π6-1,故g(x)max=1,g(x)min=-3,由g(x1)g(x2)=9,得{g(x1)=-3, g(x2)=-3,由g(x)=2sin(2x+π)-1=-3得2x+π=2kπ-π,k∈Z,即x=kπ-5π,k∈Z,由x1,x2∈[-2π,2π],得x1,x2=-17π12,-5π12,7π12,19π12.故当x1=19π12,x2=-17π12时,2x1-x2最大,即2x1-x2=55π12,故选A.1113.π12∵函数的图象关于点(2π3,0)对称,∴2×2π3+φ=kπ+π2,k∈Z,解得φ=kπ-5π6,k∈Z,∴f(x)=cos(2x+kπ-5π6),k∈Z.∵f(x)的图象平移后得函数y=cos(2x-2m+kπ-5π6)(k∈Z)为偶函数,∴-2m+kπ-5π=k1π(k∈Z,k1∈Z),m=(k-k1)π−5π.∵m>0,∴m的最小正值为π12,此时k-k1=1(k∈Z,k1∈Z).14.解(1)由表格根据五点法作图的规律,可得π3+2π3=x1-π3=x2-x1=10π3-x2,解得x1=4π3,x2=7π3,A=√3,y2=-√3,T=2πω=10π3+2π3=4π,得ω=12,即函数f(x)的解析式为f(x)=√3sin(12x+4π3).(2)将函数f(x)=√3sin12x+4π3的图象向右平移2π3个单位,可得y=√3sin12x-π3+4π3=-√3sin12x的图象;再将所得图象上各点的横坐标缩小为原来的12,纵坐标不变,得到函数g(x)=√3sin x的图象.即得y=lo g12g(x)-√32=lo g12√3sin x-√32,由√3sin x-√32>0,可得sin x>12,要求函数的单调递增区间,即求y=sin x的减区间,而y=sin x的减区间为π2+2kπ,5π6+2kπ(k∈Z),1213故y=lo g 12g (x )-√32的单调递增区间为π2+2k π,5π6+2k π(k ∈Z ). (3)F (x )=g 2(x )+√3a·g (x )-1=3sin 2x+a sin x-1,令F (x )=0,则a sin x=1-3sin 2x ,显然当sin x=0时,F (x )不存在零点,因此只需考虑sin x ≠0时,F (x )的零点情况, 令t=sin x (sin x ≠0且0<x ≤2π),则t ∈[-1,0)∪(0,1],a=1-3t 2t =1t -3t ,则函数y=1t -3t 在[-1,0)和(0,1]上单调递减,且t=1时,y=2,当t=-1时,y=-2,∴当y ∈(-2,2)时,y=t 与y=1-3t 有两个交点,此时方程a sin x=1-3sin 2x 存在4个实根, 当y ∈(-∞,-2)∪(2,+∞)时,y=t 与y=1t -3t 有一个交点,此时方程a sin x=1-3sin 2x 存在2个实根,当y=2或y=-2时,y=t 与y=1-3t 有两个交点,此时方程a sin x=1-3sin 2x 存在3个实根. ∵F (x )=g 2(x )+√33a·g (x )-1在x ∈(0,2 019π)上恰有奇数个零点,∴当x ∈(2 018π,2 019π)时,F (x )只可能存在2个零点,因此只有a=2时符合条件,∴x ∈(0,2 019π)时F (x )的零点为2 018×32+2=3 029个.15.B 由∠ABC=120°,点B 的纵坐标为√3,得B 与A 横坐标之差为3,则T=4×3=12,即2πω=12,得ω=π6.故选B .16.(3,+∞)f(x)=|sinx-12cosx√5|=√5sin x+2cos x=3sin(x+θ),θ为辅助角,由不等式f(x)<m对任意实数x恒成立,可得m>f(x)max,由f(x)的最大值为3,可得m>3.14。

2021年高考数学大一轮复习 2.1函数及其表示课时作业 理

2021年高考数学大一轮复习 2.1函数及其表示课时作业 理

2021年高考数学大一轮复习 2.1函数及其表示课时作业 理一、选择题1.(xx·江西卷)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:由题意可知x 2-x >0,解得x <0或x >1. 故函数f (x )的定义域为(-∞,0)∪(1,+∞). 答案:C2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x+ax ,x >1,若f (f (1))=4a ,则实数a 等于( )A.12B.43 C .2D .4解析:∵f (1)=2,∴f (f (1))=f (2)=4+2a =4a ,解得a =2.故选C. 答案:C3.设函数f (x )=⎩⎪⎨⎪⎧x 3,0≤x <5,f x -5,x ≥5,那么f (2 013)=( )A .27B .9C .3D .1解析:根据题意,当x ≥5时,f (x )=f (x -5), ∴f (2 013)=f (3),而当0≤x <5时,f (x )=x 3, ∴f (3)=33=27,故选A. 答案:A4.(xx·江西卷)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ),若f (g (1))=1,则a =( ) A .1B .2C .3D .-1解析:由题意可知f (g (1))=1=50,得g (1)=0, 则a -1=0,即a =1.故选A. 答案:A5.若函数f (x )=x 2+ax +1的定义域为R ,则实数a 的取值范围是( ) A .(-2,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2]解析:由题意知,对于任意x ∈R ,x 2+ax +1≥0恒成立,则Δ=a 2-4×1×1=a 2-4≤0,解得-2≤a ≤2,故选D.答案:D6.(xx·福建卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)解析:由题意,可得函数图象如下:所以f (x )不是偶函数,不是增函数,不是周期函数,其值域为[-1,+∞).故选D. 答案:D 二、填空题7.设函数f (x )满足f (x )=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f (2)=________. 解析:由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12·log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.答案:328.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域是________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2] 三、解答题10.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x .∴a =1,b =-1.∴f (x )=x 2-x +1. (2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.11.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100,单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解:(1)行车所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =2 340x+1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610, 当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.当x =1810时,这次行车的总费用最低,最低费用为2610元.1.(xx·浙江卷)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9解析:由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11.所以f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得 0<-1+6-11+c ≤3,即6<c ≤9,故选C. 答案:C2.(xx·四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧ -4x 2+2,x ,-1≤x <0,0≤x <1,则f (32)=________.解析:f (32)=f (-12)=-4×14+2=1.答案:13.(xx·浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0-x 2,x ≥0若f (f (a ))≤2,则实数a 的取值范围是________.解析:由题意⎩⎪⎨⎪⎧f a <0f2a +f a ≤2或⎩⎪⎨⎪⎧f a≥0-f2a ≤2,解得f (a )≥-2,即⎩⎪⎨⎪⎧a <0a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0-a 2≥-2,解得a ≤ 2.答案:a ≤ 24.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x ); (2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34,∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.故x 的取值范围为⎣⎢⎡⎭⎪⎫716,12.D20732 50FC 僼 239231 993F 餿32703 7FBF 羿28153 6DF9 淹27707 6C3B 氻; 26452 6754 杔+35744 8BA0 讠。

人教版2020届高考一轮数学(理)复习:课时作业21 函数y=Asin(ωx+φ)的图象及应用(含答案)

人教版2020届高考一轮数学(理)复习:课时作业21 函数y=Asin(ωx+φ)的图象及应用(含答案)

