固体物理能带理论.ppt
合集下载
能带结构教学优质课件PPT

从电子和不带电的原子核出发,它们是一系列自由的平面波组成的波包, 可具任意能量,在带电后衰减。形成布拉格反射和带结构。
半导体
半导体
固体材料中全空的导带称为空带。当满带与空带之间的禁带宽 达5~7eV时,电子难以借热运动等跃过禁带进入空带,因此是绝 缘体,但当禁带宽度在1eV上下,便属于半导体材料。典型的半导 体Si禁带为1.12eV。
固体能带
固体的导电性能由其能带结构决定。对一价金属,价带是未 满带,零, 价带与较高的空带相交叠,满带中的电子能占据空带,因而也 能导电,绝缘体和半导体的能带结构相似,价带为满带,价带 与空带间存在禁带。
常温下从满带激发到空带的电子数微不足道,宏观上表现 为导电性能差。满带中的电子只需较小能量就能激发到空带 中,宏观上表现为有较大的电导率(见半导体)。
能带结构
目录
A 能带结构 C 能带结构计算
半导体
B
能带结构
在固体物理学中,固体的能带结构(又称电子能带结构)描述了禁 止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍 射引起的。材料的能带结构决定了多种特性,特别是它的电子学和光学 性质。
能带结构
单个自由原子的电子占据原子轨道,形成一个分立的能级结构。如果几 个原子集合成分子,他们的原子轨道发生类似于耦合振荡的分离。这会产 生与原子数量成比例的分子轨道。在形成分子时,原子轨道构成具有分立 能级的分子轨道。晶体由大量分子轨道组成,以至于可以将所形成的分子 轨道的能级看成是准连续的,即形成了能带。
课程小结
课程 小结
01 什么是能带结构 02 半导体的概念 03 能带结构计算
Thank You
能带理论
能带理论
能带理论就是认为晶体中的电子是在整个晶体内运动的共有化 电子,并且共有化电子是在晶体周期性的势场中运动;结果得到: 共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能 级构成的许多能带。
半导体
半导体
固体材料中全空的导带称为空带。当满带与空带之间的禁带宽 达5~7eV时,电子难以借热运动等跃过禁带进入空带,因此是绝 缘体,但当禁带宽度在1eV上下,便属于半导体材料。典型的半导 体Si禁带为1.12eV。
固体能带
固体的导电性能由其能带结构决定。对一价金属,价带是未 满带,零, 价带与较高的空带相交叠,满带中的电子能占据空带,因而也 能导电,绝缘体和半导体的能带结构相似,价带为满带,价带 与空带间存在禁带。
常温下从满带激发到空带的电子数微不足道,宏观上表现 为导电性能差。满带中的电子只需较小能量就能激发到空带 中,宏观上表现为有较大的电导率(见半导体)。
能带结构
目录
A 能带结构 C 能带结构计算
半导体
B
能带结构
在固体物理学中,固体的能带结构(又称电子能带结构)描述了禁 止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍 射引起的。材料的能带结构决定了多种特性,特别是它的电子学和光学 性质。
能带结构
单个自由原子的电子占据原子轨道,形成一个分立的能级结构。如果几 个原子集合成分子,他们的原子轨道发生类似于耦合振荡的分离。这会产 生与原子数量成比例的分子轨道。在形成分子时,原子轨道构成具有分立 能级的分子轨道。晶体由大量分子轨道组成,以至于可以将所形成的分子 轨道的能级看成是准连续的,即形成了能带。
课程小结
课程 小结
01 什么是能带结构 02 半导体的概念 03 能带结构计算
Thank You
能带理论
能带理论
能带理论就是认为晶体中的电子是在整个晶体内运动的共有化 电子,并且共有化电子是在晶体周期性的势场中运动;结果得到: 共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能 级构成的许多能带。
《固体物理能带理论》课件

探索禁带宽度
禁带宽度的影响
深入探究禁带宽度对材料性质的 影响,介绍如何利用禁带宽度调 控材料性质。
直接/间接带隙
介绍直接带隙和间接带隙的概念 和特点,以及如何通过调控禁带 宽度实现它们之间的转换。
量子点
了解量子点的概念及其在光伏、 光催化、发光等方面的应用。
电子在周期势场中的行为
布拉歇特条件
探究布拉歇特条件的作用和意义,以及如何通过布拉歇特条件来理解材料导电性。
电子自旋
介绍电子自旋的概念和特点,以及在磁性材料中的重要作用。
量子霍尔效应
了解量子霍尔效应的概念和特点,以及其在电子学、自旋测量等方面的应用。
应用能带理论
1
太阳能电池
探究太阳能电池的原理和构造,以及如
半导体激光器
2
何利用能带理论来提高太阳能电池的性 能。
介绍半导体激光器的原理和构造,以及
如何通过能带理论来优化激光器的性能。
《固体物理能带理论》 PPT课件
通过本PPT了解固体物理能带理论,理解能带的概念和特点,并探究能带理论 在实际应用中的应用。
什么是固体物理能带理论?
