智能变电站介绍

合集下载

智能变电站简介

智能变电站简介

Ethernet Modbus or Canbus
1# 直 流 屏
总监控
(服务器)
1# 交 流 屏
1# Ups (Inv) 屏
1# 通 讯 屏
0# 直 流 屏
2# 直 流 屏
2# 通 讯 屏
2# Ups (Inv) 屏
2# 交 流 屏
1# 分 电 屏
2# 分 电 屏
3# 分 电 屏
1# 分 电 屏
2# 分 电 屏
3# 分 电 屏
2.1 一体化电源的特点
1 2 3
各种操作电源高度整合,集中监控; 统一用DL/T860标准接入自动化系统;
全部馈出开关均采用模块化设计; 远程可操作系统中任一个可操控部件;
4
3 IEC 61850标准
IEC 61850标准的内容框架 信息模型
物理设备 逻辑设备 5 逻辑节点 数据对象 数据属性 建模方法 7-1 7-4
4 IEC 61850标准
IEC 61850模型扩展原则
LN、DO和CDC都可以扩展 扩展应遵循国网公司标准 《IEC61850国际标准工程化实施技术规范》
逻辑设备 LD 物理设备 PHD
《IEC61850工程应用模型》
模板
逻辑节点类 LN
数据对象类 DO 公共数据类 CDC 数据属性 DA
IEC 61850模型体系结构
LN
LD PHD
接地距离I段:PDIS1 接地距离II段:PDIS2 接地距离III段:PDIS3
逻辑设备 公用/保护/测量/控制/录波 物理设备 实际的保护装置
分层模型
4 IEC 61850标准
IEC 61850的模型框架
公共LD:装置告警/装置自检信息 保护LD:保护启动/保护动作/定值/压板信息 测量LD:交流量/直流量 控制及开入LD:断路器/刀闸/变压器分接头 录波LD:录波信息

智能变电站介绍

智能变电站介绍

智能变电站介绍智能变电站介绍1.背景和概述智能变电站是一种集成了现代化通信与自动化技术的电力系统,是电力系统中重要的组成部分。

它采用先进的数字化控制设备,能够实现远程监控、远程操作和远程维护,具有高度智能化和自主决策能力。

2.智能变电站的组成2.1 主变压器室主变压器室是智能变电站的重要组成部分,用于将高压输电网的电能通过变压器降压并分配到不同的供电线路。

2.2 进线室进线室用于将电能从外部输电线路引入智能变电站,它通常包括隔离开关、断路器和避雷器等设备。

2.3 配电室配电室是智能变电站中用于将电能分配到不同的用户供电区域的重要设备。

它包括断路器、隔离开关和配电变压器等设备。

2.4 控制室控制室是智能变电站的“大脑”,通过监测和控制设备来实现智能化管理。

它通常包括监控系统、自动化控制系统和远程通信系统等设备。

2.5 辅助设备智能变电站还包括各种辅助设备,如电池组、直流屏、通风设备等,用于保障变电站的正常运行。

3.智能变电站的特点3.1 高度智能化智能变电站采用先进的数字化控制设备,能够实现远程监控、远程操作和远程维护,具有智能化管理和自主决策的能力。

3.2 高度可靠性智能变电站通过多重备份和冗余设计,能够保障电力系统的连续供电,具有高度可靠性和稳定性。

3.3 高效能源利用智能变电站通过优化调度和能源管理,能够实现电力系统的高效能源利用和降低能源损耗。

3.4 环境友好智能变电站采用先进的设备和技术,能够减少对环境的污染和影响,具有较低的碳排放和环境友好特性。

4.附件本文档涉及的附件包括智能变电站的示意图和设备清单。

5.法律名词及注释5.1 变电站变电站是电力系统中用于变压、分配和控制电能的场所。

5.2 主变压器主变压器是变电站中用于将高压电能变压并分配到不同的供电线路的设备。

5.3 进线室进线室是变电站中用于将电能从外部输电线路引入变电站的设备。

5.4 配电室配电室是变电站中用于将电能分配到不同的用户供电区域的设备。

智能变电站介绍

智能变电站介绍

智能变电站介绍在当今科技飞速发展的时代,电力系统的智能化变革正在深刻地改变着我们的生活。

智能变电站作为电力系统中的关键环节,发挥着至关重要的作用。

那么,究竟什么是智能变电站呢?简单来说,智能变电站是采用先进、可靠、集成和环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。