课时作业21 函数y =A sin(ωx +φ)的图象及应用1.(2018·天津卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减解析:将y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数为y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π10+π5=sin2x ,令2k π-π2≤2x ≤2k π+π2(k ∈Z ), 得k π-π4≤x ≤k π+π4(k ∈Z ).所以y =sin2x 的递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ),当k =1时,y =sin2x 在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增,故选A .2.(2019·清华大学自主招生能力测试)已知函数f (x )=sin x +3cos x (x ∈R ),先将y =f (x )的图象上所有点的横坐标缩短到原来的13(纵坐标不变),再将得到的图象上所有的点向右平移θ(θ>0)个单位长度,得到的图象关于y 轴对称,则θ的最小值为( B )A .π9B .5π18C .π3D .2π3解析:f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3, 将其图象上所有点的横坐标缩短到原来的13(纵坐标不变), 得y =2sin ⎝ ⎛⎭⎪⎫3x +π3的图象,再将得到的图象上所有的点向右平移θ(θ>0)个单位长度,得y =2sin ⎣⎢⎡⎦⎥⎤3(x -θ)+π3=2sin ⎝⎛⎭⎪⎫3x -3θ+π3的图象, 由y =2sin ⎝ ⎛⎭⎪⎫3x +π3-3θ的图象关于y 轴对称得π3-3θ=k π+π2(k ∈Z ),即θ=-6k +118π(k ∈Z ).又θ>0,故当k =-1时,θ取得最小值518π,故选B . 3.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( D )A .-34 B .-14 C .-12D .34解析:由题及f (x )的图象可知,△KLM 为等腰直角三角形且∠KML=90°,KL =1,所以A =12,T =2,因为T =2πω,所以ω=π, 又因为f (x )是偶函数,故φ=π2+k π,k ∈Z , 由0<φ<π知φ=π2,因此f (x )的解析式为f (x )=12sin ⎝⎛⎭⎪⎫πx +π2,所以f ⎝ ⎛⎭⎪⎫16=12sin ⎝ ⎛⎭⎪⎫π6+π2=34. 4.(2019·河南顶级名校联考)将函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3图象上所有的点向右平移5π12个单位长度后得到函数g (x )的图象,则下列说法不正确的是( B )A .直线x =π4为g (x )图象的对称轴B .g (x )在⎝ ⎛⎭⎪⎫-5π8,-π4上单调递减,且g (x )为偶函数 C .g (x )在⎝ ⎛⎭⎪⎫-9π8,-7π8上单调递增,且g (x )为奇函数D .点⎝ ⎛⎭⎪⎫π2,0是g (x )图象的对称中心 解析:由题意,g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -5π12+π3,则g (x )=sin2x .令2x =k π+π2(k ∈Z ),得x =k π2+π4(k ∈Z ),故A 中说法正确. 当x ∈⎝ ⎛⎭⎪⎫-5π8,-π4时,2x ∈⎝ ⎛⎭⎪⎫-5π4,-π2,g (x )单调递减,但g (x )为奇函数,故B 中说法不正确.当x ∈⎝⎛⎭⎪⎫-9π8,-7π8时,2x ∈⎝⎛⎭⎪⎫-9π4,-7π4,g (x )单调递增,又g (x )为奇函数,故C 中说法正确.g (x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ),故D 中说法正确.5.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( B )A .12B .32C .22D .1解析:由题图可知,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,ω=2,又-π6+π32=π12,所以f (x )的图象过点⎝⎛⎭⎪⎫π12,1,即sin ⎝ ⎛⎭⎪⎫2×π12+φ=1, 得π6+φ=π2+2k π,k ∈Z , 即φ=π3+2k π,k ∈Z , 又|φ|<π2,可得φ=π3, 所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 由f (x 1)=f (x 2),x 1,x 2∈⎝⎛⎭⎪⎫-π6,π3,可得x 1+x 2=-π6+π3=π6,所以f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫2×π6+π3=sin 2π3=32.6.将函数f (x )=2cos2x 的图象向右平移π6个单位得到函数g (x )的图象,若函数g (x )在区间 ⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤2a ,7π6上均单调递增,则实数a的取值范围是( A )A .⎣⎢⎡⎦⎥⎤π3,π2B .⎣⎢⎡⎦⎥⎤π6,π2C .⎣⎢⎡⎦⎥⎤π6,π3D .⎣⎢⎡⎦⎥⎤π4,3π8解析:易得g (x )=2cos ⎝ ⎛⎭⎪⎫2x -π3, 由2k π-π≤2x -π3≤2k π, 得k π-π3≤x ≤k π+π6(k ∈Z ),即函数g (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).当k =0时,函数的增区间为⎣⎢⎡⎦⎥⎤-π3,π6,当k =1时,函数的增区间为⎣⎢⎡⎦⎥⎤2π3,7π6.又函数g (x )在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤2a ,7π6上均单调递增, 所以⎩⎪⎨⎪⎧0<a 3≤π6,2π3≤2a <7π6,解得π3≤a ≤π2.7.(2019·河南天一联考)已知函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的部分图象如图所示,则φ=-π3 .解析:由T 4=1112π-23π=π4,得T =π, 又知T =2πω,∴ω=2,∴f (x )=2sin(2x +φ).又知f ⎝⎛⎭⎪⎫1112π=-2,∴2sin ⎝⎛⎭⎪⎫116π+φ=-2,即sin ⎝ ⎛⎭⎪⎫116π+φ=-1. ∴116π+φ=2k π+32π(k ∈Z ),∴φ=2k π-π3(k ∈Z ), 又∵-π2<φ<0,∴φ=-π3.8.已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的实数根,则m 的取值范围是1≤m <2__.解析:方程2sin 2x -3sin2x +m -1=0⇔m =2sin ⎝⎛⎭⎪⎫2x +π6,要使原方程在⎣⎢⎡⎦⎥⎤0,π2上有两个不同实根,函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6与y =m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同交点,如图,需满足1≤m <2.9.(2019·百校联盟质检)已知函数f (x )=M sin(ωx +φ)⎝ ⎛⎭⎪⎫M >0,ω>0,|φ|<π2的部分图象如图所示,其中A (2,3)(点A 为图象的一个最高点),B ⎝ ⎛⎭⎪⎫-52,0,则函数f (x )=3sin ⎝ ⎛⎭⎪⎫π3x -π6 .解析:依题意,M =3,34T =2+52=92,则T =6,故ω=2πT =π3.又函数过点A (2,3),即3sin ⎝ ⎛⎭⎪⎫2×π3+φ=3,得2π3+φ=π2+2k π(k ∈Z ),则φ=-π6+2k π(k ∈Z ).因为|φ|<π2,所以φ=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π3x -π6. 10.(2019·太原模拟)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为π__.解析:f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0).由2sin ⎝⎛⎭⎪⎫ωx +π6=1,得sin ⎝ ⎛⎭⎪⎫ωx +π6=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+5π6(k ∈Z ). 令k =0,得ωx 1+π6=π6,ωx 2+π6=5π6, ∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2. 故f (x )的最小正周期T =2π2=π.11.(2019·黑龙江哈尔滨六中月考)已知函数f (x )= cos ⎝⎛⎭⎪⎫2x -π3+2sin ⎝⎛⎭⎪⎫x -π4sin ⎝⎛⎭⎪⎫x +π4.(1)求函数f (x )的单调递增区间;(2)将y =f (x )的图象向左平移π3个单位长度,再将得到的图象横坐标变为原来的2倍(纵坐标不变),得到y =g (x )的图象.若函数y =g (x )在区间⎝ ⎛⎭⎪⎫π2,13π4上的图象与直线y =a 有三个交点,求实数a 的取值范围.