交流传动机车的控制系统

交流传动机车的控制系统
交流传动机车的控制系统

第三节交流传动机车的控制系统

对于铁路牵引,要求传动系统按照一定的控制方式(如恒力矩和恒功率)运行,同时又要不断地进行加速或减速。为了保证机车牵引系统有较高的静态控制精度和动态稳定性,机车上通常采用闭环控制系统

在任何一个传动系统中,速度和转矩值通常被认为是两个重要的被调量。控制转矩,有两种方法:一种是由相关联的其它物理量作为给定信号,并检测这些量的实际值作为反馈信号(如电压、定子电流和转差频率),来有效地控制电机的转矩;另一种是利用检测的或计算的转矩作为反馈信号,与给定的转矩作比较,产生转矩调节器的输入信号,来直接控制传动系统的转矩。前者已广泛的应用在各种交流传动机车和动车组上;后者也称为直接力矩控制,它是迄今为止最佳的控制方法,已经在机车上采用。

交直交变频调速系统经过近十多年来的发展,出现了许多形式,例如,电压、频率协调控制的变频调速系统,转差频率控制的变频调速系统,谐振型变频调速系统,矢量控制的变频调速系统和直接转矩控制的变频调速系统等。

一、转差频率控制的交流传动系统

目前,在铁路牵引的交流传动系统中,大都采用脉宽调制(PwM)逆变器,这种逆变器的特点在于:当控制系统给定电压***和频率***时,PWM信号生成单元控制逆变器的输出总能保证电动机气隙磁通******接近恒值,这就满足了关于恒磁通控制的要求。

根据****,转矩T 只取决**的值,如果系统能合适的控制**以及**随**的变化规律,就能使电动机按照要求的运行方式控制力矩。

如图***所示的系统控制结构,是已经在一些机车和动车组上采用的实例。从基本特征来看,它是一种由电压型逆变器供电并具有电流反馈的转差闭环的双闭环控制系统。从司机室送出的给定转矩**信号,一路通过**函数发生器产生给定的转差频率**,它与反馈的转速信号**相加得********(牵引)或想减得******(再生制动),确定了逆变器输出电压频率。考虑到恒转矩对磁通****的要求,系统中设置了一个电压函数发生器,其函数关系为,***是考虑零速度附近对定子绕组压降的补偿。给定转矩信号**的另一路经过电流函数发生器转换成电流给定信号***,与实际测得的电流比较后,经电流调节器得偏信号***,和***合成后得电压控制信号**。

取*****,其中**反映电流反馈控制的影响。当实际电流给定电流,使**增加;反之,**减小。在**的组成中,**所占的比重大,可以保证电压和频率按线性关系调节。

转差频率控制除应用于电压源逆变器传动系统外,还较多地用于电流源逆变器传动系统。电流源转差频率控制的运行方式与电压源相同,即:从零速度到额定速度为恒转矩运行区;在额定速度以上,电机端电压保持恒定,进入恒功运行区,当电动机以恒转矩运行时,其先决条件是磁通恒定,或者说需要激磁电流Im恒定。但Im不是一个独立变量,它与定子电流11与转差频率**之间存在一定函数关系。

图***所示是采用转差闭环控制的电流控制的电流源异步电机传动系统。在该系统中,由于电流反馈取自中间直流回路,又因为***与***成正比,所以**和***之间存在与***和***之间类似的函数关系。

在系统结构图中,转速偏差信号经速度调节器和绝对值电路处理,产生电流给定信号。电流反馈信号,一路追踪,并经电流调节器后去控制系统电流;另一路由人函数发生器得出转差频率绝对值,由***加转速反馈信号,得频率控制信号****。另外,当转速偏差信号为正时,转差频率有正符号,系统处于牵引状态;反之,转差频率为负符号,系统处于制动状态

二、矢量控制的交流传动系统

以交流电动机作为系统的传动单元,关键是电磁力矩的产生与控制,前述的转差频率控制系统,就是根据电压(或电流)和转差来控制电磁力矩的。但转差频率控制的变频系统,其控制方式是建立在异步电动机稳态数学模型的基础上的,其动态性能不够理想。随着现代控制理论及控制技术的发展,一种模仿直流电机控制的矢量控制系统取得了重大的进展,并已在许多变频调速系统、铁路干线机车(如西班牙的5252机车)和高速动车(如德国的IcE动车)上得到应用。

在图4一18所示的控制系统中,通过转速传感器将电动机的实际转速信号田检测出来与给定转速信号矿进行比较,转速偏差信号△山经速度调节器sR 产生力矩给定值T',而转速信号山送到磁通函数发生器必F,该发生器在基速以下提供恒定的转子磁化电流给定值(恒力矩运行区),在超过基速后实现磁场削弱(恒功率运行区)。

由给定力矩T’和给定转子磁链扩通过磁链观察器平M计算出给定电流弓,、瓜1和给定转差角频率矿,与实测得的转速信号山相加得定子角频率信号山:,经积分得到同步旋转坐标系和静坐标系(轴系)之间的角位移尹,利用向量分析器VA可得sin尹和cos尹。

把****和*****送入向量旋转器VR后,可得******,再经“2/3”坐标变换,得*****,与通过电流互感器检测的三相定子电流******进行比较,偏差信号***作为PWM逆变器的三相控制信号。

三、直接力矩控制系统

直接力矩控制是在矢量控制和电流跟踪控制的基础上发展起来的,它解决了矢量控制系统中需要复杂的坐标变换和控制性能易受参数变化影响的问题。直接转矩控制是目前最先进的高性能交流控制策略之一。

该方法是直接在电机定子侧计算磁链树和力矩T,借助两点式调节器(BarD一BanD控制)产生PWM信号,直接控制逆变器的开关状态,把磁链和力矩控制在某一给定的容差内。该控制系统线路简单,有最佳的开关频率和最小的开关损耗,并能获得良好的动态调速性能,所以电力机车常采用这种系统。

1.直接转矩控制的原理

异步电动机的直接转矩控制理论是建立在异步电动机的动态方程上的。当忽略空转阻力矩时,异步电动机的运动方程可表示为

式,T为电磁转矩,***为负载转矩,J为电动机转动惯量,**为转子机械角速度(******,D为转子直径,n为转子转速)。

根据上式,调节转速可以通过调节电磁转矩来实现。而*****(**为定子磁链,它是磁通***与定子匝数***的乘积,即****;**为定子电流;K为常数),故在定子磁链不变的情况下,调节电磁转矩可以通过调节定子电流来实现。