智能变电站的构成十分复杂,包含了众多的设备和系统。

首先是智能化的一次设备,比如智能变压器、智能断路器等。

这些设备能够实时监测自身的运行状态,并将相关数据传输给后台系统。

智能变压器相较于传统变压器,它配备了智能传感器,可以实时监测油温、油位、绕组温度等关键参数。

通过对这些参数的分析,能够及时发现潜在的故障隐患,提前采取措施进行维护和修复,大大提高了变压器的运行可靠性。

智能断路器则具备了智能控制和保护功能。

它能够根据电网的运行情况,自动调整开合状态,实现对电路的精确控制和保护。

其次是二次设备,包括智能继电保护装置、测控装置、自动化系统等。

智能继电保护装置能够快速准确地判断故障,并迅速采取隔离措施,保障电网的安全稳定运行。

测控装置则负责对变电站内的各种电气量进行精确测量和控制。

自动化系统则实现了对整个变电站的自动化管理和控制,大大提高了运行效率。

在通信系统方面,智能变电站采用了高速、可靠的网络通信技术,实现了站内各个设备之间的信息快速传递和共享。

这使得不同设备之间能够协同工作,提高了变电站的整体运行性能。

智能变电站的优点是显而易见的。

它提高了电力系统的可靠性和稳定性。

通过实时监测设备的运行状态,能够及时发现并处理故障,减少停电事故的发生。

同时,智能变电站具有更高的自动化水平,大大减少了人工干预,降低了运行成本。

而且,智能变电站能够实现对能源的高效利用,通过优化电力调度,提高了电能的质量和利用效率。

智能变电站介绍

智能变电站介绍

智能变电站介绍在当今科技飞速发展的时代,电力系统也在不断地进行着创新和变革。

智能变电站作为电力系统中的重要组成部分,正逐渐成为保障电力供应稳定、高效和智能化的关键设施。

智能变电站是采用先进的智能化技术,对传统变电站进行升级和改造的产物。

它通过集成各种智能化设备和系统,实现了对电力的更精确控制、更高效传输以及更可靠的运行。

从设备层面来看,智能变电站配备了一系列智能化的电力设备。

比如,智能变压器能够实时监测自身的运行状态,包括油温、油位、绕组温度等关键参数,并根据这些数据进行自我调节和优化。

智能开关设备则具备了远程控制、状态监测和故障诊断等功能,大大提高了开关操作的准确性和可靠性。

在信息采集和传输方面,智能变电站采用了先进的传感器技术和通信网络。

各种传感器分布在变电站的各个关键部位,实时采集电压、电流、功率等电力参数,以及温度、湿度、压力等环境参数。

这些采集到的数据通过高速、可靠的通信网络,如光纤以太网,迅速传输到控制中心,为运行人员提供了及时、准确的信息。

智能变电站的一大特点是实现了智能化的控制和保护功能。

传统的变电站控制和保护系统相对较为独立和分散,而智能变电站则将控制、保护、测量、监测等功能进行了深度融合,形成了一体化的智能化系统。

这个系统能够根据实时的电力运行状况,快速、准确地做出决策,实现对变电站的智能化控制和保护。

例如,在发生故障时,系统能够迅速判断故障类型和位置,并采取相应的保护措施,将故障影响范围最小化,保障电网的安全稳定运行。

此外,智能变电站还具备良好的兼容性和扩展性。

随着电力需求的不断增长和技术的不断进步,变电站需要不断进行升级和扩建。

智能变电站的设计充分考虑了这一点,其采用的模块化、标准化的架构,使得新设备和新系统能够方便地接入和集成,大大降低了升级和扩建的成本和难度。

智能变电站的出现,也给电力系统的运行和管理带来了诸多好处。

首先,它提高了电力供应的可靠性。

通过实时的监测和智能化的控制保护,能够及时发现和处理潜在的故障隐患,减少停电事故的发生。

智能变电站介绍

智能变电站介绍

智能变电站介绍智能变电站介绍1. 引言智能变电站是应用先进的信息技术和传感器技术,对传统的电力变电站进行升级改造而成,旨在提高变电站的自动化程度、运行效率和安全性。