解:(1)f (x )=cos ⎝⎛⎭⎪⎫2x -π3+2sin ⎝⎛⎭⎪⎫x -π4sin ⎝⎛⎭⎪⎫x +π4=12cos2x +32sin2x +(sin x -cos x )(sin x +cos x ) =12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z , 得k π-π6≤x ≤k π+π3,k ∈Z .所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)将f (x )的图象向左平移π3个单位长度,得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 的图象,再将得到的图象的横坐标变为原来的2倍(纵坐标不变),得g (x )=cos x 的图象.作函数g (x )=cos x 在区间⎝ ⎛⎭⎪⎫π2,13π4上的图象,及直线y =A .根据图象知,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-22,0.12.如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路OC ,另一侧修建一条休闲大道,它的前一段OD 是函数y =k x (k >0)图象的一部分,后一段DBC 是函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2,x ∈[4,8]的图象,图象的最高点为B ⎝ ⎛⎭⎪⎫5,833,DF ⊥OC ,垂足为F .(1)求函数y =A sin(ωx +φ)的解析式;(2)若在草坪内修建如图所示的儿童游乐园,即矩形PMFE ,问点P 落在曲线OD 上何处时,儿童游乐园的面积最大?解:(1)对于函数y =A sin(ωx +φ),由图象可知,A =833,ω=2πT =2π4(8-5)=π6,将B ⎝ ⎛⎭⎪⎫5,833代入y =833sin ⎝ ⎛⎭⎪⎫π6x +φ中, 可得sin ⎝⎛⎭⎪⎫5π6+φ=1,故5π6+φ=2k π+π2(k ∈Z ),φ=2k π-π3(k ∈Z ). 因为|φ|<π2,所以φ=-π3. 故y =833sin ⎝⎛⎭⎪⎫π6x -π3,x ∈[4,8].(2)在y =833sin ⎝⎛⎭⎪⎫π6x -π3中,令x =4,得y =4,故D (4,4),从而得OD 对应的函数为y =2x (0≤x ≤4).设点P ⎝ ⎛⎭⎪⎫t 24,t (0≤t ≤4),则矩形PMFE 的面积S =⎝ ⎛⎭⎪⎫4-t 24t (0≤t ≤4).因为S ′=4-3t 24,由S ′=0,得t =433,当t ∈⎝ ⎛⎭⎪⎫0,433时,S ′>0,S 单调递增; 当t ∈⎝ ⎛⎭⎪⎫433,4时,S ′<0,S 单调递减.所以当t =433时,S 最大,此时点P 的坐标为⎝ ⎛⎭⎪⎫43,433.13.(2019·石家庄质检)已知函数f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点⎝ ⎛⎭⎪⎫π3,32对称,则m 的值可能为( D )A .π6B .π2C .7π6D .7π12解析:依题意得⎩⎨⎧A +B =332,-A +B =-32,解得⎩⎨⎧A =3,B =32,T 2=πω=2π3-π6=π2,故ω=2,则f (x )=3sin(2x +φ)+32.又f ⎝ ⎛⎭⎪⎫π6=3sin ⎝ ⎛⎭⎪⎫π3+φ+32=332, 故π3+φ=π2+2k π(k ∈Z ),即φ=π6+2k π(k ∈Z ). 因为|φ|<π2,故φ=π6, 所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6+32.将函数f (x )的图象向左平移m 个单位长度后得到g (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6+2m +32的图象, 又函数g (x )的图象关于点⎝ ⎛⎭⎪⎫π3,32对称,即h (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6+2m 的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,故3sin ⎝ ⎛⎭⎪⎫2π3+π6+2m =0,即5π6+2m =k π(k ∈Z ), 故m =k π2-5π12(k ∈Z ).令k =2,则m =7π12.14.函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在同一个周期内,当x =π4时,y 取得最大值1,当x =7π12时,y 取得最小值-1.若函数f (x )满足方程f (x )=a (0<a <1),则在[0,2π]内的所有实数根之和为( A )A .11π2B .9π2C .7π2D .5π2解析:由题意可得2πω=2×⎝ ⎛⎭⎪⎫7π12-π4,所以ω=3.又sin ⎝⎛⎭⎪⎫3π4+φ=1,所以3π4+φ=2k π+π2(k ∈Z ),所以φ=2k π-π4(k ∈Z ). 又|φ|<π2,所以φ=-π4, 所以函数f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4.由于f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4的最小正周期为2π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4在[0,2π]内恰有3个周期,所以sin ⎝ ⎛⎭⎪⎫3x -π4=a (0<a <1)在[0,2π]内有6个实数根,由小到大依次记为x 1,x 2,x 3,x 4,x 5,x 6,令3x -π4=2k π+π2,k ∈Z ,可得x =π4+2k π3,(k ∈Z ).依据f (x )图象的对称性可得x 1+x 2=2×π4=π2,x 3+x 4=2×⎝ ⎛⎭⎪⎫π4+2π3=11π6,x 5+x 6=2×⎝ ⎛⎭⎪⎫π4+4π3=19π6,故所有实数之和为x 1+x 2+…+x 6=π2+11π6+19π6=11π2,故选A . 15.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,g (x )=m cos ⎝ ⎛⎭⎪⎫2x -π6-2m +3(m >0),若对∀x 1∈⎣⎢⎡⎦⎥⎤0,π4,∃x 2∈⎣⎢⎡⎦⎥⎤0,π4,使得g (x 1)=f (x 2)成立,则实数m 的取值范围是⎣⎢⎡⎦⎥⎤1,43 .解析:当x ∈⎣⎢⎡⎦⎥⎤0,π4时,2x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6, sin ⎝⎛⎭⎪⎫2x +π3∈⎣⎢⎡⎦⎥⎤12,1,∴当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3的值域为[1,2]. 当x ∈⎣⎢⎡⎦⎥⎤0,π4时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,π3,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数g (x )=m cos ⎝ ⎛⎭⎪⎫2x -π6-2m +3(m >0)的值域为⎣⎢⎡⎦⎥⎤-3m 2+3,-m +3. ∵对∀x 1∈⎣⎢⎡⎦⎥⎤0,π4,∃x 2∈⎣⎢⎡⎦⎥⎤0,π4, 使得g (x 1)=f (x 2)成立,∴⎩⎨⎧-3m 2+3≥1,-m +3≤2,解得1≤m ≤43,即m ∈⎣⎢⎡⎦⎥⎤1,43.16.(2019·福建厦门一模)已知函数f (x )=M sin(ωx +φ)⎝ ⎛⎭⎪⎫M >0,ω>0,|φ|<π2的图象与x 轴的两个相邻交点是A (0,0),B (6,0),C 是函数f (x )图象的一个最高点.a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,满足(a +c )·(sin C -sin A )=(a +b )sin B .(1)求函数f (x )的解析式;(2)将函数f (x )的图象向左平移1个单位后,纵坐标不变,横坐标伸长为原来的π3倍,得到函数g (x )的图象,求函数g (x )的单调递减区间.解:(1)∵函数f (x )=M sin(ωx +φ)⎝ ⎛⎭⎪⎫M >0,ω>0,|φ|<π2的图象与x 轴的两个相邻交点是A (0,0),B (6,0), ∴sin φ=0,∴φ=0,且T 2=12·2πω=6, ∴ω=π6,∴f (x )=M sin π6x .∵C 是函数f (x )图象的一个最高点,a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,满足(a +c )(sin C -sin A )=(a +b )sin B , ∴(a +c )(c -a )=(a +b )b , 整理可得a 2+b 2-c 22ab =-12, 即cos C =-12,∴C =2π3. 由题意可得CA =CB ,∴A =π6, 设AB 的中点为D ,连接CD ,则CD ⊥AB ,且点D (3,0),点C (3,M ), 根据tan A =tan π6=33=CD AD =M3, 得M =3,∴f (x )=3sin π6x .(2)将函数f (x )=3sin π6x 的图象向左平移1个单位,纵坐标不变,可得y =3sin ⎣⎢⎡⎦⎥⎤π6(x +1)=3sin ⎝ ⎛⎭⎪⎫π6x +π6的图象;再把横坐标伸长为原来的π3倍,得到函数 g (x )=3sin ⎝ ⎛⎭⎪⎫3π·π6x +π6=3sin ⎝ ⎛⎭⎪⎫12x +π6的图象. 令2k π+π2≤x 2+π6≤2k π+3π2,k ∈Z . 得4k π+2π3≤x ≤4k π+8π3,k ∈Z ,故函数g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤4k π+2π3,4k π+8π3,k ∈Z .。