根据电动机电压方程

式中,**为定子电压,***定子电阻。在定子磁链不变的情况下,*****,所以,调节定子电流可以通过调节定子电压来实现。

综上所述,在保持定子磁链不变的情况下,通过调节定子电压即可调节电磁转矩,从而达到调速的目的。

2.直接转矩控制交直交变频调速系统的原理

图4一19所示为直接转矩控制交直交变频调速系统的原理框图。该系统主要由主电路和控制系统两部分组成。主电路的工作原理是:电网单相交流电经主断路器送入变压器主绕组,经降压从二次侧输出单相频率不变的交流电,经整流器整流成直流电,再由逆变器转变为频率可调的三相交流电,输送给三相异步牵引电动机。控制系统的工作原理是:三相异步牵引电动机经3/2变换,转变为二相交流电机,由电流互感器检测出两相电流***,和****,由电压互敢器检测出两相电压***和***,一起送入定子磁链模型,输出磁链**和***,再合成为定子磁链料,与给定定子磁链试进行比较,输出差值信号****,经磁链滞环调节后送入开关状态选择****和*****;经转矩模型输出转矩T,给定转速成与经过转速传感器TG检测出来的转子实际转速山进行比较,输出的转速差值信号△。经转速调节器转变为转矩给定信号T',T’与T进行比较,输出转矩差值信号△T,经转矩滞环调节后送入开关状态选择,最后由开关状态选择去控制逆变器中功率开关的导通状态,通过调节电压矢量的大小达到调节牵引电动机转速的目的。

图4一19直接转矩控制交直交变频调速系统的原理框图

直接转矩控制的核心思想是通过不同时刻给出不同的电压矢量,以控制定子按一定幅值的正六边形磁链轨迹运行并控制其旋转速度(请读者参阅有关资料),在机车控制级的控制下,即可按直接转矩控制的思想控制牵引电动机的输出力矩,使机车获得预期的牵引特性。

目前,直接转矩控制已经成功地应用于奥地利的1822型和瑞士的460型电力机车。国产****型交流传动内燃机车也采用了直接转矩控制方式。

四、交流传动电力机车的控制系统

Ac4o00交流传动电力机车有两套独立的电子控制装置,具有机车级控制、四象限变流器控制、异步牵引电机环控制、速度闭环和逆变器控制、系统保护等功能,图4一20机车控制原理图

1.机车级控制

机车级控制包括电平转换、解锁逻辑、特性控制及防空转控制。考虑到机车控制系统系统化、系列化的要求,机车级控制采用了MICAS微机控制系统,系统结构如图4一21所示。其软件功能包括机车特性控制、防空转控制、电机损耗估算和逻辑解锁。特性控制单元接收到司机操作台送出的手柄信号后,按机车特性的要求以及机车运行状态进行调节,生成力矩给定值姨。司机操作台送出的开关命令信号经电平转换分别送入解锁逻辑、特性控制、速度闭环控制以及脉宽调制等功能单元,命令各功能单元按指令工作。解锁裸机负责机车有触点控制与电子控制装置的逻辑接口,依据机车状态及指令控制主断路器、充电接触器、交流器等的投入和切除。

2.四象限变流器控制系统

机车牵引时,四象限变流器把50Hz电网电压变换成直流电压供给牵引逆变器;制动时,把中间直流电压逆变成50Hz交流电压反馈给电网。控制系统的任务是使中间直流回路电压恒定为2800v,并使输入电流与网压同相(牵引时)或反相(再生制动时)。控制原理框图见图4一220

图4一22四象限变流器的控制原理框图

为了减少电网电流的谐波分量,机车上的4台四象限变流器相位依次相互错开90”。再生制动时,上述作用方式没有什么变化,只是因为能量必须反馈到电网,所以电压调节器的输出最终是负值。

3.牵引电动机闭环控制系统

20世纪80年代末,国外已先后开发出矢量控制和直接力矩控制两种高动态控制系统,并成功地应用于交流电传动机车异步牵引电动机的调速控制。但高动态控制系统需要有高响应速度的变流装置及高速信号处理器。限于相关元器件的国产化水平并借鉴某些成熟的控制技术,我国生产的第一台AC4000型交流电力机车采用转差一电流控制的闭环系统,如图4一23所示。

图4一23牵引电动机闭环控制系统

①③⑥一乘法器;④一功率调节器;②⑦O一加法器;⑧一转差函数发生器;

⑧一电流函数发生器;⑧一空载电压生成环节;⑩一电流调节器;

⑩一电流信号处理环节

从该控制结构的基本特征来看,这是一种采用速度外环和电流内环的双闭环控制系统。为了补偿系统运行时电机的损耗,系统设置了一个功率闭环。

从系统的控制功能和信号妙理过程来看,该系统实际上包含两个部分:系统控制功能的实现;电机速度信号的检测与处理。其工作原理简要说明如下:

(l)系统控制功能的实现。如图4一23所示,由特性控制单元(来自司机控制台)的给定力矩信号峡与电机速度反馈信号尤相乘,得出电动机的给定输出功率,加上逆变器和电机损耗设定值护后,得到送入电机的功率给定值**,所得结果与中间回路实际反馈功率几比较,送到功率调节器PI,调节器的输出和力矩给定值姨相乘,对力矩给定值进行修正,得到电机力矩的给定值M’。系统中的单元⑥为转差函数发生器,根据力矩信号和转速信号生成转差频率信号fz',fz’和转速反馈信号石叠加后,得到逆变器输出电压的频率信号**;单元⑧为电流函数发生器,根据力矩信号和转速信号生成电流给定值信号万,将实际值**和***一起送入电流调节器单元⑩,其输出△矶可作为电机电压动态调节信号。根据控制方式的要求,系统设置了电压/频率比函数发生器⑨,由频率信号厂可得到电压调节量信号Ul。,然后△**和Ul。通过加权相加得到电机电压控制信号ul’。最后将厂和可送入逆变器的控制单元,实现了转差一电流闭环控制的运行功能。

(2)速度信号的检测与处理。在转差闭环控制系统中,电机速度信号是一个关键的量,要求采用高精度和高分辨率的检测装置。目前普遍采用的是速度脉冲传感器。在AC4000型交流机车上,每台异步牵引电动机的非传动轴端安装一台速度脉冲传感器,每台传感器由2个相位差90”的探头来接收电压脉冲信号,探头的相位比较是用来判断电机的旋转方向的。图4一24所示是对应于机车一个转向架的速度信号检测与处理装置的原理框图。信号经脉冲整形环节得到两台电机转子频率(转速)值人,和八:。正常运行时,两路速度信号经取最大(制动工况)和最小(牵引工况)环节得到速度反馈信号人,取最大和最小运算处理是为了抑制轴向架发生单轴滑行和空转。