智能变电站运用先进的通信技术、传感器技术和等技术手段,实现电力系统自动化、智能化、可远程监控和管理。

2. 智能变电站的特点2.1 自动化程度高智能变电站应用了先进的自动化控制系统,可以对电力设备进行精确监控和控制,实现对电力变电站的智能化管理。

通过自动化程度的提高,可以有效减少人为操作引起的错误,提高电力系统运行的稳定性和可靠性。

2.2 运行效率高智能变电站通过先进的数据采集和处理技术,实时监测和分析电力设备的运行状态。

通过对运行状态的精确监控,可以进行设备的智能调度和维护计划的制定,从而提高电力系统的运行效率和设备的利用率。

2.3 安全性高智能变电站应用了先进的传感器技术和安全防护措施,对电力设备进行全方位的监测和保护。

一旦发现设备存在故障或异常情况,系统将自动进行报警和隔离,保证电力系统的安全运行。

3. 智能变电站的主要功能3.1 远程监控和管理智能变电站通过网络技术,实现对电力变电站的远程监控和管理。

运维人员可以通过远程终端设备,实时监测电力设备的运行状态、接收报警信息并进行相应的操作。

这种远程监控和管理方式,大大提高了运维效率,节约了人力资源。

3.2 数据采集和分析智能变电站利用传感器对电力设备的运行参数进行数据采集,并通过数据分析和处理,得到设备的运行状态和健康程度报告。

通过对数据的分析,可以预测设备的故障风险,并制定相应的维护和保养计划,提高设备的可靠性和延长使用寿命。

3.3 自动化控制和调度智能变电站应用了先进的自动化控制系统,可以根据电力系统运行状态和负荷情况,自动进行设备的调度和控制。

根据预设的优化策略,自动调整设备的运行模式,实现电力系统的稳定运行和能耗的最优化。

4. 智能变电站的应用前景智能变电站作为电力系统的重要组成部分,具有广阔的应用前景。

智能变电站简介

智能变电站简介

智能变电站简介智能变电站简介:一、概述:智能变电站是利用先进的信息技术、通信技术和控制技术实现自动化、智能化运行管理的现代化电力供应设施。

它通过集成电力系统监控、自动化保护、通信调度、数据处理等功能,提高了电力系统的稳定性、可靠性和安全性,实现了对变电站设备和电网运行状态的全面监测和控制。

二、设备配置:1、主变压器:智能变电站配备高性能的主变压器,具有高效率、低损耗、体积小、重量轻等特点。

同时,主变压器配备智能监测系统,可以实时监测油温、载流量、绝缘状态等参数,及时预警故障。

2、开关设备:智能变电站采用先进的开关设备,如SF6断路器和真空断路器,具有快速断电、可靠性高、维护免保养等优点。

同时,开关设备配备智能保护和监测系统,可以实现对电力设备的远程监控和故障定位。

3、自动化控制系统:智能变电站配备先进的自动化控制系统,包括SCADA系统、远动系统等,实现对变电站各个设备的远程监控、自动操作和数据采集。

通过这些系统,可以实现变电站的自动化运行和远程管理。

4、通信调度系统:智能变电站采用高速可靠的通信网络,将变电站与电力公司的调度中心相连。

通过通信调度系统,实现对电力设备和电网运行状态的全面监测和远程控制。

三、功能特点:1、智能监测:智能变电站配备各种监测装置和传感器,可以对变电站设备的温度、湿度、电流等参数进行实时监测,并及时报警。

2、故障预警:智能变电站配备故障预警系统,可以对变电站设备进行故障预警,并通过短信、邮件等方式提醒维护人员及时处理。

3、智能保护:智能变电站采用先进的保护装置,可以对电力设备进行精确的保护,及时切除故障,保障电力系统的安全运行。

4、远程操作:智能变电站配备远程操作系统,可以实现远程对变电站设备的操作和控制,减少人工操作,提高工作效率。

附件:本文档涉及的附件包括智能变电站的设备配置图、通信调度系统的架构图等,详见附件1:法律名词及注释:1、智能变电站:指利用先进的信息技术、通信技术和控制技术实现自动化、智能化运行管理的现代化电力供应设施。