高考一轮复习课时作业(人教版):2-1函数及其表示word版含答案

高考一轮复习课时作业(人教版):2-1函数及其表示word版含答案

2-1函数及其表示A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.下列函数中,与函数y =1x 有相同定义域的是( ).A .f (x )=ln xB .f (x )=1x C .f (x )=|x | D .f (x )=e x解析 由y =1x可得定义域是{x |x >0}.f (x )=ln x 的定义域是{x |x >0};f (x )=1x 的定义域是{x |x ≠0};f (x )=|x |的定义域是x ∈R ;f (x )=e x 定义域是x ∈R .故选A. 答案 A2.(★)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ).解析 (筛选法)根据函数的定义,观察得出选项B. 答案 B【点评】 本题解题利用的是筛选法,即根据题设条件筛选出正确选项,这种方法在选择题中经常应用.3.(2010·陕西) 已知函数f (x )=⎩⎨⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12B.45 C .2 D .9 解析 f (f (0))=f (2)=4+2a 由已知4a =4+2a ,解得a =2. 答案 C4.已知函数f (x )的图象是两条线段(如图,不含端点),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=( ).A .-13 B.13 C .-23D.23解析 由图象知,f (x )=⎩⎨⎧x +1 (-1<x <0),x -1 (0<x <1).∴f ⎝ ⎛⎭⎪⎫13=13-1=-23, ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13. 答案 B5.(2011·天津)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ 解析 当(x 2-2)-(x -x 2)≤1,即-1≤x ≤32时,f (x )=x 2-2; 当x 2-2-(x -x 2)>1,即x <-1或x >32时,f (x )=x -x 2,∴f (x )=⎩⎪⎨⎪⎧x 2-2 ⎝ ⎛⎭⎪⎫-1≤x ≤32,x -x 2⎝ ⎛⎭⎪⎫x <-1或x >32,f (x )的图象如图所示,c ≤-2或-1<c <-34.答案 B二、填空题(每小题4分,共12分)6.设函数f (x )=|2x -1|+x +3,则f (-2)=________;若f (x )≤5,则x 的取值范围是________.解析 f (-2)=|2×(-2)-1|+(-2)+3=6,|2x -1|+x +3≤5⇔|2x -1|≤2-x ⇔x -2≤2x -1≤2-x ⇔⎩⎨⎧2x -1≥x -2,2x -1≤2-x ,∴-1≤x ≤1.答案 6 -1≤x ≤17.已知函数f (x )、g (x )分别由下表给出:则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 解析 g (1)=3 f [g (1)]=1 g [f (1)]=3g (2)=2 f [g (2)]=3 g [f (2)]=1 g (3)=1 f [g (3)]=1 g [f (3)]=3因此满足f (g (x ))>g (f (x ))的x =2. 答案 1 28.若函数f (x )= 的定义域为R ,则a 的取值范围为________. 解析 ∵y = 的定义域为R , ∴对一切x ∈R 都有2x 2+2ax -a ≥1恒成立,即x 2+2ax -a ≥0恒成立.∴Δ≤0成立,即4a 2+4a ≤0, ∴-1≤a ≤0. 答案 [-1,0] 三、解答题(共23分)9.(11分)求下列函数的定义域: (1)f (x )=lg (4-x )x -3; (2)y =25-x 2-lg cos x ; (3)y =lg(x -1)+lgx +1x -1+19-x. 解 (1)⎩⎨⎧4-x >0x -3≠0,⇒x <4且x ≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎨⎧25-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2,k ∈Z ,故所求定义域为⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,5.(3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎨⎧x >1,x >1,x <9或x <-1,解得1<x <9.故该函数的定义域为(1,9).10.(12分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )= 1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N .解(1)M ={x |2x -3>0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32, N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1-2x -1≥0=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -3x -1≥0={x |x ≥3,或x <1}; (2)M ∩N ={x |x ≥3},M ∪N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1或x >32. B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·济南模拟)如下图,是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( ).解析 据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D 选项符合条件. 答案 D2.(★)(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( ). A .75,25 B .75,16 C .60,25D .60,16解析 (回顾检验法)∵c A=15,故A >4,则有c2=30,解得c =60,A =16,将c=60,A =16代入解析式检验知正确.故选D. 答案 D【点评】 解决分段函数的关键在于“对号入座”,解出结果后代入对应解析式检验是否正确.二、填空题(每小题4分,共8分) 3.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________. 解析 据题意可得f [f (x )]=11x +1+1,若使函数有意义只需⎩⎪⎨⎪⎧x +1≠0,1x +1+1≠0,解得x ≠-1且x ≠-2,故函数的定义域为{x |x ≠-1且x ≠-2}. 答案 {x |x ≠-1,且x ≠-2}4.(2011·四川)函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题: ①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是________.(写出所有真命题的编号)解析 对①,f (x )=x 2,则f (-1)=f (1),此时-1≠1,则f (x )=x 2不是单函数,①错;对②,当x 1,x 2∈A ,f (x 1)=f (x 2)时有x 1=x 2,与x 1≠x 2时,f (x 1)≠f (x 2)互为逆否命题,②正确;对③,若b ∈B ,b 有两个原象时.不妨设为a 1,a 2可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;对④,f (x )=x 2在(0,+∞)上是单调递增函数,但f (x )=x 2在R 上就不是单函数,④错误;综上可知②③正确. 答案 ②③三、解答题(共22分)5.(10分)已知f (x )=x 2-1,g (x )=⎩⎨⎧x -1, x >0,2-x , x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式.解 (1)g (2)=1,f [g (2)]=f (1)=0. f (2)=3,g [f (2)]=g (3)=2. (2)当x >0时,f [g (x )]=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f [g (x )]=f (2-x )=(2-x )2-1=x 2-4x +3.即f [g (x )]=⎩⎨⎧x 2-2x ,x >0,x 2-4x +3,x <0.g [f (x )]=⎩⎨⎧x 2-2,x <-1,或x >1,3-x 2,-1<x <1.6.(12分)(2012·唐山一中月考)已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值为1,且f (x )+g (x )为奇函数,求函数f (x )的表达式. 解 设f (x )=ax 2+bx +c (a ≠0), 则f (x )+g (x )=(a -1)x 2+bx +c -3, 又f (x )+g (x )为奇函数,∴a =1,c =3. ∴f (x )=x 2+bx +3,对称轴x =-b 2.当-b2≥2,即b ≤-4时,f (x )在[-1,2]上为减函数, ∴f (x )的最小值为f (2)=4+2b +3=1. ∴b =-3.∴此时无解.当-1<-b2<2,即-4<b <2时, f (x )min =f ⎝ ⎛⎭⎪⎫-b 2=3-b 24=1,∴b =±2 2.∴b =-22,此时f (x )=x 2-22x +3,当-b2≤-1,即b ≥2时,f (x )在[-1,2]上为增函数, ∴f (x )的最小值为f (-1)=4-b =1. ∴b =3.∴f (x )=x 2+3x +3.综上所述,f (x )=x 2-22x +3,或f (x )=x 2+3x +3.。

2024届高考一轮复习数学教案(新人教B版):函数的概念及其表示

§2.1函数的概念及其表示考试要求 1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念给定两个非空实数集A与B,以及对应关系f,如果对于集合A中每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A. 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数.常用结论1.直线x=a与函数y=f(x)的图象至多有1个交点.2.在函数的定义中,非空数集A,B,A即为函数的定义域,值域为B的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )-1,x ≥0,2,x <0的定义域为R .(√)教材改编题1.(多选)下列所给图象是函数图象的是()答案CD 解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D 解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确;y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )x ,x >0,x ,x ≤0,则函数f ()A .3B .-3 C.13D .-13答案C解析由题意可知,f ln 13=-ln 3,所以f f (-ln 3)=e -ln 3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析+1>0,x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,4<x -1<-2,+2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为()A .(1,3]B .(1,2)∪(2,3]C .(1,3)∪(3,+∞)D .(-∞,3)答案B解析-1>0,-1≠1,-x ≥0,所以1<x <2或2<x ≤3,所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg 1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}|12≤x <2C .{x |x >2}|x ≥12答案B 解析要使f (x )=lg 1-x 1+x 有意义,则1-x 1+x>0,即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,1<x -1<1,x -1≥0,解得12≤x <2,所以函数g (x )|12≤x <2题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f x 2+1x2,求f (x )的解析式;(3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f x 2+1x2=-2,∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,=2,a +b =17,=2,=7.∴f(x)的解析式是f(x)=2x+7.(4)(解方程组法)∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f(x-1)=x2+4x-5,则f(x)的解析式是() A.f(x)=x2+6x B.f(x)=x2+8x+7C.f(x)=x2+2x-3D.f(x)=x2+6x-10答案A解析f(x-1)=x2+4x-5,设x-1=t,x=t+1,则f(t)=(t+1)2+4(t+1)-5=t2+6t,故f(x)=x2+6x.(2)若f =x1-x,则f(x)=________.答案1x-1(x≠0且x≠1)解析f(x)=1x1-1x=1x-1(x≠0且x≠1).(3)已知函数f(x)满足f(x)+2f3x,则f(2)等于()A.-3B.3C.-1D.1答案A解析f(x)+2f3x,①则f2f(x)=-3x,②联立①②解得f(x)=-2x-x,则f(2)=-22-2=-3.题型三分段函数例3(1)已知函数f(x)x-1),x>0,ln(x+e)+2,x≤0,则f(2024)的值为() A.-1B.0C.1D.2答案C解析因为f (x )x -1),x >0,ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )x 2-3x +2,x <-1,x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,<-1,a 2-3a +2=4≥-1,a -3=4,解得a =-2或a =5.若f (a )≥2,<-1,a 2-3a +2≥2≥-1,a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )+2,x ≤0,+1x ,x >0,若f (f (a ))=2,则a 等于()A .0或1B .-1或1C .0或-2D .-2或-1答案D 解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )2x ,x >1,2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)-12,+课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是()A .(2,+∞)B .(2,3)C .(3,+∞)D .(2,3)∪(3,+∞)答案D 解析∵f (x )=lg(x -2)+1x -3,-2>0,-3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·北京模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .y =x +1B .y =e xC .y =x 2D .y =|x |答案B 解析对于A ,当x =-1时,由y =x +1得y =0,但0∉B ,故A 错误;对于B ,因为从A ={x |-2<x ≤1}中任取一个元素,通过y =e x 在B ={x |0<x ≤4}中都有唯一的元素与之对应,故B 正确;对于C ,当x =0时,由y =x 2得y =0,但0∉B ,故C 错误;对于D ,当x =0时,由y =|x |得y =0,但0∉B ,故D 错误.3.已知f (x 3)=lg x ,则f (10)的值为()A .1 B.310 C.13 D.1310答案C 解析令x 3=10,则x =1310,∴f (10)=lg 1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h ,注水时间为t ,则下面选项中最符合h 关于t 的函数图象的是()答案A 解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快,由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()-∞,32D.32,+∞答案B解析设1-2x =t ,则t ≥0,x =1-t 22所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x ∞,32.6.已知函数f (x )x 2+2x +3,x ≤2,+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()B.22,C .(1,2]D .(1,2)答案B 解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是22,7.(多选)下列四个函数,定义域和值域相同的是()A .y =-x +1B .133,0,1,0x x y x x⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD 解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x 答案AD 解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义;令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )x ,x <0,x -π),x >0,则f ________.答案12解析由已知得f f f f f =12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析2≤2x ≤2,-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )x +3,x >0,2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13 D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )3,x ≤0,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2 B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,-3≤0,+2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x∈R,用M(x)表示f(x),g(x)中最大者,M(x)={|x|-1,1-x2},若M(n)<1,则实数n 的取值范围是()A.(-2,2)B.(-2,0)∪(0,2)C.[-2,2]D.(-2,2)答案B解析当x≥0时,若x-1≥1-x2,则x≥1,当x<0时,若-x-1≥1-x2,则x≤-1,所以M(x)||-1,x≥1或x≤-1,1-x2,-1<x<1,若M(n)<1,则当-1<n<1时,1-n2<1⇒-n2<0⇒n≠0,即-1<n<0或0<n<1,当n≥1或n≤-1时,|n|-1<1,解得-2<n≤-1或1≤n<2,综上,-2<n<0或0<n<2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F(x)=1,x为有理数,0,x为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是() A.F(F(x))=0B.对任意x∈R,恒有F(x)=F(-x)成立C.任取一个不为0的实数T,F(x+T)=F(x)对任意实数x均成立D.存在三个点A(x1,F(x1)),B(x2,F(x2)),C(x3,F(x3)),使得△ABC为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A-33,0,B(0,1),C33,0△ABC为等边三角形,故D正确.。