这里需要强调的是,当交流机车采用转差频率控制时,速度的检侧以及速度传感器的作用是非常重要的,一旦发生错误或故障,如不及时采取措施,将会导致逆变器一电机回路因过流或过压而颠班,因此在系统中设置了故障判定环节,对人、和人2两路信号进行故障判定,如发现某一路有故障,则迅速用另一路速度信号取代;另外,在速度处理单元中设置了·频率增长限定”环节,该环节受到来自空转(或滑行)信号的控制,正常情况下,**=***,当空转(滑行)电路检侧到轮对空转(滑行)已经发生或即将发生时,经该环节的处理,使**不随**的变化,这样控制频率********也保持不变,电动机任然在其自然特性的稳定区段上运行。

电力传动控制系统——运动控制系统

电力传动控制系统——运动控制系统 (习题解答) 第 1 章电力传动控制系统的基本结构与组成.......... 第 2 章电力传动系统的模型................. 第 3 章直流传动控制系统................... 第 4 章交流传动控制系统................... 第 5 章电力传动控制系统的分析与设计* ............ 错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

第1章电力传动控制系统的基本结构与组成 1.根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 控制指令 图1-1电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产 机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流 电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电 枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制 原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、 磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制

电力机车与牵引传动试题

电力机车与牵引传动整体认知 一、填空题 1、目前世界各国电气化铁道大部分已采用单相工频交流制电力牵引供电系统, 接触网供电电压______千伏。 2、我国已形成了 4、6、8 轴的______系列的电力机车型谱,仅株州电力机车厂 一家生产总台量到2001年底已达2893台。 3、交流电机简单可靠,具有良好的防空转性能、______特性和制动特性。 4、从整台机车来说,电力机车的轮周功率最高已达______KW以上,内燃机车最 高功率为4800KW(柴油机功率,若折算到机车轮周,则还要降低20%~30%)。 5、客运电力机车运行速度已可达到 250KM/H,货运电力机车也可达到______ KM/H,随着新型电力机车的不断出现,机车运行速度将进一步提高。 6、蒸汽机车的平均热效率为 8~10%,内燃机车的平均效率为 25%左右。电力 机车本身的效率是很高的,但考虑到整个电力牵引系统,其平均效率则______, 它与供电系统的电能来源有关,在由水力发电站供电的情况下,电力牵引的效率 可达到60.70%。 7、自给式机车的过载能力要受两方面的限制,一方面受机车发动机过载能力的 限制,另一方面又受机车所带的能量装置过载能力的限制。对于______电力机车,其能量是来自较强大的供电系统,因而机车的过载能力是较高的。 8、由于______整备作业少,宜于长交路行驶,这样就可以减少机务段的数目, 如我国宝成铁路使用蒸汽机车牵引时,全线共有四个机务段,电气化后仅设有两 个机务段,而且乘务人员和使用的机车台数也相应减少,使劳动生产率大大提高。 9、电力牵引的能源可以来自多方面,因而实行电力牵引可以合理的利用能源, 特别是可以利用丰富而廉价的______和天然气资源,即使由火力发电站供电,发 电站也可以使用质量较差的煤作燃料,蒸汽机车则要消耗______。 10、发展电力牵引是整个国民经济电气化的一个组成部分,对城乡及其它部门的 电气化,也有一定的推动作用。特别是在一些发展中国家,农村电气化程度较低,使用电力牵引后,就使沿线农村可以方便地修建电网,促进了城乡的______。 二、选择题 1、客货两用电力机车:用来牵引旅客或货物列车。其牵引力和速度()。 A、牵引力不大,运行速度高 B、牵引力大,速度不高 C、速度和牵引力均较低 D、介于客、货电力机车之间 2、据 1996 年有关资料统计,全世界已有电气化铁路万( )KM,在经济发达 国家, 电气化铁路占铁路营业里程的比重一般都已达到 35%~60%以上,承担 的铁路运量所占比重已超过60%~90%以上,所以铁道电气化为许多国家作为

机车电传动及控制实验指导书190070

机车电传动及控制实验指导书 2006、12-27

交流调速SPWM变频电路及电压频率控制输出特性 「、实验目的 1、了解单相全桥逆变电路的工作原理及正弦波脉宽调制(SPWM调频、调压的工作原理 2、了解单相异步电动机变频调速的原理及异步电动机变频调速的基本参数、V/F曲线 3、掌握三相异步电动机交流调速(SPWM的基本原理和实现方法 1、实验设备 1、电力电子实验台(主机) 2、RTDJ41单相电容运转电动机(挂箱) 3、RTDJ10可调电阻器(挂箱) 4、RTDL17单相异步电动机SPW变频调节箱(挂箱) 5、RTDL14-2A三相异步电机变频调速系统(挂箱) 6、R TDJ37线绕式异步电机转子专用箱; 7、RTDJ36三相线绕式异步电机(△接法); 8、测试转接盒; 9、根据自己的方案需要的实验设备。 10、双踪示波器 11 、万用表 三、实验原理 3E -弋 *

图2、三相SPWM 变频调速 图1和图2所示分别为单相和三相 SPWI 变频调速的主电路。单相异步电动机变频调速原理与三 相异步电动机基本相同,下面以三相异步电动机的调速原理来说明,由电机学可知,电机的转速表 达式为: 60 f , n - (1 一 s ) = n 。(1 一 s ) P 其中fi 为定子供电频率;P 为电机的磁极对数;S 为转差率,由上式可知改变定子供电频率 fl 可以改变电机的同步转速,从而实现了在转差率 S 保持不变情况下的转速调节,为了保持电机的最 大转矩不变,必须维持电机气隙磁通恒定,因而要求定子供电电压也随频率作相应调整。即 E^4.44f 1N 1K N1 ESN E 图3、异步电动机变频调速的控制特性 四、实验内容 1、 构建交流调速SPW M :频电路,研究SPW 碉制的发生原理,测定与SPW 碉制有关的各种波形; 2、 研究比较在不同的 U/f 1比值下系统的特性。 五、实验方法 1按下实验台主电源电路面板上的启动按钮,打开 RTDL17挂箱的电源开关,通过频率设定按钮 在忽略定子阻抗压降的情况下, E 1 U 1,所以 其中, 1 c = 4.44N 1K N 为常数。 为使气隙磁通恒定,在改变定子频率的同时必须同时改变电压 似的恒磁通调速。 U ,即5二const 。从而实现近 f 1 在额定频率以上调速时, 定子电压不可能再与频率成正比地升高, 只能保持在额定值,即U=U N , 此时气隙磁通0随着频率f 1的升高反而比例下降,这一段可看作近似恒功率调速。 U 1 f 1N f 1

交流传动控制系统(专升本)

平顶山学院 补考 课程:交流传动控制系统(专升本)总时长:120分钟 1. (单选题) 我国铁路的供电方式为( )(本题 2.0分) A. 15KV16.67HZ B. 1500V直流 C. 25KV50HZ D. 3000V直流 答案: C 解析: 无 2. (单选题) 两电平牵引逆变器由几相组成( )(本题2.0分) A. 1 B. 2 C. 3 D. 4 答案: C 解析: 无 3. (单选题) 两电平牵引逆变器输出线电压由几个电平组成( )(本题2.0分) A. 2