智能变电站介绍

智能变电站介绍

站控层设备
监控系统
工程师工作站
故障信息系统
站控层MMS网络 站控层网络
间隔层设备
保护1
测控1
{ 过程层网络 GOOSE跳闸网络 SAV采样值网络
HUB/MAU
NIC
% UTILIZATION
TAB
GD RE I F JA KB L C
M7 N 8 O9 GD GD GD BNC 4Mb/s GD T 2 U 3 V0 W. X Y Z
磁光玻璃 纯光纤
电压互感器
普克尔电光效应 克尔效应 逆压磁效应
电子式电流互感器分类
Faraday 电磁感应原理
Faraday 磁旋光效应
铁心线圈
法拉第 (Michael Faraday) 1791年-1867年
空心线圈
玻璃、光纤 或镀模玻璃
低功率铁心线圈
电流互感器 (LPCT)
罗可夫斯基线圈
电流互感器 (RCT)
光学电流互感器 (OCT)
Rogowski电子式互感器
• 电流测量:采用罗氏(Rogowski)空芯线圈和低功率线 圈(LPCT)电磁感应原理
远端模块由电子电路构成,需要供电,因此称为有源式电子 互感器,有源式电子互感器技术较为成熟,在国内外已经有 一定旳应用。
特点: • 空心线圈,不会产生磁饱和现象; • 动态测量范围大; • 频率响应范围宽; • 体积小、重量轻。
长处 1、高下压系统完全隔离,安全性高,具有优良旳绝缘性 能和优越旳性价比; 2、不含铁芯,消除了磁饱和和铁磁谐振等问题; 3、无CT开路、PT短路旳危险,互感器旳精度与负载无关 4、动态范围大,测量精度高; 5、暂态特性好 6、没有因充油而潜在旳易燃、易爆炸等危险 7、 体积小、重量轻 8、适应了电力系统数字化、智能化和网络化发展旳需要

智能变电站介绍范文

智能变电站介绍范文

智能变电站介绍范文
智能变电站是指基于最新的智能技术,应用于配电站、变电站、变压
器站等,采用新型配电和调度设备,提供安全、高效、稳定的电力供应的
一种变电站。

它是由变电站设备、动力运行控制系统、安全自动装置和电
能质量监控系统组成的全自动智能变电站。

智能变电站主要分为三大类,分别是自动控制变电站、清晰控制变电站、智能控制变电站。

自动控制变电站是采用机械、电子设备、真空技术
及其他类似技术等组成自动控制系统,实现变电站的自动控制,当变电站
内发生故障后,可以自动进行故障处理的变电站。

清晰控制变电站是将变
电站的电气参数和控制电路信号按一定的信号规格通过数字技术进行采集
和处理,自动采集变电站的电气参数,实现变电站的自动控制,以及实时
监控变电站运行情况的变电站。