高考数学一轮复习2.1函数及其表示课件理新人教B版

(0,4),(2,0),(6,4),则f(1)+f(3)=(
)
x>0时,每一个x的值对应两个不同的y值,因此不是函数图象.故选B.
(2)观察选项中化简后的函数的对应关系及定义域是否和函数y=x相同,易
得答案为B.
(3)由题中函数f(x)的图象可得,f(1)=2,f(3)=1,故f(1)+f(3)=3,故选A.
高考数学一轮复习2.1函数及其表
示课件理新人教B版
知识梳理
考点自测
1.函数与映射的概念




建立在两个 非空数集 A 到
B 的一种确定的对应关系 f,
任意
定 使对于集合 A 中的______
义 一个数 x,在集合 B 中都有
唯一确定
的数 f(x)和它
对应
建立在两个 非空集合 A 到
B 的一种确定的对应关系 f,使
)
(2)函数y=f(x)的图象与直线x=1有两个交点.(
)
(3)定义域相同,值域也相同的两个函数一定是相等函数.(
(4)二次函数y=x2-1的值域可以表示为{y|y=x2-1,x∈R},即为
{y|y≥-1}.(
)
(5)分段函数是由两个或几个函数组成的.(
)
)
关闭
(1)√ (2)× (3)× (4)√ (5)×
①不是同一函数.f1(x)的定义域为{x∈R|x≠0},f2(x)的定义域为R.
②是同一函数,x与y的对应关系完全相同且定义域相同,它们是同一函数
的不同表示方式.
关闭