晶体的电子结构
介绍晶体的基本结构和存在能带 的原因,以及能带分布的规律。
能带、狄拉克相对论
进一步探究能带的特点及其与材 料导电性的关系,介绍狄拉克相 对论的意义。
Bloch定理和能带图
介绍Bloch定理的作用,以及如何 通过能带图来描绘材料的电子结 构。
深入理解价带和导带
价带的物理意义
介绍价带中电子的特征和性 质,并探讨不同能级之间的 关系。
导带的物理意义
深入剖析导带中的电子行为, 介绍电子元件中导带的作用。
轻重空穴带
孙会元固体物理基础第三章能带论课件3.10 金属的费米面和能带论的局限性

因此,费米面完全在第一布里渊区内,在周期势的作用下, 费米面都是稍稍变形的球。
对于立方晶系的二价碱土金属(Ca(fcc),Sr(fcc), Ba(bcc)),每个原胞有两个 s 价电子。 由于费米球和第一布里渊区等体积,因而和区界面 相交,导致电子并没有全部在第一布里渊区,而是有一 部分填到了第二区,因此费米面在第一区形成空穴球面 ,第二区形成电子球面. 对于六角密堆积结构的二价金属Be、Mg,由于在第 一布里渊区六角面上几何结构因子为零,弱周期势场在 此不产生带隙,仅当考虑二级效应,如自旋轨道耦合时 才能解除简并。 这些金属的费米面可看作由自由电子球被布里渊区 边界切割,并将高布里渊区部分移到第一布里渊区得到 .因此,费米面的形状很复杂,会出现空穴型宝冠状、电 子型雪茄状等.
以第一布里渊区中心为原点,以费米波矢为半径画 自由电子的费米圆. (费米面的广延区图)
3) 将落在各个布里渊区的费米球片断平移适当 的倒格矢进入简约布里渊区中等价部位(费米面 的简约区图)。
第一区
=1
第一区
第二区
=2,3
第三区圆,即费米面 同布里渊区边界垂直相交,尖角处要钝化,就 可以得到近自由电子的费米面。
三价金属铝,具有面心立方结构,每个原胞含有 3个价电子,自由电子的费米球将延伸至第一布 里渊区以外.由于周期势的作用,使得第二、第三 布里渊区的费米面变得支离破碎.