智能控制变电站是指将变电站的电气参数、控制电路信号和智能设备信号进行采集和处理,利用计算机及其他智能技术,实现变电站自动运行控制,从而实现智能化变电站管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述及特点
变电站信息传输和处理的数字化 统一的信息模型:数据模型、功能模型 统一的通信协议:信息无缝交换 高质量信息:可靠性、完整性、实时性 各种设备和功能共享统一的信息平台
智能化变电站优点
• 开放的通信协议、统一的数据模型,信息的集成化应用,为 电网开展高级应用提供了便捷条件,如为定期检修过渡到状 态检修提供一个更好的信息平台;
数字化的三个主要特征
智能化变电站标准体系目前未完善,国内各电网公司智能化变电站的 建设方案多种多样,智能化的深度和广度也各不相同,可从三个网络 的数字化程度来判断:
(1)站控层网络是否采用了IEC61850协议;
(2)开关量跳闸二次回路是否实现了网络化、数字化;
(3)模拟量采集二次回路是否实现了网络化、数字化;
站控层设备
监控系统
工程师工作站
故障信息系统
站控层MMS网络 站控层网络
间隔层设备
保护1
测控1
{ 过程层网络 GOOSE跳闸网络 SAV采样值网络
HUB/MAU
NIC
% UTILIZATION
TAB
GD RE I F JA KB L C
M7 N 8 O9 GD GD GD BNC 4Mb/s GD T 2 U 3 V0 W. X Y Z
中性点电流输出二次变换
a相电压传感器输出二次变换(测量) a相电压传感器输出二次变换(测量) a相电压传感器输出二次变换(测量)
中性点电压输出二次变换
母线电压传感器输出二次变换
数字 输出 合并单元 (merging unit)
电源 时钟
IEC60044-8标准:点对点的FT3格式、光纤串行传输
• 传输延时确定 • 可以采用再采样技术实现同步采样 • 硬件和软件实现简单 • 适合保护要求 • 不适用于网络传输
IEC61850(DL/T 860 ) 变电站通信网络和系统标准
智能单元(下放)+开关 智能开关
合并单元+传统互感器 有源式互感器 无源式互感器
合并单元是否下放
三网是否共享物理链路
概述及特点
智能化变电站与传统变电站比较
节省投资、二次接线简单、可靠性高、便于设备维护升 级、便于变电站规模的扩建和功能的扩充
智能变电站介绍
主要内容
➢ 智能化变电站概述及特点 ➢ 电子式互感器介绍 ➢ 智能单元介绍 ➢ IEC61850介绍 ➢ 智能化变电站工程应用介绍
智能化变电站概述及特点
技术发展的趋势:
1、机电式 2、晶体管式 3、集成电路 4、微机型??
微机式将原来由电路实现的保护用计算机程序语言代替;将 处理的过程数字化了,但信息采集、传输、输出过程没有实 现数字化。
无源式电流互感器主要是基于法拉第磁光效应,按材料 不同可分为磁光玻璃型和纯光纤型;
电压互感器有基于普克尔电光效应的互感器。 无源式电压互感器技术还不成熟,而且应用需求并没 有电流互感器高,因此目前还没有成功应用。
法拉第磁光效应电流互感器
普通光 起偏器
法拉第磁光效应
偏振光
Faraday旋光角
Faraday材料
光学电流互感器 (OCT)
Rogowski电子式互感器
• 电流测量:采用罗氏(Rogowski)空芯线圈和低功率线 圈(LPCT)电磁感应原理
远端模块由电子电路构成,需要供电,因此称为有源式电子 互感器,有源式电子互感器技术较为成熟,在国内外已有一 定的应用。
特点: • 空心线圈,不会产生磁饱和现象; • 动态测量范围大; • 频率响应范围宽; • 体积小、重量轻。
ENTER RUN
PRINT HELP ALPHA SHIFT
计量
IEC61850
录波
测控2
智能化变电站 保护2 不完全等同于
IEC 61850
过程层设备 一次设备
合并单元
智能操作箱
合并单元
智能操作箱
电子式互感器 开关设备
电子式互感器 开关设备
智能化变电站介绍
六大特征:一次设备智能化、互感器数字化、二次设备网络化、传 输介质光纤化、通信标准统一化、信息应用集成化;
IEC61850-9-1标准:点对点的光纤网络传输
• 传输延时相对固定 • 可以采用再采样技术实现同步采样 • 硬件和软件实现简单 • 适合保护要求 • 数据格式不灵活 • 不适用于组网传输
IEC61850-9-2标准:光纤组网传输
• 传输延时不确定(400us-3ms) • 数据格式灵活,适用于组网传输 • 硬件软件比较通用,但对交换机要求极高 • 硬件和软件实现都将困难 • 不同间隔间数据到达时间不确定,不利于
磁光玻璃 纯光纤
电压互感器
普克尔电光效应 克尔效应 逆压磁效应
电子式电流互感器分类
Faraday 电磁感应原理
Faraday 磁旋光效应
铁心线圈
法拉第 (Michael Faraday) 1791年-1867年
空心线圈
玻璃、光纤 或镀模玻璃
低功率铁心线圈
电流互感器 (LPCT)
罗可夫斯基线圈
电流互感器 (RCT)
母差、变压器等保护的数据处理 • 比较适合测控、电能仪表一类
电子式互感器关键技术
二次接口:
• 互感器的安装位置、合并单元的配置方案 • 采样数据的同步-三相电流电压之间、差动保护 • 计量系统
互感器的可靠性 、稳定性
• 通信、供电、远端模块
运行维护
电子式互感器发展应用情况
研制工作始于二十世纪八十年代初: 主要研制单位:ABB、ALSTHOM、MITSUBISHI、
传统电流互感器的缺点
r1 I1 L1
I
' 2
r2'
Ie
Ie
L'2 RL' L'L
i1,i2 (A)
?
t(s) t(s)
ห้องสมุดไป่ตู้
差动保护不平衡电流的波形
电子式互感器的优缺点
优点 1、高低压系统完全隔离,安全性高,具有优良的绝缘性
能和优越的性价比; 2、不含铁芯,消除了磁饱和和铁磁谐振等问题; 3、无CT开路、PT短路的危险,互感器的精度与负载无关 4、动态范围大,测量精度高; 5、暂态特性好 6、没有因充油而潜在的易燃、易爆炸等危险 7、 体积小、重量轻 8、适应了电力系统数字化、智能化和网络化发展的需要
电子式互感器结构
P1
一次电流 (电压) 传感器
一次 转换器
P2
一次侧电源
传输 系统
配合合并单元
二次转换器