是同一函数.理由同②.
②③
解析
答案
考点1
考点2
考点3

高考数学总复习 2-1函数及其表示 新人教B版

2-1函数及其表示基础巩固强化1.a 、b 为实数,集合M ={b a,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1 [答案] C[解析] ∵f (x )=x ,∴f (1)=1=a ,若f (b a )=1,则有b a=1,与集合元素的互异性矛盾,∴f (b a)=0,∴b =0,∴a +b =1.2.(文)(2012·江西文,3)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1.则f (f (3))=( )A.15 B .3 C.23 D.139[答案] D[解析] 本题考查分段函数求值问题, 由条件知f (3)=23,f (f (3))=f (23)=(23)2+1=139.(理)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,f x -3 ,x >0,则f (2014)等于( ) A .-1 B .1 C .-3 D .3[答案] C[解析] f (2014)=f (2011)=f (2008)=……=f (1)=f (-2)=2×(-2)+1=-3. 3.若函数f (x )的定义域是[0,4],则函数g (x )=f 2xx的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2)[答案] C[解析] ∵⎩⎪⎨⎪⎧0≤2x ≤4,x ≠0.∴0<x ≤2,故选C.4.已知函数f (x )是奇函数,且定义域为R ,若x >0时,f (x )=x +2,则函数f (x )的解析式为( )A .f (x )=x +2B .f (x )=|x |+2C .f (x )=⎩⎪⎨⎪⎧x +2 x >0x -2 x <0D .f (x )=⎩⎪⎨⎪⎧x +2 x >00 x =0x -2 x <0[答案] D[解析] ∵f (x )为奇函数,且定义域为R , ∴f (0)=0.设x <0,则-x >0,则f (x )=-f (-x )=-[(-x )+2] =x -2.5.(文)函数f (x )=22x-2的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞) C .(-1,+∞) D .(-∞,-1)∪(0,+∞)[答案] D [解析] 1f x=2x -1-1>-1,结合反比例函数的图象可知f (x )∈(-∞,-1)∪(0,+∞).(理)(2011·茂名一模)若函数y =f (x )的值域是[12,3],则函数F (x )=f (x )+1f x 的值域是( )A .[12,3]B .[2,103]C .[52,103]D .[3,103][答案] B[解析] 令t =f (x ),则12≤t ≤3,由函数g (t )=t +1t 在区间[12,1]上是减函数,在[1,3]上是增函数,且g (12)=52,g (1)=2,g (3)=103,可得值域为[2,103],选B.6.若函数f (x )=⎩⎪⎨⎪⎧2xx ≤1,log 12x x >1.则函数y =f (2-x )的图象可以是( )[答案] A[分析] 可依据y =f (-x )与y =f (x )的图象关于y 轴对称,及y =f (2-x )可由y =f (-x )的图象向右平移两个单位得到来求解,也可直接求出y =f (2-x )的解析式取特值验证.[解析] 由函数y =f (x )的图象关于y 轴对称得到y =f (-x )的图象,再把y =f (-x )的图象向右平移2个单位得到y =f (2-x )的图象,故选A.7.(文)函数y =log 2 4-x 的定义域是________. [答案] (-∞,3][解析] 要使函数有意义,应有log 2(4-x )≥0, ∵4-x ≥1,∴x ≤3.(理)(2011·安徽文,13)函数y =16-x -x2的定义域是________.[答案] (-3,2)[解析] 由6-x -x 2>0,得x 2+x -6<0, 即{x |-3<x <2}.8.(文)如果函数f (x )=1-x 21+x 2,那么f (1)+f (2)+…f (2012)+f (12)+f (13)+…+f (12012)的值为________.[答案] 0[解析] 由于f (x )+f (1x )=1-x 21+x +1- 1x 21+ 1x2=1-x 21+x +x 2-1x +1=0,f (1)=0,故该式值为0.(理)规定记号“⊕”表示一种运算,且a ⊕b =ab +a +b +1,其中a 、b 是正实数,已知1⊕k =4,则函数f (x )=k ⊕x 的值域是________.[答案] (2,+∞)[解析] 1⊕k =k +k +2=4,解之得k =1,∴f (x )=x +x +2,由于“⊕”的运算对象是正实数,故x >0,∴f (x )>2. 9.(2011·洛阳模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a 、b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.[答案] 5 [解析] 由0≤4|x |+2-1≤1,即1≤4|x |+2≤2得 0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.[点评] 数对(a ,b )的取值必须能够使得|x |的取值最小值为0,最大值为2,才能满足f (x )的值域为[0,1]的要求.10.(2012·北京海淀期中)某工厂生产某种产品,每日的成本C (单位:元)与日产量x (单位:t)满足函数关系式C =10 000+20x ,每日的销售额R (单位:元)与日产量x 的函数关系式为R =⎩⎪⎨⎪⎧-130x 3+ax 2+290x ,0<x <120,20 400,x ≥120.已知每日的利润y =R -C ,且当x =30时,y =-100. (1)求a 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. [解析] (1)∵当x =30时,y =-100,∴-100=-130×303+a ×302+270×30-10 000,∴a =3.(2)当0<x <120时,y =-130x 3+3x 2+270x -10 000.令y ′=-110x 2+6x +270=0,可得:x 1=90,x 2=-30(舍去),所以当x ∈(0,90)时,原函数是增函数,当x ∈(90,120)时,原函数是减函数. ∴当x =90时,y 取得极大值14 300. 当x ≥120时,y =10 400-20x ≤8 000.所以当日产量为90t 时,每日的利润可以达到最大值14 300元.能力拓展提升11.(文)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x,x ≤0.若f (1)+f (a )=2,则a 的值为( )A .1B .2C .4D .4或1 [答案] C[解析] ∵f (1)=0,∴f (a )=2,∴log 2a =2(a >0)或2a=2(a ≤0),解得a =4或a =1(舍),故选C.(理)函数f (x )=⎩⎪⎨⎪⎧sin πx 2-1<x <0 ,e x -1x ≥0 .若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .1,-22C .-22D .1,22[答案] B [解析] f (1)=1, 当a ≥0时,f (a )=e a -1,∴1+ea -1=2,∴a =1,当-1<a <0时,f (a )=sin(πa 2), ∴1+sin(πa 2)=2, ∴πa 2=π2+2k π(k ∈Z ),∵-1<a <0,∴a =-22,故选B. 12.已知f (x )=⎩⎪⎨⎪⎧3-a x -4a x <1 ,log a x x ≥1 .是(-∞,+∞)上的增函数,那么a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .[35,3)D .(1,3)[答案] D[解析] 解法1:由f (x )在R 上是增函数,∴f (x )在[1,+∞)上单增,由对数函数单调性知a >1,① 又由f (x )在(-∞,1)上单增,∴3-a >0,∴a <3,②又由于f (x )在R 上是增函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最大值3-5a 要小于等于f (x )在[1,+∞)上的最小值0,才能保证单调区间的要求,∴3-5a ≤0,即a ≥35,③由①②③可得1<a <3.解法2:令a 分别等于35、0、1,即可排除A 、B 、C ,故选D.[点评] f (x )在R 上是增函数,a 的取值不仅要保证f (x )在(-∞,1)上和[1,+∞)上都是增函数,还要保证x 1<1,x 2≥1时,有f (x 1)<f (x 2).13.(2012·丽水模拟)函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,若f (x 0)=1,则x 0的值为________.[答案] -1或1[解析] 当x 0≤0时,f (x 0)=2-x 0-1,∵f (x 0)=1,∴2-x 0-1=1,∴2-x 0=2,∴x 0=-1;当x 0>0时,f (x 0)=x 120,∵f (x 0)=1,∴x 120=1,∴x 0=1.综上可得x 0的值为-1或1.14.(2013·四川省内江市第一次模拟)设函数f (x )=|x |x +bx +c ,则下列命题中正确命题的序号有________.①函数f (x )在R 上有最小值;②当b >0时,函数在R 上是单调增函数; ③函数f (x )的图象关于点(0,c )对称;④当b <0时,方程f (x )=0有三个不同实数根的充要重要条件是b 2>4|c |; ⑤方程f (x )=0可能有四个不同实数根. [答案] ②③④[解析] f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≥0-x 2+bx +c x <0取b =0知,①⑤错; 容易判断②,③正确;b <0时,方程f (x )=0有三个不同实数根,等价于c -b 24<0且c +b 24>0,∴b 2>4c 且b 2>-4c ,∴b 2>4|c |,故填②、③、④.15.(文)函数f (x )=x 2+x -14.(1)若定义域为[0,3],求f (x )的值域;(2)若f (x )的值域为[-12,116],且定义域为[a ,b ],求b -a 的最大值.[解析] ∵f (x )=(x +12)2-12,∴对称轴为x =-12.(1)∵3≥x ≥0>-12,∴f (x )的值域为[f (0),f (3)],即[-14,474];(2)∵x =-12时,f (x )=-12是f (x )的最小值,∴x =-12∈[a ,b ],令x 2+x -14=116,得x 1=-54,x 2=14,根据f (x )的图象知当a =-54,b =14时,b -a 取最大值14-(-54)=32.(理)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域.[解析] (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx . 又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得⎩⎪⎨⎪⎧a =12,b =12.∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12(x 2-32)2-18,当x 2=32时,y 取最小值-18.∴函数y =f (x 2-2)的值域为[-18,+∞).16.(文)某地区预计2011年的前x 个月内对某种商品的需求总量f (x )(万件)与月份x 的近似关系式是f (x )=175x (x +1)(19-x ),x ∈N *,1≤x ≤12,求:(1)2011年的第x 月的需求量g (x )(万件)与月份x 的函数关系式. (2)求第几个月需求量g (x )最大.[解析] (1)第x 月的需求量为g (x )=f (x )-f (x -1)=175x (x +1)(19-x )-175(x -1)x (20-x )=125x (13-x ).(2)g (x )=125(-x 2+13x )=-125[42.25-(x -6.5)2],因此当x =6或7时g (x )最大.第6、7月需求量最大.(理)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)根据提供的图象,写出该商品每件的销售价格P 与时间t 的函数关系式; (2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 0<t <25,t ∈N *,-t +100 25≤t ≤30,t ∈N *.(2)图略,Q =40-t (t ∈N *). (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 0<t <25,t ∈N *,t 2-140t +4000 25≤t ≤30,t ∈N *.即y =⎩⎪⎨⎪⎧- t -10 2+900 0<t <25,t ∈N *, t -70 2-900 25≤t ≤30,t ∈N *.若0<t <25(t ∈N *), 则当t =10时,y max =900; 若25≤t ≤30(t ∈N *), 则当t =25时,y max =1125. 由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大.1.设a <b ,函数y =(x -a )2(x -b )的图象可能是( )[答案] C[解析] x >b 时,y >0,排除A 、B ;又x =b 是变号零点,x =a 是不变号零点,排除D ,故选C.2.(2011·北京东城综合练习)已知函数f (x )=⎩⎪⎨⎪⎧8x -8,x ≤1,0,x >1, g (x )=log 2x ,则f (x )与g (x )两函数图象的交点个数为( )A .4B .3C .2D .1[答案] C[解析] 如图,函数g (x )的图象与函数f (x )的图象交于两点,且均在函数y =8x -8(x ≤1)的图象上.故选C.3.设函数f (x )=⎩⎪⎨⎪⎧21-x-1 x <1 ,lg x x ≥1 .若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由条件知,⎩⎪⎨⎪⎧x 0<1,21-x 0-1>1,或⎩⎪⎨⎪⎧x 0≥1,lg x 0>1.∴x 0<0或x 0>10.4.(2012·东北三校二模)函数y =x ln(-x )与y =x ln x 的图象关于( ) A .直线y =x 对称 B .x 轴对称 C .y 轴对称 D .原点对称[答案] D[解析] 若点(m ,n )在函数y =x ln x 的图象上,则n =m ln m ,所以-n =-m ln[-(-m )],可知点(-m ,-n )在函数y =x ln(-x )的图象上,反之亦然,而点(m ,n )与点(-m ,-n )关于原点对称,所以函数y =x ln x 与y =x ln(-x )的图象关于原点对称,故选D.5.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下图所示,则函数g (x )=a x+b 的图象是( )[答案] A[解析] ∵f (x )=(x -a )(x -b )的两个零点为a 和b 且a >b ,由图象知0<a <1,b <-1,∴g (x )=a x+b 单调减,且g (0)=1+b <0,故选A.6.函数f (x )=|log 12x |的定义域是[a ,b ],值域为[0,2],对于区间[m ,n ],称n -m为区间[m ,n ]的长度,则[a ,b ]长度的最小值为( )A.154B .3C .4 D.34[答案] D[解析] 令f (x )=0得,x =1,令f (x )=2得,log 12x =±2,∴x =14或4,∴当a =14,b =1时满足值域为[0,2],故选D.7.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于M 、N .设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )[解析]解法1:取AA1、CC1的中点E、F,EF交BD1于O,则EF∥AC,∵AC⊥BD,AC⊥BB1,∴AC⊥平面BDD1B1,∴EF⊥平面BDD1B1,∴平面BED1F⊥平面BDD1B1,过点P作MN∥EF,则MN⊥平面BDD1B1,MN 交BE 、BF 于M 、N ,则BP BO =MN EF ,∴MN =EFBO·BP ,不难看出当P 在BO 上时,y 是x 的一次增函数, 当P 在OD 1上时,y 是x 的一次减函数,故选B.解法2:连接AC ,A 1C 1,则MN ∥AC ∥A 1C 1,当且仅当P 为BD 1的中点Q 时,MN =AC 取得最大值,故答案A ,C 错,又当P 为BQ 中点时,MN =12AC ,故答案D 错,所以选B.8.已知函数f (x )的值域为[0,4],(x ∈[-2,2]),函数g (x )=ax -1,x ∈[-2,2],∀x 1∈[-2,2],总∃x 0∈[-2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围是______.[答案] ⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫52,+∞[解析] 只需要函数f (x )的值域是函数g (x )值域的子集即可. (1)当a >0时,g (x )=ax -1单调递增,∵x ∈[-2,2],∴-2a -1≤g (x )≤2a -1,要使条件成立,只需⎩⎪⎨⎪⎧-2a -1≤02a -1≥4,∴a ≥52.(2)当a <0时,g (x )=ax -1单调递减.∵x ∈[-2,2],∴2a -1≤g (x )≤-2a -1,要使条件成立,只需⎩⎪⎨⎪⎧2a -1≤0-2a -1≥4,∴⎩⎪⎨⎪⎧a ≤12a ≤-52,∴a ≤-52.综上,a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫52,+∞. 9.(2011·安徽省淮南市高三第一次模拟)已知定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,若f (1)=2,则f (2015)=________.[答案]132[解析] ∵f (x +4)=13f x +2 =1313f x=f (x ),∴函数f (x )的周期为4,所以f (2015)=f (4×503+3)=f (3)=13f 1 =132.。