B. 3 C. 4 D. 5 答案: B 解析: 无 4. (单选题) 在恒力矩控制时,一般控制电机的气隙磁通为( )(本题2.0分) A. 与电机转速成正比 B. 恒定 C. 与供电频率成正比 D. 与电机转速成反比 答案: B 解析: 无 5. (单选题) 高速列车牵引传动系统属于( )(本题2.0分) A. 交-直-交传动 B. 直-交传动 C. 交-直传动 D. 交-交传动 答案: A 解析: 无 6. (单选题) 恒功率控制时,当转差频率不变时,电压( )(本题2.0分)

A. 不变 B. 与频率正比递增 C. 与频率平方根值正比递增 D. 与频率平方正比 答案: B 解析: 无 7. (单选题) 变频调速运行时,电机转子漏抗( )(本题2.0分) A. 与供电频率成正比 B. 恒定 C. 与供电频率成反比 D. 与供电频率平方成正比 答案: A 解析: 无 8. (单选题) 异步牵引电机牵引工况运行时,供电频率与转子频率的关系为( )。(本题2.0分) A. 大于 B. 等于 C. 小于 D. 小于等于 答案: A 解析: 无

机车车辆王牌复习题

机车车辆官方复习思考题 第一章铁道车辆的基本知识 一、铁道车辆的基本特点有哪些? 1、自行导向(轮轨导向运行) 2、低运行阻力(除坡道、弯道、空气对车辆的阻力外,运行阻力主要来自走行机构中的轴与轴承以及车轮与轨面的小摩擦阻力) 3、成列运行(由于以上两个特点决定它可以编组、连挂) 4、严格的外形尺寸限制 二、铁道车辆主要有哪些部分组成? 1、车体(容纳运输对象,安装和连接其他四个部分) 2、走行部(即转向架,承受来自车体和线路的荷载,缓和作用力) 3、制动装置(保证列车运行安全,机车车辆都有制动装置) 4、连接、缓冲装置(连接机车和车辆、车辆与车辆;传递纵向牵引力和冲击力;缓和机车和车辆间的动力作用) 5、车辆内部设备(为运输对象提供良好的服务而设于车内的固定附属装置) 三、常用的货车车种有哪些? 1、敞车(C) 2、棚车(P) 3、平车(N) 4、冷藏车(B) 5、罐车(G) 6、自翻车(ZF)--非重点 四、铁道车辆标记有哪些? 1、运用标记 (1)自重、载重、容积 (2)车辆全长及换长(车辆全长/车辆长度:该车两端钩舌内侧面间的距离;换长:车辆全长/11,尾数四舍五入,保留1位小数) (3)车号、车辆定位标记 (4)汉字标记及定员标记

2、产权标记 (1)国徽 (2)路徽 (3)产权标志 (4)配属标记 3、检修标记 (1)定期修理标记:段修(一年半)、厂修(不固定) (2)辅修(6个月)及轴检(3个月、6个月、一年)标记 货车由于无配属,故必须涂刷标记以备查考; 客车由于有配属,故不须涂刷辅修标记。 4、其他标记 (1)制造标记 (2)红旗列车标记 五、车辆标识的目的和意义是什么? 主要是为运用及检修等情况下便于管理和识别所设置的 六、车辆的主要技术参数有哪些? 1、车辆性能参数 自重系数:自重/ 标记载重 轴重:(自重+载重)/ 轴数 每延米轨道载重:车辆总质量/ 车辆长度 通过最小曲线半径:车辆能够安全通过的最小曲线半径 比容系数:设计容积/ 标记载重(平车无比容系数;罐车采用容重系数,即比容系数的倒数) 最高试验速度:指车辆设计时,按安全及结构强度等条件所允许的车辆最高行驶速度 最高运行速度:满足连续以该速度运行时车辆有足够良好的运行性能的速度通过最小曲线半径:车辆能够安全通过的最小曲线半径 2、车辆尺寸参数 车辆定距:车体支承在两走行部之间的距离。(转向架中心间距)。如图中

(完整word版)电气传动与调速系统

电气传动与调速系统课程总复习2011.7 一、教材信息: 《机电传动控制》,邓星钟主编,华中科技大学出版社 二、考试题型 客观题(单项选择、判断题) 主观题(填空、简答、分析和计算) 三、总的复习题 一、选择题 1、电动机所产生的转矩在任何情况下,总是由轴上的负载转矩和_________之和所平衡。 ( D )A.静态转矩B.加速转矩C.减速转矩D.动态转矩 2、机电传动系统稳定工作时中如果T M>T L,电动机旋转方向与T M相同,转速将产生的变化是。( B )A.减速B.加速 C.匀速D.停止 3、机电传动系统中如果T M

电气传动自动控制系统课程设计说课材料

课程设计报告书 题目:电气传动自动控制系统 报告人:王宗禹 学号:1043031325 班级:2010级34班 指导教师:肖勇 完成时间:2013年7月日 同组人:王大松 秦缘 龚剑 电气信息学院专业实验中心

一.设计任务 1.设计目标: (1)系统基本功能:该调速系统能进行平滑的速度调节,负载电机不可逆运行,系统在工作范围内能稳定工作 (2)已知条件: (3)稳态/动态指标:静态:s% ≤ 5% D = 3 动态:σi% ≤ 5% σn% ≤ 10% (4)期望调速性能示意说明:静差率小于5%,调速范围D=3. (5)系统电路结构示意图: 2.客观条件: (1)使用设备列表清单及主要设备功能描述: 二.系统建模(系统固有参数测定实验内容)

1.实验原理 (1)变流电源内阻Rn的测定: a.电路示意图如下: 可以等效如下: b.利用伏安法可以测出内阻R n的大小,方法是在电机静止,电枢回路外串限流电阻,固定控制信号 Uct 大小,0.5A≤Id ≤1A的条件下用伏安法测量Ud1,Id1和Ud2,Id2;利用公式可以求得Rn。 (2)电枢内阻 Ra、平波电感内阻 Rd的测定: a.电路示意图如下:

b.实验方法步骤: ◆电机静止,电枢回路外串限流电阻 ◆固定控制信号Uct 大小,Id ≈1A(额定负载热效点) ◆使电枢处于三个不同位置(如上图约120o对称)进行三次测量(Ura,Urd,Id),求 Ra , Rd 的平均值. (3)电动机电势转速系数 Ce的测定: a.实验原理: 由公式 可以推导出Ce的测定公式: b.实验方法步骤: ◆空载启动电机并稳定运行(I d0大小基本恒定) ◆给定两个大小不同的控制信号Uct ,测量两组稳定运行时的Ud、n数据 (4)整流电源放大系数 Ks的测定: a.实验原理: Ks可以根据公式Ud0=Ks*Uct可知Ks就是以Uct为横坐标Ud0为纵坐标的如下图曲线中线性段的斜率。故可以通过公式测定Ks.