模拟输出
S1
二次转换器

S2
A相电子式电流(电压)互感器 单
B相电子式电流(电压)互感器
元 C相电子式电流(电压)互感器
二次设备
高压侧(远端模块)
低压侧
基本构成:高压侧数据转换模块(远端模块)和低压侧合并单元
磁场 B
磁光效应原理
检偏器
磁光玻璃型
磁光效应互感器结构
纯光纤型
•敏感元件和传输元件都是光纤。 •输入输出光路为统一路径,提高了抗 干扰能力,安全可靠性高。 •也采用独特的闭环控制技术,动态范 围大和精度高。
电子式电压互感器
目前暂无成熟的产品
无源式电子式互感器技术难点
1、光学传感材料的选择 2、温度对传感器精度的影响 3、应力对传感器精度的影响 4、传感头的封装技术 5、长期稳定性问题 6、微弱信号检测
①硬件上:由智能化一次设备(电子式互感器、智能化开关等)和网络化、数字化 的二次设备组成; ②软件上:以IEC61850标准作为通信协议,实现设备间充分的信息共享和互操作;
一次设备智能化
硬件 数字化变电站
软件
互感器数字化
二次设备网络化 传输介质光纤化 通信标准统一化
IEC 61850
信息应用集成化
数字化变电站是未来变电站自 动化技术发展的趋势,是建设 智能电网的重要组成部分。
要研制单位有清华大学、华中科技大学、中国电力科学研究 院、新宁光电、南瑞继保等。
有源式电子式互感器技术已经逐渐成熟,目前正在研制 无源电子式互感器,并已开始小范围的应用。
电子式互感器发展应用情况
电子式互感器发展应用情况
合并单元 线路保护
数据输出 数据输入
电子式互感器的同步采样问题
• 同一间隔三相电压、电流之间需考虑同步采样 • 变压器差动保护从不同电压等级的多个间隔获取数据存在同
智能化变电站技术构成
主要构成:
电子式互感器 智能开关设备 网络化二次设备 IEC61850标准应用 以太网通信网络
电子式互感器
传统电磁式互感器暴露固有的缺陷: 1、绝缘、重量支撑结构复杂,产品造价随电压等级 呈指数上升高; 2、电磁式电流互感器存在固有的磁饱和现象,严重 时造成保护的拒动或误动; 3、动态测量范围小,频带窄,高频响应特性差; 4、电压互感器器存在二次短路的危险,电流互感器 存在二次开路的危险; 5、存在易燃、易爆等危险。
有源式电压互感器
高压母线

容 分
信号 预处理
光纤
A/D
LED
PIN


远端模块
电容分压式EVT结构图
原理简单,对分压器(电容)精度要求高,可采用级 联方式,注意对地杂散电容的影响。
有源式电子式互感器技术难点
1、一次电流及电压传感器,特别 是电压分压器的稳定性;
2、远端传感模块的稳定性和可靠 性(安置在室外时温度、电磁干扰 等);
缺点 目前可靠性不如常规互感器
电子式互感器标准
国际标准 IEC60044-7、IEC60044-8
国家标准 GB/T20840.7、GB/T20840.8
相关文档
最新文档