高考数学一轮复习 第二章 函数、导数及其应用 第一节 函数及其表示学案(含解析)新人教B版-新人教B

第二章函数、导数及其应用第一节函数及其表示最新考纲考情分析1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.主要考查函数的概念、定义域及解析式的确定与应用,分段函数更是考查的热点.2.题型主要以选择题、填空题为主,要求相对较低,但内容很重要,特别是函数的解析式,对以后研究函数的性质有很重要的作用.知识点一函数与映射函数映射两集合A,B设A,B是非空的数集设A,B是非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B是一个映射知识点二函数的有关概念1.函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.函数的三要素:定义域、值域和对应关系.3.相等函数:如果两个函数的定义域和对应关系完全一致,那么这两个函数相等,这是判断两函数相等的依据.4.函数的表示法:解析法、图象法、列表法.知识点三分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.1.分段函数虽由几个部分构成,但它表示同一个函数.2.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.各段函数的定义域不可以相交.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.( ×)(2)对于函数f:A→B,其值域是集合B.( ×)(3)f(x)=x-3+2-x是一个函数.( ×)(4)若两个函数的定义域与值域相同,则这两个函数相等.( ×)解析:(1)错误.函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.(2)错误.值域C⊆B,不一定有C=B.(3)错误.f(x)=x-3+2-x中x不存在.(4)错误.当两个函数的定义域、对应法则均对应相同时,才是相等函数.2.小题热身(1)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( B )解析:A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2].(2)下列函数中,与函数y =x +1是相等函数的是( B ) A .y =(x +1)2B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应法则分别对应相同,是相等函数;对于C ,函数y=x 2x+1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D ,定义域相同,但对应法则不同,不是相等函数.(3)已知f (x 5)=lg x ,则f (2)=( A ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 解析:令x 5=2,则=15lg 2. (4)(2020·河南、河北联考)函数f (x )=4-4x+ln(x +4)的定义域为(-4,1].解析:要使f (x )有意义,则⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1.(5)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =-2.解析:由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2.考点一 求函数的定义域命题方向1 已知函数解析式求定义域【例1】 (2019·江苏卷)函数y =7+6x -x 2的定义域是________.【解析】 要使函数有意义,则7+6x -x 2≥0,解得-1≤x ≤7,则函数的定义域是[-1,7].【答案】 [-1,7]命题方向2 求抽象函数的定义域【例2】 (2020·山东安丘质检)已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝ ⎛⎭⎪⎫12x +8-2x的定义域为( )A .[0,3]B .[0,2]C .[1,2]D .[1,3]【解析】 由题意,可知x 满足⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,解得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A.【答案】 A命题方向3 求参数取值范围【例3】 (1)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,34B.⎝ ⎛⎭⎪⎫0,34C.⎣⎢⎡⎦⎥⎤0,34D.⎣⎢⎡⎭⎪⎫0,34(2)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 【解析】 (1)∵函数y =mx -1mx 2+4mx +3的定义域为R ,∴mx 2+4mx +3≠0,∴m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34,∴实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34. (2)∵函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},∴⎩⎪⎨⎪⎧a <0,f 1=0,f 2=0,解得⎩⎪⎨⎪⎧a =-32,b =-3,∴a +b =-92.【答案】 (1)D (2)-92方法技巧例1是根据具体的函数解析式求定义域,已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式组,得出不等式组的解集即可.,例2是求抽象函数的定义域,有如下解法:1若已知函数fx 的定义域为[a ,b ],则复合函数f g x 的定义域由不等式a ≤gx ≤b 求出;2若已知函数f gx 的定义域为[a ,b ],则f x 的定义域为g x 在x ∈[a ,b ]上的值域.例3是例1的逆运用,通常是转化为含参数的不等式求解.1.(方向1)y =x -12x-log 2(4-x 2)的定义域是( C )A .(-2,0)∪(1,2)B .(-2,0]∪(1,2)C .(-2,0)∪[1,2)D .[-2,0]∪[1,2]解析:要使函数有意义,则⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,解得x ∈(-2,0)∪[1,2),即函数的定义域是(-2,0)∪[1,2).2.(方向2)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为[-1,2].解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].3.(方向3)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为[-2,2].解析:若函数f (x )=x 2+ax +1的定义域为实数集R ,则x 2+ax +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2,即实数a 的取值范围是[-2,2].考点二 求函数的解析式【例4】 (1)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________.(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.(3)已知f (x +1)=x +2x ,求f (x )的解析式.【解析】 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,即2ax +a +b =x -1,所以⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.所以f (x )=12x 2-32x +2.(2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x换成x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,由⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f x ·1x-1,解得f (x )=23x +13.(3)设t =x +1,则x =(t -1)2(t ≥1),代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1).【答案】 (1)12x 2-32x +2 (2)23x +13 (3)见解析1.已知函数f (2x -1)=4x +3,且f (t )=6,则t =( A ) A.12 B.13 C.14D.15解析:设t =2x -1,则x =t +12,故f (t )=4×t +12+3=2t +5,令2t +5=6,则t =12,故选A.2.若f (x )对于任意实数x 恒有3f (x )-2f (-x )=5x +1,则f (x )=( A ) A .x +1 B .x -1 C .2x +1D .3x +3解析:因为3f (x )-2f (-x )=5x +1①,所以3f (-x )-2f (x )=-5x +1②,联立①②,解得f (x )=x +1,故选A.3.若f (x )为一次函数,且f (f (x ))=4x +1,则f (x )=2x +13或-2x -1.解析:设f (x )=ax +b (a ≠0),由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,得a 2=4,ab +b =1,解得a =2,b =13或a =-2,b =-1,∴f (x )=2x +13或f (x )=-2x -1.考点三 分段函数命题方向1 分段函数求值问题【例5】 (1)(2020·衡水中学模拟)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,12x ,x <0,则f (f (-1))=( )A.32 B.2+1 C .1D .3(2)已知函数f (x )=⎩⎪⎨⎪⎧2x,x <2,f x -1,x ≥2,则f (log 27)=________.【解析】 (1)由题意可得f (-1)=12-1=2,∴f (f (-1))=f (2)=3,故选D. (2)因为2<log 27<3,所以1<log 27-1<2,所以f (log 27)=f (log 27-1)=【答案】 (1)D (2)72命题方向2 分段函数与方程、不等式问题【例6】 (1)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)(2)(2020·长春模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a =________. 