电力机车的传动控制技术

摘要:近年来, 为了适应“提速、重载”的要求, 功率大、性能技术先进的新型国产内燃、电力机车的投人运用, 成为我国铁路运输的主要牵引动力。自1995年以来, 我国铁路机车迅速更新换代, 不仅蒸汽机车迅速退出历史舞台, 而且国产第一代内燃机车和第二代内燃机车的早期产品也批量报废, 国产第一代电力机车早期产品已开始批量报废, 第二代国产电力机车正通过大修改造为第三代相控电力机车。近年来, 大批量生产的是适应“提速、重载”的第三代内燃、电力机车, 并在积极研制第四代新型内燃、电力机车。本文简要介绍了机车电力传动形式的转变历程,回顾了交流传动的发展历史,揭示出电力电子技术与电传动技术的密切关系,重点阐述了我国电力牵引技术的发展与现状,并展望了以交流传动技术为方向的我国铁路机车车辆装备制造业的发展前景。 关键词:电力机车传动,控制技术,发展与现状。

目录 1.电力传动形式的转变 (3) 2.交流传动技术 (4) 2.1 交流传动技术的发展 (4) 2.2交流传动技术的原理简介 (6) 3.我国机车电传动技术的发展 (6) 3.1 第一代电力机车控制技术 (6) 3.2 第二代电力机车控制技术 (7) 3.3 第三代电力机车控制技术 (8) 4.展望 (10) 参考文献: (11)

1.电力传动形式的转变 从很早的年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。

第十二章 交流传动控制系统

第十二章交流传动控制系统 12.1、试述电磁转差离合器的工作原理,其工作原理与鼠笼式异步电动机的工作原理有何异 同?为什么? 答:电磁转差离合器的工作原理是基于电磁感应原理通过改变励磁电流进行工作。它由主动和从动两个基本部分组成。 鼠笼式异步电动机的工作原理是基于定子旋转磁场和转子电流相互作用,两者都是基于电磁感应原理。 12.2、试说明JZT1型转差离合器调速系统的调速过程。 答:JZT1型简易式转差离合器采用速度负反馈使电动机在负载增加导致转速降低以后控制 率很大,可能引起过热而损坏电动机,所以说调压调速方法不太适合于长期工作在低速的工作机械。 12.5、为什么调压调速必须采用闭环控制才能获得较好的调速特性,其根本原因何在? 答:因为即使增加电动机转子绕阻的电阻,调整范围仍不大,且低速时运行稳定性不好,不能满足生产机械的要求。因此为了保证低速时的机械性硬度,又能保证一定的负载能力,所以在调压调速系统里采用转速负反馈构成闭环系统。 参见课本P329图12.10。图中的晶闸管交流调压系统,可根据控制信号U的大小将电源电压U1改变为不同的可变电压U‘x。控制信号的大小,由给定信号U g和来自测速发电机的测速反馈信号U fn的差来调节。当负载稍有增加引起转速下降时,则正比于转速的U fn也将减小,由于U=U g-U fn,故U随U fn的减小而自动增大,从而使输出电压U’x 增大,电动机将产生较大转矩以与负载转矩平衡。此时的机械特性基本上是一簇平行的特性。 显而易见,在这种闭环调速系统中,只要能平滑地改变电子电压,就能平滑调节异步电动机的转速,同时,低速的特性较硬,调速范围也较宽。 12.6、串级调速的基本原理是什么?串级调速引入转子回路的电势,其频率有何特点? 答:串级调速就是在异步电动机转子电路内引入附加电势E ad,以调节异步电动机的转速。

机车交流传动技术

机车交流传动技术 一、简要的历史回顾 人所共知,机车发展按其动力来分,最早出现的是蒸汽机车,以后由蒸汽机车发展到内燃机车和电力机车。在电传动内燃机车和电力机车中,开始是直-直传动,尔后是交-直传动,70年代以后又出现要交-直-交传动,即所谓的交流传动。这种传动型式被认为是现代机车的标志,日益风靡世界。这样的发展道路是由客观规律所决定的,是历史发展的必然,是机车由低级向高级逐渐演变的必然结果。每种机车的出现和存在都是与当时的技术发展相适应的。比如随着大功率硅整流技术的出现,直-直传动很必然地被更优越的交-直传动所取代。同样,随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,交直传动很自然地被交-直-交传动所取代。 二、交流传动技术的特点和优点 人们很早地认识到交流传动的优越性。交流传动技术是一门综合技术,但其本质的特点是牵引电动机采用了交流异步电动机,其一系列的优点都是由此而表现出来的。交流传动机车所以成为现代机车发展的方向,正是由异步电动机的特点和优点所决定的。和传统的串激直流电动机驱动系统相比,交流异步电动机驱动系统的优越之处表现在机械、绝缘、耐热、耐潮、粘着、维修、效率、重量尺寸等诸多方面。 1、构造简单 异步电动机是所有电机中结构最简单的电动机,除轴承外,没有其他机械接触部分。串激直流电动机则不然,结构复杂。定子、转子都有绝缘要求很高的绕组,有换向器装置和电刷机构,磨擦部分多,接线复杂,机械转速受换向条件和机械强度的限制,只能达到2500r/min左右。而交流异步电动机转速可达4000r/min 以上,试验转速甚至可达6000r/min,这是直流电机所忘尘莫急的。 2、粘着性能好 (1)异步电动机有很硬的机械特性,所以当某电机发生空转时,随着转速的升高,转矩很快降低,具有很强的恢复粘着的能力。空转发生时,转速上升值不大,即使是同步转速,与原工作点的转速差不会超出5%以上。串激电动机则不然,转矩变化一点,转速就有很大的变化。 (2)异步电动机的工作点可以很方便地进行平滑调节,以实现最大可能的粘着利用,不会出现粘着中断情况。根据检测有关粘着控制的信号,准确、迅速地改变逆变器输出的电压和频率,寻求最佳工作点,使驱动系统既不能发生空转,又能充分发挥最大的牵引力。 (3)可实现各轴单独控制。当某台电机发生空转时,可调节该台电机,这样能充分利用机车的粘着性能。在交—直传动系统中,某轴空转时,需要使所有各轴电机卸载,这样就大大降低了机车的牵引能力。 由于上述特性和良好的控制功能,交—直流传动系统的粘着系数可以利用得很高。1992年美国铁路协会(AAR)在向四家机车制造厂提出的26台交流传动机车投标建议书中提出的粘着指标是:起动粘着系数45%,全天候牵引粘着系数是32%(GE公司在交—直传动机车上,采用“SENTRY”粘着控制装置后,全天候粘着系数是0.25~0.30)。如此之高的粘着利用,正是针对交流机传动机车所具有的良好的粘着控制而提出的,这对于交—直传动系统是不可想象的。德国四轴120型机车,可满足以往六轴机车的全部要求。 3、功率大,牵引力大 这个概念是指在其它条件大致相同的前提下,在机车结构所提供的空间条件下,可以装更大功率的异步电动机。如加拿大改造的CP4744号机车,在给定的设计空间条件下,直流电动机的功率大约被限制在600~700kW/轴。装用BBC6FRA40B异步牵引电动机,其功率可达1492kW/轴以上。正因如此,才可使机车的牵引功率大大提高。牵引功率大导致牵引力大,而又由于粘着性能好,大的牵引力能充分发挥其牵引能力。我们可以比较一下ND5型交直流传动机车和SD60MAC交流传动机车的牵引力情况:ND5机车的柴油机的标定功率为2940kW,起动牵引力为533.6kN,持续速度为22.2km/h时的持续牵引力为359.8kN;SD60MAC机车的柴油