一价贵金属包括Cu,Ag,Au等均为面心立方结构,它 们s 轨道附近还有d轨道,形成固体时, s 轨道交叠积分 大, 演变成宽的s带, d轨道因交叠积分小, 变成一窄的d 带. 11个电子将d带填满, s带填了一半. 费米面在s带中, 但d带离费米面很近, 导致球形费米面发生畸变, 因而 出现复杂的输运行为, 但是仍属于单带金属. 比如对于金属铜,假设晶格常数为a,其费米半径
固体物理课件

e 2 晶体中有3N个振动模 晶体中有 个振动模 C = k ( ∑ B k T ) (eℏω j / kBT − 1)2 V 1) 爱因斯坦模型 ) j =1 B 假设N个原子构成的晶体 个原子构成的晶体, 假设 个原子构成的晶体,
所有的原子以相同的频率 ω0振动 2) 德拜模型 ) 以连续介质的弹性波来代表格 波,将晶格看作是各向同性的 连续介质
V (r + R) = V (r )
布洛赫定理
具有晶格周期性时, 布洛赫定理 —— 势场 V ( r ) 具有晶格周期性时,电子的波 函数满足薛定谔方程 ℏ2 2 [− ∇ + V ( r )]ψ ( r ) = E ψ ( r ) 2m —— 方程的解具有以下性质
ψ ( r + Rn ) = e ik ⋅R ψ ( r )
ω = 2
−
− i (ωt − naq )
2
β
m
ω
aq sin m 2
−π a
β
π π < q ≤ a a
q=
µn = µn+ N 2π
Na
× h —— h为整数 为整数
π a o 晶格振动波矢的数 目=晶体的原胞数 晶体的原胞数
能量本征值 ε n = ( n q + 1 ) ℏ ω q
q
晶格振动的能量量子; 声子 —— 晶格振动的能量量子;或格波的能量量子 当这种振动模处于 系统能量本征值
原子的振动 —— 晶格振动在晶体中形成了各种模式的波
模型 运动方程 试探解
m µ n = − β (µ n − µ n−1 ) − β (µ n − µ n+1 )
..
一维晶格振动 一维无限长原子链, , , 一维无限长原子链,m,a,β
《固体物理基础教学课件》第4章-能带理论共34页文档

孤立原子中电子的 势阱
势垒 电子能级
+
第 四 章 固体的能带
解定态薛定谔方程, 可以得出两点重要结论: [ 2 2 V (r)] E
2m
➢电子的能量是量子化的 ➢电子的运动有隧道效应
# 原子的外层电子(在高能级) 势垒穿透概率较大, 电子可以在整个固体中运动,称为共有化电子。原子 的内层电子与原子核结合较紧,一般不是共有化电子, 称为离子实。
不满带:未填满电子的能带
E
空带:没有电子占据的能带
禁带:不能填充电子的能区
价带:在0k时能被电子占满的最高能
带,对半导体价带通常是慢带
导带:半导体最外面(能量最高)的
一个能带。
空带
禁带体的能带
能带对电导的贡献 满带
…
电子交换能态并不改变 能量状态,所以满带不 导电。
导带: 不满带或满带以上最低的空带 为什么把空带或不满带称为导带? 因为只有这种能带中的电子才能导电。
第 四 章 固体的能带
导电——电子在电场作用下作定向运动,
以一定速度漂移, v 10 -2 cm/s
E
电子得到附加能量
到较高的能级上去,
这只有导带中的电子才有可能。
第 四 章 固体的能带
p2 E
能级已填满不能再填充电子— 2s
分裂为两条
1s
第 四 章 固体的能带
各原子间的相互作用 原来孤立原子的能级发生分裂
若有N个原子组成一体,对于原来孤立原子的 一个能级,就分裂成N条靠得很近的能级,称
为能带(energy band)。
能带的宽度记作 E,E ~eV 的量级
若N数量级为1023,则能带中两相邻能级的间距约
pentium MMX
势垒 电子能级
+
第 四 章 固体的能带
解定态薛定谔方程, 可以得出两点重要结论: [ 2 2 V (r)] E
2m
➢电子的能量是量子化的 ➢电子的运动有隧道效应
# 原子的外层电子(在高能级) 势垒穿透概率较大, 电子可以在整个固体中运动,称为共有化电子。原子 的内层电子与原子核结合较紧,一般不是共有化电子, 称为离子实。
不满带:未填满电子的能带
E
空带:没有电子占据的能带
禁带:不能填充电子的能区
价带:在0k时能被电子占满的最高能
带,对半导体价带通常是慢带
导带:半导体最外面(能量最高)的
一个能带。
空带
禁带体的能带
能带对电导的贡献 满带
…
电子交换能态并不改变 能量状态,所以满带不 导电。