【解析】(1)∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D.(2)当a >0时,由f (a )+f (1)=0得2a+2=0,无实数解; 当a ≤0时,由f (a )+f (1)=0得a +1+2=0, 解得a =-3,满足条件.【答案】 (1)D (2)-3 方法技巧分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果整合起来.1.(方向1)(2020·贵州模拟)已知函数f (x )=⎩⎪⎨⎪⎧e x +1,x ≤-1,lg 6-x +lgx +1,-1<x <6,则f (-1)+f (1)=( C ) A .0 B .1 C .2D .e 2解析:f (-1)+f (1)=e -1+1+lg5+lg2=2,故选C.2.(方向1) (2020·南昌模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-2xx ≤0,f x -3x >0,则f (5)的值为12.解析:由题意,得f (5)=f (2)=f (-1)=(-1)2-2-1=1-12=12.3.(方向2)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( A )A.⎩⎨⎧⎭⎬⎫14,4 B .{1,4}C.⎩⎨⎧⎭⎬⎫1,14D.⎩⎨⎧⎭⎬⎫1,14,4解析:由题意可知,f (x )=2,即⎩⎪⎨⎪⎧2x=2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4.4.(方向2)设函数f (x )=⎩⎪⎨⎪⎧x +1x +1-12,x ≥1,1,x <1,则不等式f (6-x 2)>f (x )的解集为(-5,2).解析:易知函数f (x )在[1,+∞)上单调递增,又f (1)=1,所以当x >1时,f (x )>1.当x <1时,由6-x 2>1,得-5<x <5,则-5<x <1;当x ≥1时,由6-x 2>x ,得-3<x <2,则1≤x <2.综上,不等式的解集为(-5,2).函数的新定义问题【典例】 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数: ①f (x )=sin2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x ;④φ(x )=ln x .其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④【分析】 根据新定义的一阶整点函数的含义,对四个函数一一分析,判断它们的图象是否恰好经过一个整点,即可得出正确的选项.【解析】 对于函数f (x )=sin2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点阶段,排除A ; 对于函数h (x )=⎝ ⎛⎭⎪⎫13x ,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.选C.【答案】 C【素养解读】 本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本示例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过一个整点,问题便迎刃而解.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +31+2x +1,则函数y =[f (x )]的值域为( C ) A.⎝ ⎛⎭⎪⎫12,3 B .(0,2] C .{0,1,2}D .{0,1,2,3} 解析:因为f (x )=2x +31+2x +1=121+2x +1+521+2x +1 =12+521+2x +1,2x +1>0, 所以0<11+2x +1<1,所以12<12+521+2x +1<3, 即12<f (x )<3,所以y =[f (x )]的值域为{0,1,2}, 故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 函数及其表示
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2014·广州调研)若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是 ( )
解析 可以根据函数的概念进行排除,使用筛选法得到答案.
答案 B
2.(2014·威海模拟)函数f(x)=3x21-x +lg(3x +1)的定义域是( )
A.⎝⎛⎭⎫-1
3,1 B .⎝⎛⎭⎫-1
3,+∞
C.⎝⎛⎭⎫-1
3,1
3 D .⎝⎛⎭⎫-∞,-1
3
解析 由⎩⎪⎨⎪⎧ 1-x >0,3x +1>0,得⎩⎪⎨⎪⎧ x <1,x >-1
3,所以定义域为⎝⎛⎭⎫-1
3,1.
答案 A
3.设函数f(x)=2x +3,g(x +2)=f(x),则g(x)的表达式是 ( )
A .2x +1
B .2x -1
C .2x -3
D .2x +7
解析 ∵g(x +2)=f(x)=2x +3=2(x +2)-1,
∴g(x)=2x -1.
答案 B
4.(2015·合肥检测)已知函数f(x)=⎩⎪⎨⎪⎧ 2x ,x <0,f x -1+1,x≥0,则f(2 014)= (
)
A .2 014
B .4 0292
C .2 015
D .4 0312
解析 f(2 014)=f(2 013)+1=…=f(0)+2 014=f(-1)+2 015=2-1+2 015=4 0312
. 答案 D
5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为 ( )
A .y =⎣⎡⎦⎤x 10
B .y =⎣⎡⎦
⎤x +310 C .y =⎣⎡⎦⎤x +410 D .y =⎣⎡⎦⎤x +510
解析 法一 取特殊值法,若x =56,则y =5,排除C ,D ;
若x =57,则y =6,排除A ,选B.
法二 设x =10m +α(0≤α≤9,m ,α∈N),当0≤α≤6时,⎣⎡
⎦⎤x +310=⎣⎡⎦⎤m +α+310=m =⎣⎡⎦⎤x 10, 当6<α≤9时,⎣⎡⎦⎤x +310=⎣
⎡⎦⎤m +α+310=m +1=⎣⎡⎦⎤x 10+1,所以选B. 答案 B
二、填空题
6.下列集合A 到集合B 的对应f 中:
①A ={-1,0,1},B ={-1,0,1},f :A 中的数平方;
②A ={0,1},B ={-1,0,1},f :A 中的数开方;
③A =Z ,B =Q ,f :A 中的数取倒数;
④A =R ,B ={正实数},f :A 中的数取绝对值,
是从集合A 到集合B 的函数的为________.
解析 其中②,由于1的开方数不唯一,因此f 不是A 到B 的函数;其中③,A 中的元素0在B 中没有对应元素;其中④,A 中的元素0在B 中没有对应元素.
答案 ①
7.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x21+x2
,则f(x)的解析式为________. 解析 令t =1-x 1+x ,由此得x =1-t 1+t
(t≠-1), 所以f(t)=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭
⎪⎫1-t 1+t 2=2t 1+t2, 从而f(x)的解析式为f(x)=2x 1+x2
(x≠-1). 答案 f(x)=2x 1+x2
(x≠-1) 8.(2015·武汉一模)若函数f(x)=2x2+2ax -a -1的定义域为R ,则a 的取值范围是
________.
解析 由题意知2x2+2ax -a -1≥0恒成立.
∴x2+2ax -a≥0恒成立,
∴Δ=4a2+4a≤0,∴-1≤a≤0.
答案 [-1,0]
三、解答题
9.已知f(x)是二次函数,若f(0)=0,且f(x +1)=f(x)+x +1.求函数f(x)的解析式. 解 设f(x)=ax2+bx +c(a≠0),又f(0)=0,
∴c =0,即f(x)=ax2+bx.又f(x +1)=f(x)+x +1.
∴a(x +1)2+b(x +1)=ax2+(b +1)x +1.
∴(2a +b)x +a +b =(b +1)x +1,
∴⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,解得⎩⎨⎧ a =12
,b =12.∴f(x)=12x2+12
x. 10.根据如图所示的函数y =f(x)的图象,写出函数的解析式.
解 当-3≤x <-1时,函数y =f(x)的图象是一条线段(右端点除外),设f(x)=ax +b(a≠0),
将点(-3,1),(-1,-2)代入,可得f(x)=-32x -72
; 当-1≤x <1时,同理可设f(x)=cx +d(c≠0),
将点(-1,-2),(1,1)代入,可得f(x)=32x -12
; 当1≤x <2时,f(x)=1. 所以f(x)=⎩⎪⎨⎪⎧ -32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.
能力提升题组
(建议用时:25分钟) 11.设f(x)=lg 2+x 2-x
,则f ⎝⎛⎭⎫x 2+f ⎝⎛⎭⎫2x 的定义域为 ( )
A .(-4,0)∪(0,4)
B .(-4,-1)∪(1,4)
C .(-2,-1)∪(1,2)
D .(-4,-2)∪(2,4)
解析 ∵2+x 2-x
>0,∴-2<x <2, ∴-2<x 2<2且-2<2x <2,
取x =1,则2x =2不合题意(舍去
), 故排除A ,取x =2,满足题意,排除C ,D ,故选B.
答案 B
12.(2014·大连测试与评估)设函数f(x)=⎩⎪⎨⎪⎧
31-x ,x≤1,1-log3x ,x >1,则满足f(x)≤3的x 的取值范围是 ( )
A .[0,+∞)
B .[-1,3]
C .[0,3]
D .[1,+∞)
解析 依题意,不等式f(x)≤3等价于①⎩⎪⎨⎪⎧ x≤1,31-x≤3
或 ②⎩⎪⎨⎪⎧
x >1,1-log3x≤3.解①得0≤x≤1,解②得x >1.因此,满足f(x)≤3的x 的取值范围是[0,1]∪(1,+∞)=[0,+∞).
答案 A
13.(2015·杭州质检)函数f(x)=ln 1|x|+1
的值域是________. 解析 依题意,因为 |x|+1≥1,则0<1|x|+1
≤1, ln 1|x|+1
≤ln 1=0,即函数的值域是(-∞,0]. 答案 (-∞,0]
14.某人开汽车沿一条直线以60 km/h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h 后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x(km)表示为时间t(h)(从A 地出发开始)的函数,并画出函数的图象.
解 x =⎩⎪⎨⎪⎧ 60t ,0≤t≤52,150,52<t ≤72,
150-50⎝⎛⎭⎫t -72,72<t ≤132
.
其图象如图所示.。

相关文档
最新文档