电气传动控制系统

1 电气传动控制系统 1.1 电气传动自动控制系统优化设计方法研究概述 电气传动系统又称电力拖动系统,是以电动机作为原动机的机械系统的总称。其目的是为了通过对电动机合理的控制,实现生产机械的起动,停止,速度、位置调节以及各种生产工艺的要求。随着技术的进步及社会对环保、节能要求的日渐严格,电气传动系统在社会各方面的使用越来越广泛。如何优化、设计电气传动系统,以实现更低廉的成本、更好的性能就具有十分重要的意义。近年来许多新理论新策略应用于电气传动系统中,并获得了良好的效果。但对大部分系统而言,其基本的闭环控制结构、利用调节器对控制对象进行校正以使系统符合要求的方法基本未变。所以,我国电气传动系统设计领域的权威专家陈伯时教授总结出的调节器的“工程设计方法”,目前在实际设计中仍然是主流设计方法。如何设计出优秀的调节器依然是电气传动系统优化设计的主要内容。因此借鉴了“工程设计方法”的基本思想,以电气传动系统的优化设计为目的,在现有的调节器“工程设计方法”基础上,采用其采用少量典型系统、分步设计的基本设计思路,以系统闭环幅频特性峰值、调节时间最小为最优化原则,分别针对典型Ⅰ、Ⅱ、Ⅲ型系统研究出一套更能满足实际工程需要的设计方法。并总结出了便于设计者使用的参数、性能指标值计算公式及图表。针对交流电机矢量控制系统鲁棒性差的问题则进行了研究并提出了优化方案。利用MATLAB编程和SIMULINK仿真对所设计的系统进行验证,结果表明针对典型Ⅰ、Ⅱ型系统的设计方法所设计出的系统性能指标及设计灵活性均好于“工程设计方法”;针对典型Ⅲ型系统的设计方法则是“工程设计方法”所未涉及而又实际需要的,故填补了“工程设计方法”的空白;在交流电机矢量控制系统中引入复合磁链观测器及双层模糊控制器后,系统的鲁棒性及性能得到了提高。 1.2 信息化时代的电气传动技术 当前世界上正处于信息化的时代,而我国工业化尚未完成,以信息化带动工业化是我们的重要任务。电气传动是工业化的重要基础。正如人体,信息技术好

中南大学《机车车辆传动与控制》纸质作业答案(0-2章)

《机车车辆传动与控制》作业参考答案 一、名词解释: 1.加馈电阻制动: 为了改善电阻制动在低速时的制动特性,须维持制动电流不随机车速度降低而下 降。要维持制动电流不变,必须要有外部电源对制动回路补充供电,以使制动电流(电枢电流)不变,实现低速恒制动力特性,这种方法称为“加馈电阻制动”。 在电力机车电阻制动中,加馈电源由主变压器和主整流桥相控输出整流电压U d提供,对制动回路实施电流加馈,以维持制动电流不变,即达到恒制动力特性。 Z a d Z R E U I + =,要维持制动电流不变,加馈电压必须要与发电机感应电势同步反向变化,即 发电机输出电压减小多少就由U d补偿多少,直至加馈整流桥输出电压达到最大值为止,加馈制动功率达到最大值,加馈制动过程结束。此后,电力机车将按照最大励磁电流特性进行制动。 2.电阻制动:电阻制动属动力制动,是利用电机的可逆原理,将牵引电动机改为他励发动机运行, 将列车的惯性能量转化为电能的一种非摩擦制动方式,在动力轴上产生与列车运行方向相反的阻力性转矩,阻碍列车运行,对列车实施制动。 电阻制动将发电机输出的电能消耗在制动电阻上,以热能的形式散失掉。 3.牵引特性:机车牵引特性是指机车轮周牵引力F与机车速度v之间的关系,即F=f(v), 它是表征机车性能的重要指标,是列车运行牵引计算的依据。 4.(相控电力机车)特性控制: 特性控制是目前广泛用于国产机车上的一种控制方式。它是恒流控 制和准恒速控制的结合,即机车牵引特性具有恒流启动和准恒速运行的双重性能。 二、简答题: 1.简述列车电力传动系统的基本组成及其功能。 答:列车电力传动系统一般由能源供给单元、变换单元、动力输出单元和控制单元等部分组成。 列车电力传动系统的基本组成如下图所示。 能源供给单元:系统提供适当的工作能源,一般有一次能源石油和二次能源电能。一次能源主要为柴油,二次能源电能通过接触网线提供; 变换单元是将工作能源通过相应的装备变换成动力输出单元(负载)所需要的电能,提供给动力输出单元。柴油机将一次能源柴油转换为机械能,拖动牵引发电机组工作产生电能。 接触网线上的二次能源电能通过车载受电装置引入车内,经变流环节变换为合适的电能,供 给动力输出单元; 动力输出单元主要由牵引电动机、传动装置和转向架轮对组成,牵引电动机接受电能并将其转换为机械能从转轴上输出,通过传动机构带动车轮旋转,在轮轨之间产生牵引力,牵 引列车运行; 控制单元是电力传动系 统的中枢神经部分,承担着整 个系统各单元内部及相互间 的控制和通信任务。 列车电力传动系统基本组成框图