导带: 不满带或满带以上最低的空带 为什么把空带或不满带称为导带? 因为只有这种能带中的电子才能导电。
第 四 章 固体的能带
导电——电子在电场作用下作定向运动,
以一定速度漂移, v 10 -2 cm/s
E
电子得到附加能量
到较高的能级上去,
这只有导带中的电子才有可能。
第 四 章 固体的能带
p2 E
能级已填满不能再填充电子— 2s
分裂为两条
1s
第 四 章 固体的能带
各原子间的相互作用 原来孤立原子的能级发生分裂
若有N个原子组成一体,对于原来孤立原子的 一个能级,就分裂成N条靠得很近的能级,称
为能带(energy band)。
能带的宽度记作 E,E ~eV 的量级
若N数量级为1023,则能带中两相邻能级的间距约
pentium MMX
孙会元固体物理基础第三章能带论课件3.4能带结构的其它计算方法

( ) r) ,相互作用势依赖于 i ( r ) ,同时 i ( r ) 由于nr i( i i ( r ) 既出现 又要由薛定谔方程来决定,也就是说, 在系数中,同时又是方程的解.所以,必须用自洽的 计算方法—迭代法来处理.这种求解工作量很大, 需借助计算机进行. 求解思路: 1).首先确定所研究晶体的结构和组成(确知价 电子并计算出电荷密度); 2). 确定初始的单电子势 V ( r ) ;
3.密度泛函理论(density functional theory) 该理论是对哈特利—福克(Hartree—Fock)近 似,亦即将多电子问题化为单电子问题的更严格、 更精确的描述. (具体内容可参考谢希德、陆栋主 编的《固体能带理论》17). 在密度泛函理论基础之上的局域密度近似 (local density approximation,简称为LDFT)框架 下的计算 ,在大多数情况下能得到较好的结果。 密度泛函理论的基础是非均匀相互作用电子 系统的基态能量由基态电荷密度唯一确定,是基态 电子密度n ( r ) 的泛函.阎守胜书P287(12.1.3)给出了 证明;同时给出了当电子密度的空间变化缓慢时,由 局域密度近似得到的单电子薛定谔方程.
内层电子的能带---窄带;外层电子的能带---宽带 通常把被电子填满的最高能带称为价带,而把 最低空带或半满带称为导带(后面我们还要讨论). 固体的物性主要取决于价带和导带中的电子.而对 于这些外层电子而言,离子实区内和离子实区外是 两种性质不同的区域. 离子实区外,电子感受到的是弱的势场的作用, 波函数很平滑,类似于平面波;离子实区内由于强 烈的局域势作用,波函数急剧振荡,可由紧束缚波 函数来描述。 外层电子(价带和导带中的电子)的波函数可由 两者的线性组合来描述。
(2)
固体物理 6-1能带论
0 k
and H 0 E
0 0 0 0 a( Ek E V ) k b( Ek ' E V ) k ' 0 得到
6-1一维周期场中电子运动的近似分析 —— 能带论
0 0 0 0 a( Ek E V ) k b( Ek ' E V ) k ' 0
( Ek0 Ek0' ) 2 1 0 E {Ek Ek0' 2 Vn 1 } 2 2 4 Vn
6-1一维周期场中电子运动的近似分析 —— 能带论
( E k0 E k0' ) 2 1 0 E {E k E k0' 2 Vn } 2 4 Vn n 2 化简 k (1 ) 2 n 0 a 1 2 V Ek
分别以
0 k
* 或 * 从左边乘方程,对 x 积分
0 k'
利用 线性代数方程
k V k k ' V k ' 0
( Ek0 E )a Vn*b 0 & Vn a ( Ek0' E )b 0
E E
0 k
V
0 k'
a, b有非零解
* n
Vn
E E
波矢k离
n 较远,k状态的能量和状态k′差别较大 2 a 4 Vn 1 0 0 0 0 E {Ek Ek ' ( Ek ' Ek ) 1 0 } 0 2 2 ( Ek ' Ek )
2 0 Vn Ek ' 0 Ek ' Ek0 E 2 Vn 0 Ek E 0 E 0 k' k
研究生课件-能带理论
设孤立原子的一个能级 Enl ,它最多能容 纳 2 (2 l +1)个电子。
这一能级分裂成由 N条能级组成的能带后, 能带最多能容纳 2N(2l +1)个电子。
6
2N(2l+1)
例如,1s、2s能带,最多容纳 2N个电子。 2p、3p能带,最多容纳 6N个电子。
电子排布时,应从最低的能级排起。
有关能带被占据情况的几个名词:
计算表明: U0b 的数值越大所得到的能带越窄。 由于原子的内层电子受到原子核的束缚较大, 与外层电子相比,它们的势垒强度较大。
所以,内层电子的能带较窄。 外层电子的能带较宽。
26
从 E ~ k 曲线还可以
E
看出: k 值越大,
相应的能带越宽。
E7
k n 2 n 2
Na L (n 0,1,2,)
maU 2
0b
sin
a
a
cos
(
a)
cos(ka)
(4)
式中
2mE
而 k 2 是电子波的角波数*。
(4)式就是电子的能量 E 应满足的方程,也是电子
能量 E与角波数 k 之间的关系式。
注*:有兴趣的读者可参阅〈固体物理基础〉
蔡伯熏编(1990)P 268。
21
maU 2
0b
s
in
a
由周期性边界条件可以推出:布洛赫波函数 的
波数 k 只能取一些特定的分立值。
13
证明如下:
由周期性边界条件 k ( x) k ( x Na)
(3)
按照布洛赫定理:
左边为 右边为
k ( x) ei k xuk ( x)
k
(
x
Na )
这一能级分裂成由 N条能级组成的能带后, 能带最多能容纳 2N(2l +1)个电子。
6
2N(2l+1)
例如,1s、2s能带,最多容纳 2N个电子。 2p、3p能带,最多容纳 6N个电子。
电子排布时,应从最低的能级排起。
有关能带被占据情况的几个名词:
计算表明: U0b 的数值越大所得到的能带越窄。 由于原子的内层电子受到原子核的束缚较大, 与外层电子相比,它们的势垒强度较大。
所以,内层电子的能带较窄。 外层电子的能带较宽。
26
从 E ~ k 曲线还可以
E
看出: k 值越大,
相应的能带越宽。
E7
k n 2 n 2
Na L (n 0,1,2,)
maU 2
0b
sin
a
a
cos
(
a)
cos(ka)
(4)
式中
2mE
而 k 2 是电子波的角波数*。
(4)式就是电子的能量 E 应满足的方程,也是电子
能量 E与角波数 k 之间的关系式。
注*:有兴趣的读者可参阅〈固体物理基础〉
蔡伯熏编(1990)P 268。
21
maU 2
0b
s
in
a
由周期性边界条件可以推出:布洛赫波函数 的
波数 k 只能取一些特定的分立值。
13
证明如下:
由周期性边界条件 k ( x) k ( x Na)
(3)
按照布洛赫定理:
左边为 右边为
k ( x) ei k xuk ( x)
k
(
x
Na )
固体物理6-2 能带理论
波矢群中的对称操作 4z,mx,my,σ1,σ2 2z, mx,my 4z,mx,my,σ1,σ2 my
σ2
mx
简单立方晶格Oh (m3m)点群:
特殊位置 Γ点 R S ΔT X Γ Z Σ M Λ X点 M点 R点 Δ轴 Z轴 Σ轴 S轴 T轴 Λ轴 k (0, 0, 0) (π/a, 0, 0) (π/a, π/a, 0) (π/a, π/a, π/a) (k, 0, 0) (π/a, k, 0) (k, k, 0) (π/a, k, k) (π/a, π/a, k) (k, k, k) β群 Oh (m3m) D4h (4/mmm) D4h (4/mmm) Oh (m3m) C4V (4mm) C2V (mm2) C2V (mm2) C2V (mm2) C4V (4mm) C3V (3m)
T (α )ψ n ,k ( r ) = T (α ) eikr un ,k ( r )
=e
ik α 1r
un ,k (α 1r )
′ = eiα kr un ,α k ( r ) = ψ n ,α k ( r )
un ,k (α 1r ) 仍以格矢Rl为周期, 由于
可以改写为 由于α是正交变换,
∴ k α 1r = α k r
V = 2 3 8π
∫∫
等能面
dSdk⊥
dE = k E dk⊥
dZ V ∴N (E) = = 3 dE 4π
2. 近自由电子的能态密度 对于自由电子:
∫∫
dS k E
h2k 2 E (0) ( k ) = 2m
的球面
2mE 能量为E的等能面是半径为 k = h2
在球面上
dE h 2 k E = = k dk m
4.1能带结构PPT课件
22mk 2 Nhomakorabeak
2
n a
2
包括二级微扰的电子能量为
Ek
2k2 V 2m
n
'
Vn 2
2
2m
k 2
k
2 n
a
18
2
微扰下电子的波函数
电子的波函数
k
(
x)
(0) k
(
x)
(1) k
(
x)
......