地铁车辆交流传动系统

地铁车辆交流传动系统

本文简要的探讨了地铁车辆交流传动系统的组成、控制原理、牵引和电制 动特性曲线,对地铁车辆的系统电路进行了简要的描述,分析了直流传动和交 流传动的优缺点。 我国早期的地铁列车多为国产直流传动电动车组,采用凸轮调阻或斩波调阻的 牵引控制方式,牵引电机为直流电机。而近几年建设的地铁项目均采用了进口 交流传动电动车组,牵引控制方式为VVVF逆变器控制,牵引电机为异步电机。与直流传动系统相比,交流传动系统具有恒功速度范围宽、功率因数和粘着系 数高、牵引电机结构简单和维修方便等优势。 1 交流传动系统的组成 地铁车辆与铁路机车在结构、系统集成上大不相同,机车是完整的牵引系统, 与后面连接的载客(货)车厢相对独立;而地铁车辆则是编列成组,虽然分为 动车和拖车两部分,但都是旅客车厢,动力系统均被分散安装于各车箱的地板 下(动力分散)。 交流传动系统是以调压调频VVVF(Variable Voltage Variable Frequency)逆变器为核心的电传动系统。主要由高速断路器、滤波电抗器、VVVF逆变器和异步电动机等装置构成。地铁车辆交流传动系统的组成因生产厂家的不同及用户 要求的不同而不相同,这里以六节编组的四动两拖(Tc+M+M+M+M+Tc )地铁车辆为例,简要探讨交流传动系统的组成。 下图为一个“两动一拖(2M1T)”单元主电路实例。电网经受电弓后分别经两 台动车(B车和C车)的高速开关给逆变器供电,而在拖车(A车)上的辅助逆变器的供电是经过隔离二极管的。 下图为1C4M单元主传动系统原理电路图,1C4M是指一台VVVF逆变器给同一辆车四台相互并联的异步电动机供电的方式,也叫“车控”方式。其中滤波电抗 器和滤波电容器构成线路滤波器。VVVF逆变器包含斩波器,斩波器由T7、T8构成,斩波器主要功能用于电阻制动,用它来调节制动电流大小,其另一个功能 为过电压保护。 2 交流传动系统的控制原理 VVVF控制的基本原理为通过改变VVVF逆变器各IGBT元件的开通时间来改变负载的电压,通过改变VVVF逆变器各IGBT元件开通的周期来改变输出的频率。 异步电动机的转矩公式为:T=K1·φ·Ir=K2·(V/fi)2·fs

传动控制系统考试说明及讨论题

第二章电力拖动继电接触控制 1.试分析什么叫点动,什么叫自锁,并比较图2-1和图2-2的结构和功能上有什么区 别? 点动就是在对电动机的控制要求一点一动,即按一次按钮动一下,连续按则连续动,不按则不动的状态; 自锁,是在接触器线圈得电后,利用自身的常开辅助触头保持回路的接通状态。 图2-2比图2-1多了热继电器FR1和接触器SB2,以及辅助触头KM1,热继电器可以实现过载保护,SB2和辅助触头KM1可以实现自锁控制,图2-1没有此功能。 2.图2-2电路能否对电动机实现过流、短路、欠压和失压保护? 图2-2电路实现了对电机的过流、短路、欠压和失压保护。 图2-2中利用了四个熔断器FU以实现短路保护。熔断器FU串联于被保护的电路中,当电路发生短路或严重过载时,它的熔体能自动迅速熔断,从而切断电路,使导线和电器设备不致损坏。最终实现短路保护。 当电路短路过流时,即使熔断器还没工作,由于电流的热效应导致电路升温,热继电器及时切断控制回路,接触器线圈失电而触点断开,切断了电机与电源电路。 当电路欠压或失压时,接触器线圈就失电,触点断开,电机脱离电源而得到保护,过后即使电压恢复只要不按下启动按钮,电机就不会自动启动运转。 3.接触器和按钮的联锁触点在继电接触控制中起到什么作用? 接触器的联锁触点是继电器的殿后线圈使使常闭触点断开实现联锁,属于电气联锁;而按钮的联锁触点则是利用按钮按下时使其常闭开关断开来实现联锁的,属于机械联锁。 4.在图2-4中,欲使电机反转,为什么要把手柄扳到“停止”使电动机M停转后,才能扳向“反转”使之反转,若直接扳至“反转”会造成什么后果? 若直接扳至“反转”,电动机的工作状态相当于反接电源制动,制动期间电枢电动势E 和电源电动势是串联相加的,因此会产生较大的电枢电流,在串接的限流电阻不够的情况下易产生过流。 5.试分析图2-4、2-5、2-6、2-7各有什么特点?并画出运行原理流程图。 图2-5采用KM接触器互锁,其运行的正常与否取决于接触器的反应速度与先后顺序。图2-6采用按钮互锁其运行的正常与否取决于按钮的反应速度与先后顺序。图2-7采用按钮和接触器双重联锁正反转控制线路,其安全性与稳定性最高,避免因其中一种互锁失效而导致电源短路。 原理流程图略

机车车辆传动与控制复习题及参考答案

《机车车辆传动与控制》课程复习资料 一、名词解释: 1.电阻制动 2.(相控电力机车)恒压控制 3.(相控电力机车)速度控制 4.(相控电力机车)中央控制单元 5.(相控电力机车)传动控制单元 6.(相控电力机车)逻辑控制单元 7.电压型牵引变流器 8.电流型牵引变流器 9.两电平式逆变器 10.(异步牵引电动机)恒磁通调速 11.(异步牵引电动机)恒功率调速 12.间接矢量控制 二、简答题: 1.试分析并联运行时串励牵引电动机、并励牵引电动机的负载分配情况。 2.简述直流牵引电动机的调速方式。 3.分析相控电力机车传动系统电气线路的类型及作用。 4.电力机车的相控调压方式选择原则是什么? 5.电阻制动受哪些因素影响? 6.什么是加馈制动?简述加馈电阻制动的作用与过程。 7.简述影响相控电力机车牵引特性的主要因素及牵引特性的工作范围。 8.简述我国干线相控电力机车主电路的基本技术特征。 9.简述相控电力机车辅助电路的组成及其功能。 10.简述电力牵引交流传动技术组成。 11.简述交流传动列车牵引特性及控制策略。 12.简述牵引变流器的类型及特点。 13.简述四象限脉冲整流器的基本工作原理。 14.简述电压型四象限脉冲整流器的特征。 15.简述三电平式脉冲整流器PWM控制原理。 16.简述牵引变流器中间直流储能环节的的作用和组成。 17.分析矢量控制的基本思想。 18.分析转子磁链电压模型的基本工作原理及优缺点。 19.分析直接转矩控制的基本思想及控制方法。 20.直接转矩控制(DTC)与矢量控制(VC)在控制方法上有何异同? 三、综合分析题: 1.试分析SS8型电力机车整流调压电路工作方式、调压过程及其磁场削弱电路的工作过程。 2.试分析电动车组(EMU)的牵引特性与控制策略。