(0) k
(
x)
1 eikx L
'
H (1)
k 'k
k
(0)
(0)
E E k ' k
e / i
k
2
n a
x
, 它们的能量差越小掺
L
21
Brillouin区边界处的发散
一般情况下,各原子产生的散射波影响较小,但如果相邻原子产生 的散射波具有相同的位相时,情况完全不同。
当
E E (0)
(0)
k
k 2n / a
散射波成份的振幅
2k 2 2 (k 2 n / a)2
2m
2m
2mVn
k'
(0) k'
一级微扰波函数
(1) k
n
Vn
2
2m
k 2
k
2
n a
2
1 ei
k
2
n a
x
L
包括一级微扰的电子波函数
k (x)
1 eikx
Vn
L
n
2
2m
k 2
k
2
n a
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禁带:两个相邻能带间的间距
禁带中不存在电子的定态,其宽度对晶体的导电性至关重要。
满带是不导电的,价带和空带是可以导电的。电流是电子在电 场作用下定向运动的结果。可以想象能带中有许多“空位”, 每个“空位”只能容纳一个电子,由于在满带中所有的“空位” 都被电子占满,电子不能在电场作用下从一个“空位”跑到另 一个“空位”,就像在满座的剧场里一个人不可能去占别人的 座位一样。所以满带中的电子是不自由的,是不能导电的。
。2020年11月9日星期一2020/11/92020/11/92020/11/9
15、会当凌绝顶,一览众山小。2020年11月2020/11/92020/11/92020/11/911/9/2020
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/11/92020/11/9November 9, 2020
周期
线度:一般指物体从各个方向测量时的最大长度
布洛赫函数 L=Na,L是线度
5.3 克朗尼格-朋奈模型 能带中的能级数目
这些都与5.1节概述中介绍的结论是一致的
5.4 导体和绝缘体
谢谢
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/11/92020/11/9Monday, November 09, 2020
二 能带
晶体中各原子相互影响,使得能量 和运动轨迹发生不同程度的变化
外 层 内 层 1S 2S到2P所分布的电子离核距离在逐渐变大能量越来越高
L从0开始取值
满带:晶体中最低能带的各个能级都被电子填满这样的能带成为满带
价带:由价电子能级分裂而形成的能带。 ①通常情况下,价带为能量最高的能带; ②也可能未被电子填满,形成不满带或半满带。 空带:若一个能带中所有的能级都没有被电子填入,这样的能带成为空带
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
但在导带中有许多“空位”,电子在电场的作用下就能改变能 量,从一个“空位”跑到另一个“空位”。大量电子的这种运 动,从宏观上来看,表现为电子作定向运动,因而就形成了电 流。所以说,只有导带中的电子才能导电。
5.2 布洛赫定理
波函数是量子力学中用来描述粒子的德布罗意波的函数. 为了定量地描述微观粒子的状态
第五章 晶体的能带理论
ห้องสมุดไป่ตู้
章节内容
5.1 晶体的能带 5.2 布洛赫定理 5.3 克朗尼格-朋奈模型 能带中的能级数目 5.4 导体和绝缘体
5.1 晶体的能带
势阱:该空间区域的势能比附近的势能都低。势阱处的粒子想要离开势阱概率较低 势垒:该空间区域的能量比附近的势能都高。
晶体中大量原子聚集在一起,而且 各原子之间的距离很近,致使离原 子核较远的壳层发生交叠,壳层交 叠使电子不再局限于某个原子上, 有可能转移到相邻壳层上去,也可 能从相邻原子运动到更远壳层上去, 这种现象称为电子共有化
10、人的志向通常和他们的能力成正比例。2020/11/92020/11/92020/11/911/9/2020 7:57:17 AM 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/11/92020/11/92020/11/9Nov-209-Nov-20 12、越是无能的人,越喜欢挑剔别人的错儿。2020/11/92020/11/92020/11/9Monday, November 09, 2020 13、志不立,天下无可成之事。2020/11/92020/11/92020/11/92020/11/911/9/2020
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/11/92020/11/92020/11/92020/11/9
谢谢观看
禁带中不存在电子的定态,其宽度对晶体的导电性至关重要。
满带是不导电的,价带和空带是可以导电的。电流是电子在电 场作用下定向运动的结果。可以想象能带中有许多“空位”, 每个“空位”只能容纳一个电子,由于在满带中所有的“空位” 都被电子占满,电子不能在电场作用下从一个“空位”跑到另 一个“空位”,就像在满座的剧场里一个人不可能去占别人的 座位一样。所以满带中的电子是不自由的,是不能导电的。
。2020年11月9日星期一2020/11/92020/11/92020/11/9
15、会当凌绝顶,一览众山小。2020年11月2020/11/92020/11/92020/11/911/9/2020
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/11/92020/11/9November 9, 2020
周期
线度:一般指物体从各个方向测量时的最大长度
布洛赫函数 L=Na,L是线度
5.3 克朗尼格-朋奈模型 能带中的能级数目
这些都与5.1节概述中介绍的结论是一致的
5.4 导体和绝缘体
谢谢
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/11/92020/11/9Monday, November 09, 2020
二 能带
晶体中各原子相互影响,使得能量 和运动轨迹发生不同程度的变化
外 层 内 层 1S 2S到2P所分布的电子离核距离在逐渐变大能量越来越高
L从0开始取值
满带:晶体中最低能带的各个能级都被电子填满这样的能带成为满带
价带:由价电子能级分裂而形成的能带。 ①通常情况下,价带为能量最高的能带; ②也可能未被电子填满,形成不满带或半满带。 空带:若一个能带中所有的能级都没有被电子填入,这样的能带成为空带
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
但在导带中有许多“空位”,电子在电场的作用下就能改变能 量,从一个“空位”跑到另一个“空位”。大量电子的这种运 动,从宏观上来看,表现为电子作定向运动,因而就形成了电 流。所以说,只有导带中的电子才能导电。
5.2 布洛赫定理
波函数是量子力学中用来描述粒子的德布罗意波的函数. 为了定量地描述微观粒子的状态
第五章 晶体的能带理论
ห้องสมุดไป่ตู้
章节内容
5.1 晶体的能带 5.2 布洛赫定理 5.3 克朗尼格-朋奈模型 能带中的能级数目 5.4 导体和绝缘体
5.1 晶体的能带
势阱:该空间区域的势能比附近的势能都低。势阱处的粒子想要离开势阱概率较低 势垒:该空间区域的能量比附近的势能都高。
晶体中大量原子聚集在一起,而且 各原子之间的距离很近,致使离原 子核较远的壳层发生交叠,壳层交 叠使电子不再局限于某个原子上, 有可能转移到相邻壳层上去,也可 能从相邻原子运动到更远壳层上去, 这种现象称为电子共有化
10、人的志向通常和他们的能力成正比例。2020/11/92020/11/92020/11/911/9/2020 7:57:17 AM 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/11/92020/11/92020/11/9Nov-209-Nov-20 12、越是无能的人,越喜欢挑剔别人的错儿。2020/11/92020/11/92020/11/9Monday, November 09, 2020 13、志不立,天下无可成之事。2020/11/92020/11/92020/11/92020/11/911/9/2020
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/11/92020/11/92020/11/92020/11/9
谢谢观看