机电传动控制系统

全自动双面钻的机电传动控制系统 11机电 2011994126 李秋谊一、该系统总结结构的设计或描述 本机为专用千斤顶油缸两端面钻孔加工的组合机床,采用装在动力滑台上的左、右两个动力头(电机均为1.5KW)同时进行切削。动力头的快进、工进及快退均由液压油缸驱动。液压系统采用两位四通电磁阀进行控制,并用死挡铁方法实现位置控制 (1)在主回路中仅需对电机的启停进行控制和对动力头电机进行能耗制动的设计,不需控制正反转; (2)在液压回路的液压泵附近处应添加压力继电器,并在液压控制回路的首端加入该压力继电器的常开触点,以实现满足油压后才能进行其他控制的要求; (3)对于机床的半自动循环,可以采用起保停电路来实现,而对于各个动作的单独调整则可在控制首端加入万能转换开关,并对各个动作设置手动按钮来实现该 控制要求; (4)控制回路中可添加辅助回路,以控制照明和显示功能; (5)在每个电动机的连接处,均接入一个适合的热继电器,以实现过热保护,在主回路中各个支路与主电源相连接处均接入一个适合的熔断器,以实现过流保护 (短路保护),而在控制回路与变压器相连处也应接入适合的熔断器,同样实 现过流保护; (6)增选一个冷却泵,并接入主回路,在控制回路中加设一支路,通过按钮控制冷却泵的启停。

主电路 主电路的设计中主要应满足一下几点要求: (1) 动力头电机应实现能耗制动; (2) 动力头电机、液泵电机、冷却泵电机三者应分开接向主电源,并由不同的接触 器控制; (3) 三种电机君应实现短路保护(过流保护)与 过热保护; (4) 电源处应有一个总闸控制电源的关断。 二﹑系统的传动部分 机械式---主要是指利用机械方式传递动力和运动的传动。一是靠机件间的摩擦力传递动力与摩擦传动,二是靠主动件与从动件啮合或借助中间件啮合传递动力或运动的啮合传动。传动系统的作用是将发动机的动力,经传动系统传递给车轮,实现叉车的前进和后退。 传动系统由离合器、变速器、液力传动装置、驱动桥、联轴器、差速器等部分组成。这种传动装置都有一定的档数,其每一个档位都有一个固定的传动比,常称为有级变速。 电机的拖动的发展过程如下: 三、系统的接触器-继电器控制部分和调整部分的设计或描述(要作出电路图); 成组拖动 多电机拖动(不同机 构由单独电机拖动) 单电机拖动

电力机车控制

电力机车调速 电力机车调速 电力机车调速电力机车牵引列车运行中,根据运行条件对机车的运行速度进行控制和调节的技术.电力机车调速的目的是充分发挥机车的功率,提高运抽能力,完成运输任务。列车在线路上由于线路状态、坡度、曲线和牵引重量不同,及遇有临时线路施工、进出站等需要急行或停车的情况,速度变化范围较大,要求电力机车具备良好的调速性能,以满足运行需要。对调速的基本要求:①在调速过程中不能中断主电路供电,由一个速度级转换到另一速度级应平稳过渡,避免牵引力突变引起列车冲动。②不因调速引起倾外能量损耗。③调速方法应力求简便、可靠。调速原理电力机车调速实质是牵引电动机(电力机车电机电器)的调速问题。电力机车是以牵引电动机通过齿轮等传动装置驱动机车运行的。电力机车中应用较多的是直流串励电动机(见直流电动机),这种电动机有调速简单,调节范围广,起动力矩大等优点。直流串励电动机的转速公式为 U.一I.R. C巾,r/min 式中U.为牵引电动机端电压,V;1.为电枢电流,A;凡为牵引电动机电路中总电阻,n;巾为励磁磁通,Wb, c.为电动机结构常数。从公式可知,改变U.、凡以及巾,均可改变电动机的转速,达到调速目的。分类电力机车的调速分为直流电力机车调速、交流电力机车调速、交流一直流一交流传动系统变频调速。直流电力机车调速又可分为变阻调速、变压调速、变磁调速(磁场削弱〕、斩波调速。前三种为有级调速,最后一种为无级平滑调速。变阻调速:其基本工作原理是改变串接在牵引电动机电路中的电阻值以调节机车的速度. 按运行要求,改变可调电阻R的数值,即可改变牵引电动机的端电压,从而使机车的速度变化。变阻调速的值再进一步提速,可充分发挥高速运行时牵引电动机的功率。此时通过采用主极绕组上并联分路电阻(R、与 RZ并联)来减少牵引电动机主极磁通必(一般称为磁场削弱),从而使电机电流一部分流经分路电阻,减少励磁电流,即相应减少磁通。这种调速方法简单、方便.利用改变分路电阻值的方法,即可得到几个不同的磁场削弱强度.斩波调速:在直流接触网电压电源与直流牵引电动机之间接人可控晶闸管直流斩波器,通过调节可控晶闸管每一周期内导通时间(即改变导通比),可以改变牵引电动机的端电压,从而调节机车的运行速度. 这种斩波调速方法,不仅损耗小而且可以无级平滑调速。在地下铁道、动车及城市无执电车上广泛采用斩波调速。(见斩波控制直流调速) 交流电力机车调速在交流电力机车中,以整流器式电力机车用的最多。它由单相高压交流接触网供电,经过机车的牵引变压器降压和整流装t整流后以低压直流(实为脉流)形式供给直流牵引电动机.由于这种电力机车上装有牵引变压器、整流器,可以采用多种调压方式。这些调压方式既可用改变牵引变压器输出电压方法来调节牵引电动机的端电压,也可用直接改变整流装置的整流电压方法来调节牵引电动机的端电压,以达到电力机车调速的目的。利用牵引变压器调压方法进行机车调速的优点是:调压电路简单,调速范围广,经济运行级多,调节方便,功率因数和效率比较高。采用直接改变整流电压调速方法,即晶闸管相位控制调压,则可实现平滑无级调速,即每级均可长期运行,都是经济运行级。 (l)牵引变压器调压方法分为高压侧调压及低压侧调压两种,使用较多的是低压侧调压。 1)高压侧调压:改变牵引变压器的高压侧绕组 (即一次绕组)抽头,调节其输出电压,从而达到机车调速目的。高压侧调压的基本原理如图4所示。变压器的基本关系式为竺_丛.0._。坠 uZw:’一‘一’wz 式中WI为高压绕组匝数;WZ为低压绕组匝数;“,为牵引变压器输入电压;uZ

电力传动控制系统

第1章 电力传动控制系统的基本结构与组成 1. 根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 图1-1 电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制性能的重要课题。 4)控制策略和控制器的设计。任何自动控制系统的核心都是对控制方法的研究和控制策略的选择,电力传动控制系统也不例外。根据生产工艺要求,研发或选择适当的控制方法或策略是实现电力传动自动控制系统的主要问题。 2.直流电动机有几种调速方法,其机械特性有何差别? 答:直流电动机转速和其他参量之间的稳态关系为 a a e U RI n C Φ -= 考虑到他励直流电动机电枢电流与电磁转矩e T 的关系e T a T C I Φ=,可以将其机械特性写成如下形式:

相关文档
最新文档